Reducing the Costs of
Bounded-Exhaustive Testing

Vilas Jagannath, Yun Young Lee, Brett Daniel
and Darko Marinov

University of lllinois at Urbana-Champaign

FASE '09 - York, UK, 22 - 29 March, 2009

1/30

Bounded-Exhaustive Testing What/Why?

Costs
Contributions

Bounded-Exhaustive Testing

Automated testing approach that checks a system under test for
all inputs within given bounds

» Many faults can be revealed with small inputs

» Exhaustive testing within bounds catches “corner cases”

Used in academia and industry to test real-world applications

v

Refactoring Engines - Eclipse & NetBeans [paniel et al. Fse 07]
Web Traversal Agent from Google [missilovic et al. FSE 07]

XPath Compiler at Microsoft [stobie ENTCS 05]

S
S

» Constraint Analyzer [Khurshid & Marinov J-ASE 04]

» Fault-Tree Analyzer for NASA [sullivan et al. 1sSTA 04]
>

Protocol for Dynamic Networks [khurshid & Marinov ENTCS 01]

2/30

Bounded-Exhaustive Testing What/Why?

Costs
Contributions

Steps of Bounded-Exhaustive Testing

User
» Describes inputs and bounds
» Provides test oracles
Tool
» Generates all inputs within bounds
» Executes them on system under test
» Checks outputs using oracles
User
» Waits for generation/execution/checking

» Inspects failing tests

3/30

Bounded-Exhaustive Testing What/Why?

Costs
Contributions

Costs of Bounded-Exhaustive Testing

User ... ‘Human time ‘

» Describes inputs and bounds

» Provides test oracles

Tool .. ‘ Machine time ‘

» Generates all inputs within bounds
» Executes them on system under test

» Checks outputs using oracles

User .o ‘ Human time

» Waits for generation/execution/checking

» Inspects failing tests

4/30

Bounded-Exhaustive Testing What/Why?

Costs
Contributions

Costs can be significant

Example magnitudes from our case study
» 1-2 hours to describe inputs (not addressed in this paper)
» Thousands of inputs generated/executed/checked
» Total testing time takes hours
» Finding the first failure can take tens of minutes

» Hundreds of failing tests need to be inspected

5/30

Bounded-Exhaustive Testing What/Why?

Costs
Contributions

Contributions: Reducing several costs

Three novel techniques that reduce several costs
» Machine time
» Human waiting time

» Inspection effort

Case study: Testing of Eclipse Refactoring Engine

6/30

Refactorings & Refactoring Engines

Case Study: Testing Refactoring Engines Why Test Refactoring Engines?
Bounded-Exhaustive Testing of Refactoring Engines
Results and Costs

Refactorings & Refactoring Engines

Refactorings are behavior-preserving program transformations that
improve program design

» Change internals of code, not external behavior

» Examples: rename class, move method, encapsulate field, etc.

Refactoring engines are tools that automate the application of
refactorings

» Key component of most modern IDEs such as Eclipse

7/30

Refactorings & Refactorin|

Case Study: Testing Refactoring Engines Why Test Refactoring E
Bounded-Exhaustive Te:
Results and Costs

Refactoring Example: Pull Up Method

Moves a method from a subclass into one of its superclasses

// Before refactoring // After refactoring
class A { class A {

int f; int f;
b

void m() {

class B extends A { - this.f = 0;

}
void () { }
this.f = 0;
} class B extends A {
} }

8/30

Refactorings & Refactoring Engines

Case Study: Testing Refactoring Engines Why Test Refactoring Engines?
Bounded-Exhaustive Testing of Refactoring Engines
Results and Costs

Refactoring Example: Pull Up Method

Moves a method from a subclass into one of its superclasses

// Before refactoring

class A {
} B
class B extends A {
int f;
void m()| {
this.f = 0;
}

Warning: Cannot move ‘m’ without moving ‘f’

9/30

Refactorings & Refactoring Engines

Case Study: Testing Refactoring Engines Why Test Refactoring Engines?
Bounded-Exhaustive Testing of Refactoring Engines
Results and Costs

Why Test Refactoring Engines?

Widely used

Complex
» Complex inputs: programs

» Complex code: program analysis and transformation
Can silently corrupt large parts of programs

» A bug in refactoring engine can be as unpleasant as a bug in
compiler or libraries

10/30

Refactorings & Refactoring Engines

Case Study: Testing Refactoring Engines Why Test Refactoring Engines?
Bounded-Exhaustive Testing of Refactoring Engines
Results and Costs

Bounded-Exhaustive Testing of Refactoring Engines

ASTGen framework [paniel et al. FSE 07]:

Allows users to write Abstract Syntax Tree (AST) generators
Provides library of basic generators which can be composed
Executes generators to generate ASTs (all within bounds)

Applies refactorings on generated ASTs

vV v.v v VY

Checks results with oracles

11/30

Refactorings & Refactoring Engines

Case Study: Testing Refactoring Engines Why Test Refactoring Engines?
Bounded-Exhaustive Testing of Refactoring Engines
Results and Costs

ASTGen: Example Inputs

Description: Three classes related through sub/super class and
inner/outer class relationships. A sub class has a method that
refers to a field in a super class and also has another method that
invokes that method

public class A { public class A { public class A {
public int f; public int f; public int f;
class C { class B extends C { class B extends C {
public int £; private void m(){ private void m(){
} new A().£f=0; super.f=0;
} } }
class B extends A.C { void mPrime(){ void mPrime(){
private void m(){ m(); m();
this.£=0; } }
} } }
void mPrime(){ } class C {
m(); class C { public int £f;
} public int f; }
} } }

12/30

Case Study: Testing Refactoring Engines

Example Generator

Refactorings & Refactoring Engines
Why Test Refactoring Engines?
Bounded-Exhaustive Testing of Refactoring Engines

Results and Costs

Triple Class Method Child Genera

Triple Class Method
Child Generator

Class Relationship
Generator

Single Class
Generator

Single Class
Generator

Dual Method Field Reference
Generator Generator

Method Reference
Generator

Class Relationship
Generator

PNV ZRN

Field Declaration
Generator

tor:

(@5)
public class\’ﬁ,\{
i public int f;

Q)

class B extends A.C {
public void m(){

A.this. f=nu11;
} . -
void mPrime(){

B.this.m();
| 0
) !l!
static clas {

public int f;
}
}

Single Class
Generator

@

13/30

Case Study: Testing Refactoring Engines

Results and Costs

Promising results

Refactorings & Refactoring Engines
Why Test Refactoring Engines?

Bounded-Exhaustive Testing of Refactoring Engines
Results and Costs

» Dozens of faults found and reported in Eclipse and NetBeans

» Being included in the NetBeans testing process

Costs
Num of | Total Num of | Num of
Refactoring Generator Inputs | Time |TTFF |Failures | Faults
EncapsulateField |DualClassFieldReference | 23760 [427:09|73:34| 486 3
PullUpMethod TripIeCIassMethodChiId 11562 [27:02 | 9:09 160 2
DualClassMethodChild 576 |13:22 | n/a 0 0
RenamekField DualClassFieldReference | 23760 |629:01| n/a 0 0

Time To First Failure (TTFF)

» User wait time after starting tool until a failing test is found

» Important metric in an interactive testing scenario

14/30

Sparse Test Generation
Structural Test Merging

Reducing Costs Oracle based Test Clustering

Three Techniques to Reduce Costs

Sparse Test Generation
» Reduces TTFF (but increases the total time)

Structural Test Merging
» Reduces the total time and TTFF

Oracle-based Test Clustering
» Reduces human effort for inspection

15/30

Sparse Test Generation
Structural Test Merging

Reducing Costs Oracle based Test Clustering

Sparse Test Generation

Observation: Failing tests often located close together due to
combinatorial nature of generation

0 e o0 e e ©0 0000

Intuition: Jump through input space to find failures faster

» Width and periodicity of failing runs unknown, so random
jumps within bounded length

16/30

Sparse Test Generation
Structural Test Merging

Reducing Costs Oracle based Test Clustering

Sparse Test Generation

Two passes through test generation:

» Sparse Generation

» Jumps through the generation sequence with random jumps
within bounded length

» Significantly improve TTFF while slightly increasing total time

» Random jump lengths between 1-20, expect ~10% increase in
total time

» Exhaustive Generation

» Performs basic exhaustive generation
» No compromise in failure-detection capability

17/30

Sparse Test Generation
Structural Test Merging

Reducing Costs Oracle based Test Clustering

Sparse Test Generation Results

» Up to 10x improvement in TTFF

» ~10% increase in Total Time

Total Time TTFF Num of | Num of

Refactoring Generator Dense |Sparse Dense [Sparse |Failures| Faults
EncapsulateField |DualClassFieldReference nia 73:34 | 7114 486 3
PullUpMethod TripIeCIassMethodChiId 9:09 1:01 160 2
DualClassMethodChild 13:22 [14:14 0 0
RenameField DualClassFieldReference | 629:01 689:17 n'a 0 0

18/30

Sparse Test Generation
Structural Test Merging

Reducing Costs Oracle based Test Clustering

Sparse Test Generation Results

» Also significantly improves APFD (Average Percentage Fault

Detection)
APFD Num of | Num of
Refactoring Generator Dense |Sparse |Failures| Faults
EncapsulateField |DualClassFieldReference 58.03 | 97.59 486 3
TripleClassMethodChild 13.19 | 95.77 160 2
PullUpMethod 15 aiClassMethodChild " 0 0
RenameField DualClassFieldReference 0 0

19/30

Sparse Test Generation
Structural Test Merging

Reducing Costs Oracle based Test Clustering

Structural Test Merging

Inspired by previous work on Test Granularity [Rothermel et al. ICSE 02]
» Append smaller tests to form larger tests

» Smaller number of larger tests rather than larger number of
smaller tests

» Save setup and teardown costs

» Could mask old faults or reveal new faults

Challenge and solution
» Cannot generally append two ASTs to form larger ASTs
» Merge structurally smaller inputs to form larger inputs
» Save setup, teardown, and execution costs

20/30

Reducing Costs

Sparse Test Generation
Structural Test Merging
Oracle based Test Clustering

Structural Test Merging: Recall the Example

Unmerged generator structure:
Triple Class Method
Child Generator

Class Relationship
Generator

SN

Class Relationship
Generator

(@5)
public clas&,n{‘
@ / public int 5; R

class B extends A.C {
public void m(){

5,‘" A.this.£=null;(G8)
@ Yoid nerine(yi

Single Class Single Class Single Class B.this.m() 7@
Generator Generator Generator }}
static clas {
public int f;
Method Reference Dual Method Field Reference Field Declaration } @
Generator Generator Generator Generator }

21/30

Sparse Test Generation
Structural Test Merging

Reducing Costs Oracle based Test Clustering

Structural Test Merging: Unmerged inputs

Unmerged test inputs from generator

public class A { public class A { public class A {
public int £; public int f; public int £;
class B extends C { class B extends C { class B extends C {
private void m(){ private void m(){ private void m(){
} } }
void mPrime(){ void mPrime(){ void mPrime(){
m(); m(); m();
} + +
+ } }
+ } }
class C { class C { class C {
public int £; public int f; public int £;
} } }

22/30

Sparse Test Generation
Structural Test Merging

Reducing Costs Oracle based Test Clustering

Structural Test Merging: Merged versions

Merged generator and test input

Triple Class Method public class A {
Child Generator @ public int f;

class B extends C {
private void m(){

this.f=0;
Class Relationship Class Relationship new A().£=0;
Generator Generator super.f=0;
}
/\@/\ void mprime(){
Single Class Single Class Single Class m();
Generator Generator Generator b

}
/I\ \/)
619) Jetass c ¢
Method Reference Dual Method References | Field Declaration public int f;
Generator Generator |Merging Generator Generator }

23/30

Reducing Costs

Sparse Test Generation
Structural Test Merging
Oracle based Test Clustering

Structural Test Merging: Results

Orders of magnitude reduction in total time
No reduction in fault detection for M1 (but not always for higher)

EncapsulateField

DualClassFieldReference

Merging | Num of | Total Num of | Num of
Refactoring Generator Level | Inputs | Time |TTFF|Failures| Faults
MO 23760 |427:09|73:34| 486 3

PullUpMethod

TripleClassMethodChild

DualClassMethodChild

RenameField

DualClassFieldReference

24/30

Reducing Costs

Sparse Test Generation
Structural Test Merging
Oracle based Test Clustering

Structural Test Merging: Results

Orders of magnitude reduction in total time
No reduction in fault detection for M1 (but not always for higher)

EncapsulateField

DualClassFieldReference

Merging | Num of | Total Num of | Num of

Refactoring Generator Level | Inputs | Time |TTFF|Failures| Faults
MO 23760 |427:09|73:34| 486 3
M1 3960 | 71:50 |12:03| 354 3

PullUpMethod

TripleClassMethodChild

DualClassMethodChild

RenameField

DualClassFieldReference

25/30

Sparse Test Generation
Structural Test Merging

Reducing Costs Oracle based Test Clustering

Structural Test Merging: Results

Orders of magnitude reduction in total time
No reduction in fault detection for M1 (but not always for higher)

Merging | Num of | Total Num of | Num of

Refactoring Generator Level | Inputs | Time |TTFF|Failures| Faults
MO 23760 |427:09|73:34| 486 3
)) M1 3960 | 71:50 |12:03| 354 3
EncapsulateField DualClassFieldReference M2 72 119 1013 31 2
M3 18 0:26 | 0:06 8 2

TripleClassMethodChild

PullUpMethod

DualClassMethodChild

RenameField DualClassFieldReference

26/30

Reducing Costs

Sparse Test Generation
Structural Test Merging
Oracle based Test Clustering

Structural Test Merging: Results

Orders of magnitude reduction in total time
No reduction in fault detection for M1 (but not always for higher)

Merging | Num of | Total Num of | Num of

Refactoring Generator Level | Inputs | Time |TTFF|Failures| Faults
MO 23760 |427:09|73:34| 486 3
)) M1 3960 | 71:50 |12:03| 354 3
EncapsulateField DualClassFieldReference M2 72 119 1013 31 2
M3 18 0:26 | 0:06 8 2
MO 1152 | 27:02 | 9:09 160 2
TripleClassMethodChild M1 192 3:57 | 1:25 96 2
M2 48 0:47 | 0:17 24 2
Fullliphetid MO | 576 | 13:22 | nla | 0 0
DualClassMethodChild M1 96 1:49 | n/a 0 0
M2 24 0:21 | n/a 0 0
MO 23760 |629:01| n/a 0 0
; ; M1 3960 [107:26| n/a 0 0
RenameField DualClassFieldReference M2 72 156 | nia 0 0
M3 18 0:34 | n/a 0 0

27/30

Sparse Test Generation
Structural Test Merging

Reducing Costs Oracle based Test Clustering

Oracle-based Test Clustering

Inspired by work in test clustering/filtering/indexing/bucketing
> Relies on oracles that provide more than just pass/fail

» Groups failing tests based on oracle information to reduce the
inspection time
» Abstraction of information provided by oracles
» “field f not visible” instead of “field f not visible at line 2 col 5"

28/30

Sparse Test Generation
Structural Test Merging

Reducing Costs Oracle based Test Clustering

Oracle-based Test Clustering Results

Handful of clusters instead of hundreds of failures

Num of | Num of | Num of

Refactoring Generator Failures | Clusters | Faults
EncapsulateField |DualClassFieldReference 486 4 3
TripleClassMethodChild 160 3 2
PullUpMethod 5 \2iCTassMethodChild 0 0 0
RenameField DualClassFieldReference 0 0 0

Comparison with three other techniques available in the paper

29/30

Conclusions

Conclusions

Bounded-Exhaustive Testing effective but has many costs
Presented three techniques that reduce some costs

» Sparse Test Generation reduces TTFF
» Structural Test Merging reduces total machine time

» Oracle-based Test Clustering reduces human inspection effort

Ongoing work: reduce human effort in writing generators
» UDITA: unified declarative/imperative generation

» Promising results: shorter generators (easier to write), faster
generation, more bugs

30/30

	Bounded-Exhaustive Testing
	What/Why?
	Costs
	Contributions

	Case Study: Testing Refactoring Engines
	Refactorings & Refactoring Engines
	Why Test Refactoring Engines?
	Bounded-Exhaustive Testing of Refactoring Engines
	Results and Costs

	Reducing Costs
	Sparse Test Generation
	Structural Test Merging
	Oracle based Test Clustering

	Conclusions

