
Korat: A Tool for Generating Structurally Complex Test Inputs

Aleksandar Milićević Saša Misailović
University of Belgrade

Belgrade, Serbia

Darko Marinov
University of Illinois

Urbana-Champaign, IL

Sarfraz Khurshid
University of Texas

Austin, TX

Abstract

This paper describes the Korat tool for constraint-based
generation of structurally complex test inputs for Java pro-
grams. Korat takes (1) an imperative predicate that spec-
ifies the desired structural integrity constraints and (2) a
finitization that bounds the desired test input size. Korat
generates all inputs (within the bounds) for which the pred-
icate returns true. To do so, Korat performs a systematic
search of the predicate’s input space. The inputs that Korat
generates enable bounded-exhaustive testing for programs
ranging from library classes to stand-alone applications.

1. Introduction

Testing is the dominant method for finding software er-
rors in practice. As such, testing is critical to the produc-
tion of high-quality code. A key requirement for success-
fully testing any software system is obtaining good test in-
puts. Manual generation of test inputs is laborious and typi-
cally produces inputs that exercise only a small subset of the
functionality of the software. The alternative is to automate
generation of test inputs; such automation can significantly
help the developers produce and maintain reliable code.

We have developed the Korat tool for automated testing
of Java programs [1, 6]. Korat focuses on programs that
have structurally complex inputs: the inputs are structural—
e.g., represented with linked data structures—and must sat-
isfy complex properties that relate parts of the structure—
e.g., invariants for linked data structures. Almost all mod-
ern software systems manipulate structurally complex data.
For example, Java programs operate on a heap that con-
sists of linked objects; each heap configuration must satisfy
the consistency properties of the data structures in the heap.
As another example, Web services manipulate XML docu-
ments; each service operates only on documents that satisfy
certain syntactic and semantic properties.

To illustrate the testing of code that takes structurally
complex inputs, consider the testing of an operation on
some data structure that implements an abstract data type.

For example, consider a Java method that removes an ele-
ment from a tree that implements a set. Each such opera-
tion should preserve the invariant of the data structure. In
this example, the invariant is that the object graph that rep-
resents the tree is indeed a tree and not an arbitrary graph
with cycles or sharing. To test the remove method, we need
to execute it on several input object graphs. This method
has an implicit precondition: the input must be a tree. Thus,
we do not want to test the remove method for arbitrary ob-
ject graphs—it may very well loop infinitely or return an
incorrect output. To test remove, we need to generate ob-
ject graphs that satisfy the tree invariant.

As another example, consider the testing of a program
that processes XML documents. The input to the program
is simply a sequence of characters. If the sequence does not
satisfy a syntactic or semantic property of the XML docu-
ments, the program only reports an error. It is important to
generate test inputs that check this error-reporting behavior.
Additionally, we need to check the actual processing, which
requires generating test inputs that satisfy the properties of
the kind of XML documents that the program processes.

The Korat tool implements a solver for imperative pred-
icates that express structural invariants in Java code. The
solver takes an imperative predicate and additionally a fini-
tization that bounds the size of the structures that are in-
puts to the predicate. The solver systematically searches
the bounded structure space, effectively pruning large por-
tions of the space, and outputs all nonisomorphic structures
(within the given bounds) for which the predicate returns
true. These structures can form a bounded-exhaustive test
suite for testing the code on all inputs within the given small
bound. We used such test suites previously [1,6], and the re-
sults show that Korat can efficiently generate test suites that
achieve high statement, branch, and mutation coverage [7].

This paper summarizes the technique and presents a pub-
licly available version of Korat. Korat allows the structures
to be printed, serialized to disk, or viewed graphically as
object graphs. Korat currently leverages the Alloy Ana-
lyzer’s visualization facility [4] to provide a customizable
graphical display. Korat is available for download from
http://mir.cs.uiuc.edu/korat.



class SearchTree {
Node root; // root node
int size; // number of nodes in the tree
static class Node {

Node left; // left child
Node right; // right child
int info; // data

}

boolean repOk() {
// checks that empty tree has size zero
if (root == null) return size == 0;
// checks that the input is a tree
if (!isAcyclic()) return false;
// checks that size is consistent
if (numNodes(root) != size) return false;
// checks that data is ordered
if (!isOrdered(root)) return false;
return true;

}
}

Figure 1. Example structure and invariant

2. Example

This section illustrates Korat’s generation. We use bi-
nary search trees as a running example. Figure 1 shows Java
code that defines a binary search tree. The method repOk is
a Java predicate that checks the representation invariant [5]
of SearchTree. First, repOk checks if the tree is empty. If
not, repOk checks that there are no undirected cycles along
the left and right fields, that the number of nodes reach-
able from root is the same as the value of size, and that
all elements in the left (right) subtree of a node are smaller
(larger) than the element in that node.

Korat can generate valid binary search trees. To limit
the number of generated structures, Korat uses a finitization
(Section 3.1) that bounds the number of objects in the data
structures and the field values of these objects. For trees,
finitization gives the maximum number of nodes and the
possible values in nodes. Following Alloy’s terminology
for bounds [4], we say that a tree is in scope s if it has at
most s nodes and s values. Two trees are isomorphic if they
have the same shape (branching structure) and (primitive)
elements, regardless of the identity of the actual nodes in
the trees.

Given a finitization and a value for scope, Korat gener-
ates all non-isomorphic structures that satisfy the class in-
variant. For example, in scope three, Korat generates the 15
trees shown in Figure 2 in less than one second.

It is practical to use Korat to generate inputs that give
high code and mutation coverage [7]. To illustrate, consider
the method remove that removes a given element from a
given tree. Figure 3 shows how statement coverage and
the rate of mutant killing [7] vary with the scope for this
method. Scope five is sufficient to achieve complete cov-
erage, and scope six is sufficient to kill all non-equivalent
mutants. Generating inputs and checking correctness for
these scopes using Korat takes just a few seconds.

size 0:

size 1:

1

root

2

root

3

root
��� ��� ���

size 2:

root root root root root

right right left left left

1 2

3 3 1 1 2

2 3 3

root

2

1
right

���

���

���

���

���

���

���

���

���

���

���

���

size 3:

root

right

1

2

root

right

1

3

root

left

3

root

left

2

3

right rightleft left

3 2 2 1

root

2

1 3

left right

1

	�
	�


	� 	�

	�


	�

	�


	��

	�� 	�� 	�� 	��

	��

	�


	�

Figure 2. Trees generated for scope three

0

20

40

60

80

100

0 1 2 3 4 5 6 7

SearchTree

Figure 3. Variation of statement coverage
(thick line) and rate of mutant killing (thin
line) with scope

3. Korat

Given a Java predicate and a bound on the predicate’s
input, Korat generates all non-isomorphic inputs that are
valid, i.e., inputs for which the predicate returns true [1,6].
Korat uses a finitization (Section 3.1) to bound the state
space (Section 3.2) of predicate inputs. Korat generates
candidate structures and invokes the predicate on them. Ko-
rat uses backtracking (Section 3.3) to systematically explore
this state space. The Korat implementation we present uses
bytecode instrumentation (Section 3.4) and allows gener-
ated structures to be printed, serialized to disk, or visualized
graphically (Section 3.5).

Korat uses two optimizations for efficient generation.
First, it prunes the search based on the fields that the pred-
icate accesses. To monitor the accesses, Korat instruments
all classes that appear in finitizations. Second, it gener-
ates only non-isomorphic candidates. These optimizations
speed up the search without compromising its correctness.



IFinitization finSearchTree(int numNode,
int minSize, int maxSize, int minInfo, int maxInfo) {

IFinitization f = new Finitization(SearchTree.class);
IObjSet nodes = f.createObjSet(Node.class, numNode);
nodes.setNullAllowed(true);
f.set("root", nodes);
f.set("size", f.createIntSet(minSize, maxSize));
f.set("Node.left", nodes);
f.set("Node.right", nodes);
f.set("Node.info", f.createIntSet(minInfo, maxInfo));
return f;

}
IFinitization finSearchTree(int scope) {

return finSearchTree(scope, 0, scope, 1, scope);
}

Figure 4. Two finitizations for SearchTree

Each candidate that Korat generates is an object graph
with one root. Executing the same Java program from two
isomorphic states should not lead to observable difference
in the executions. Thus, we define structure isomorphism
based on object identity: two candidates are isomorphic iff
the object graphs reachable from the root are isomorphic.

Isomorphism between candidates partitions the state
space into isomorphism partitions. Since candidates and
valid inputs are rooted and edge-labeled, it is easy to check
isomorphism. However, Korat does not do so explicitly; in-
stead, it avoids generating isomorphic valid inputs by not
even considering isomorphic candidates.

In summary, Korat generates all non-isomorphic valid
inputs within given bounds, and its search has the follow-
ing properties:
• Soundness: Korat generates no invalid input.
• Completeness: Korat generates at least one valid input

from each isomorphism partition.
• Isomorph-freeness: Korat generates at most one

(valid) input from each isomorphism partition.

3.1. Finitization

To generate a finite state space for predicate’s inputs, Ko-
rat uses a finitization that limits the input size. The inputs
can consist of objects from several classes, and the finitiza-
tion specifies the number of objects for each class. A set
of objects from one class forms a class domain. The fini-
tization also specifies a set of values for each field; this set
forms a field domain, a union of several class domains.

Korat provides a Finitization class that allows fini-
tizations to be written in Java. Figure 4 shows two finitiza-
tions for SearchTree; invoking finSearchTree(s) cre-
ates a finitization for scope s. The createObjSet method
specifies that the input contains at most numNode objects
from the class Node. The set method specifies a field do-
main for each field.

3.2. State space

Korat uses a finitization to construct a state space of
predicate inputs. For example, consider the finitization

finSearchTree(3) for inputs to repOk. Korat first allo-
cates one SearchTree object that forms the SearchTree
class domain and three Node objects that form the Node
class domain. In order to systematically explore the state
space, Korat orders the objects in these domains and during
search (Section 3.3) uses indexes into these domains.

Korat next assigns a field domain to each field. Each
field domain is a sequence of class domain indexes, such
that all values that belong to the same class domain oc-
cur consecutively. For example, the field domain for
root has four elements: null plus three Node ob-
jects. The null value and each primitive value (of type
int, boolean etc.) forms a class domain by itself.
Therefore, the field domain for root is represented as
[null,<nd,0>,<nd,1>,<nd,2>], where nd is the class
domain for Node objects.

Each state is a mapping from the object fields to the field
domain indexes. The whole state space consists of all pos-
sible mappings, i.e., it is the Cartesian product of the field
domains for all fields. For this example, the domains for
root, left, and right have four elements, the domain for
size has four elements, and the domain for info has three
elements; the state space has 4 · 4 · (4 · 4 · 3)3 > 220 states.

Each state encodes a candidate input that consists of the
Java objects from the finitization; each field of these objects
is set according to the field domain indexes in the state. The
Korat search builds states for systematic exploration of the
state space, and it builds candidates as inputs to the pred-
icate. Because of the bijection between states and candi-
dates, we use terms state and candidate interchangeably.
We define two states to be isomorphic iff the correspond-
ing candidates are isomorphic.

3.3. Search

The search starts with the state set to all zeros. For each
state, Korat first creates the corresponding candidate. Ko-
rat then executes the predicate on the candidate to check
its validity. During the execution, Korat monitors the fields
that the predicate accesses and maintains a stack of fields
ordered by the first time the predicate accesses the corre-
sponding field.

If the predicate returns true, Korat adds the current state
to the set of valid inputs. It also makes sure that all reach-
able fields are on the stack, so that successive iterations gen-
erate all (non-isomorphic) states that have the same values
for the accessed fields as the current state.

Korat then generates the next state by backtracking on
the accessed fields. Korat first increments the field domain
index for the last field in the stack. If the index exceeds the
domain size, Korat resets the index to zero and moves to the
previous field in the stack, unless the stack becomes empty.
Intuitively, the pruning based on accessed fields does not



rule out any valid data structure because repOk did not read
the other fields, and it could have returned false irrespec-
tive of the values of those fields.

Recall that a state is a mapping from object fields to field
domain indexes that have a natural order. Additionally, each
stack imposes a (partial) order on the fields. Together, these
orders induce a (partial) lexicographic order on the states.
Thus, Korat generates inputs in this lexicographical order.
Moreover, Korat avoids generating states that are isomor-
phic to each other. For each isomorphism partition, Korat
generates only the lexicographically smallest state in that
partition. Conceptually, Korat avoids generating isomor-
phic states by incrementing some field domain indexes by
more than one. For more details, see elsewhere [1, 6].

3.4. Instrumentation

To monitor field accesses during repOk’s executions,
Korat performs bytecode instrumentation. Korat uses the
Bytecode Engineering Library [3] and the Javassist frame-
work [2].

Korat instruments all classes whose objects appear in
finitizations. For each class, Korat adds a special construc-
tor. For each field of those classes, Korat adds an iden-
tifier field and special getter and setter methods. In each
method of those classes (including repOk), Korat replaces
each field access with an invocation of the corresponding
getter or setter method. Arrays are similarly instrumented,
essentially treating each array element as a field.

To monitor the field accesses and build a field-ordering,
Korat uses an approach similar to the observer design pat-
tern. Korat uses the special constructors to conceptually ini-
tialize all objects in a finitization with an observer. While
building state space, Korat initializes each of the identifier
fields to a unique index into the candidate vector. Special
getter and setter methods first notify the observer of the field
access using the field’s identifier and then perform the field
access (return the field’s value or assign to the field).

3.5. Visualization

Korat can graphically show the structures it generates.
The visualization in Korat was inspired by Alloy [4], and
our current Korat implementation uses the Alloy Analyzer’s
visualization facility [4], which provides a fully customiz-
able display that allows users to specify desired views on the
underlying structures. Korat automatically translates object
graphs into the Alloy representation. The visualization as-
sists users in writing correct repOk methods and also in un-
derstanding any faults revealed in the code tested with the
Korat-generated inputs.

To illustrate, the command:
java korat.Korat -class SearchTree -visualize -params 3 0 3 1 3

Figure 5. Example SearchTree visualization

executes Korat (1) to generate all binary search trees with up
to 3 nodes with info values ranging from 1 to 3 and (2) to
display graphically the generated structures. Figure 5 shows
an example visualization window. The First, Previous,
Next, and Last buttons allow scrolling through the list of
generated structures.

Acknowledgments

We thank Brett Daniel for extensive comments on an
earlier draft of this paper. We thank Jesus DeLaTorre and
ChoongHwan Lee for comments on the Korat tool. This
material is based upon work partially supported by the NSF
under Grant Nos. 0438967, 0613665, and 0615372. We
also acknowledge support from Microsoft Research.

References

[1] C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated
testing based on Java predicates. In Proc. International Sym-
posium on Software Testing and Analysis (ISSTA), July 2002.

[2] S. Chiba. Javassist—a reflection-based programming wizard
for Java. In Proceedings of the ACM OOPSLA’98 Workshop
on Reflective Programming in C++ and Java, Oct. 1998.

[3] M. Dahm. Byte code engineering library. http://bcel.
sourceforge.net/.

[4] D. Jackson. Software Abstractions: Logic, Language and
Analysis. The MIT Press, Cambridge, MA, 2006.

[5] B. Liskov and J. Guttag. Program Development in Java:
Abstraction, Specification, and Object-Oriented Design.
Addison-Wesley, 2000.

[6] D. Marinov. Automatic Testing of Software with Structurally
Complex Inputs. PhD thesis, Computer Science and Artificial
Intelligence Laboratory, Massachusetts Institute of Technol-
ogy, 2004.

[7] J. Offutt and R. Untch. Mutation 2000: Uniting the orthogo-
nal. In Mutation 2000: Mutation Testing in the Twentieth and
the Twenty First Centuries, San Jose, CA, Oct. 2000.


