
Bounded-Exhaustive Testing
Case Study: Testing Refactoring Engines

Reducing Costs
Conclusions

Reducing the Costs of

Bounded-Exhaustive Testing

Vilas Jagannath, Yun Young Lee, Brett Daniel
and Darko Marinov

University of Illinois at Urbana-Champaign

FASE ’09 - York, UK, 22 - 29 March, 2009

1/30



Bounded-Exhaustive Testing
Case Study: Testing Refactoring Engines

Reducing Costs
Conclusions

What/Why?
Costs
Contributions

Bounded-Exhaustive Testing

Automated testing approach that checks a system under test for
all inputs within given bounds

◮ Many faults can be revealed with small inputs

◮ Exhaustive testing within bounds catches “corner cases”

Used in academia and industry to test real-world applications

◮ Refactoring Engines - Eclipse & NetBeans [Daniel et al. FSE 07]

◮ Web Traversal Agent from Google [Misailovic et al. FSE 07]

◮ XPath Compiler at Microsoft [Stobie ENTCS 05]

◮ Constraint Analyzer [Khurshid & Marinov J-ASE 04]

◮ Fault-Tree Analyzer for NASA [Sullivan et al. ISSTA 04]

◮ Protocol for Dynamic Networks [Khurshid & Marinov ENTCS 01]

2/30



Bounded-Exhaustive Testing
Case Study: Testing Refactoring Engines

Reducing Costs
Conclusions

What/Why?
Costs
Contributions

Steps of Bounded-Exhaustive Testing

User

◮ Describes inputs and bounds

◮ Provides test oracles

Tool

◮ Generates all inputs within bounds

◮ Executes them on system under test

◮ Checks outputs using oracles

User

◮ Waits for generation/execution/checking

◮ Inspects failing tests

3/30



Bounded-Exhaustive Testing
Case Study: Testing Refactoring Engines

Reducing Costs
Conclusions

What/Why?
Costs
Contributions

Costs of Bounded-Exhaustive Testing

User . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Human time

◮ Describes inputs and bounds

◮ Provides test oracles

Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Machine time

◮ Generates all inputs within bounds

◮ Executes them on system under test

◮ Checks outputs using oracles

User . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Human time

◮ Waits for generation/execution/checking

◮ Inspects failing tests

4/30



Bounded-Exhaustive Testing
Case Study: Testing Refactoring Engines

Reducing Costs
Conclusions

What/Why?
Costs
Contributions

Costs can be significant

Example magnitudes from our case study

◮ 1-2 hours to describe inputs (not addressed in this paper)

◮ Thousands of inputs generated/executed/checked

◮ Total testing time takes hours

◮ Finding the first failure can take tens of minutes

◮ Hundreds of failing tests need to be inspected

5/30



Bounded-Exhaustive Testing
Case Study: Testing Refactoring Engines

Reducing Costs
Conclusions

What/Why?
Costs
Contributions

Contributions: Reducing several costs

Three novel techniques that reduce several costs

◮ Machine time

◮ Human waiting time

◮ Inspection effort

Case study: Testing of Eclipse Refactoring Engine

6/30



Bounded-Exhaustive Testing
Case Study: Testing Refactoring Engines

Reducing Costs
Conclusions

Refactorings & Refactoring Engines
Why Test Refactoring Engines?
Bounded-Exhaustive Testing of Refactoring Engines
Results and Costs

Refactorings & Refactoring Engines

Refactorings are behavior-preserving program transformations that
improve program design

◮ Change internals of code, not external behavior

◮ Examples: rename class, move method, encapsulate field, etc.

Refactoring engines are tools that automate the application of
refactorings

◮ Key component of most modern IDEs such as Eclipse

7/30



Bounded-Exhaustive Testing
Case Study: Testing Refactoring Engines

Reducing Costs
Conclusions

Refactorings & Refactoring Engines
Why Test Refactoring Engines?
Bounded-Exhaustive Testing of Refactoring Engines
Results and Costs

Refactoring Example: Pull Up Method

Moves a method from a subclass into one of its superclasses

8/30



Bounded-Exhaustive Testing
Case Study: Testing Refactoring Engines

Reducing Costs
Conclusions

Refactorings & Refactoring Engines
Why Test Refactoring Engines?
Bounded-Exhaustive Testing of Refactoring Engines
Results and Costs

Refactoring Example: Pull Up Method

Moves a method from a subclass into one of its superclasses

Warning: Cannot move ‘m’ without moving ‘f’

9/30



Bounded-Exhaustive Testing
Case Study: Testing Refactoring Engines

Reducing Costs
Conclusions

Refactorings & Refactoring Engines
Why Test Refactoring Engines?
Bounded-Exhaustive Testing of Refactoring Engines
Results and Costs

Why Test Refactoring Engines?

Widely used

Complex

◮ Complex inputs: programs

◮ Complex code: program analysis and transformation

Can silently corrupt large parts of programs

◮ A bug in refactoring engine can be as unpleasant as a bug in
compiler or libraries

10/30



Bounded-Exhaustive Testing
Case Study: Testing Refactoring Engines

Reducing Costs
Conclusions

Refactorings & Refactoring Engines
Why Test Refactoring Engines?
Bounded-Exhaustive Testing of Refactoring Engines
Results and Costs

Bounded-Exhaustive Testing of Refactoring Engines

ASTGen framework [Daniel et al. FSE 07]:

◮ Allows users to write Abstract Syntax Tree (AST) generators

◮ Provides library of basic generators which can be composed

◮ Executes generators to generate ASTs (all within bounds)

◮ Applies refactorings on generated ASTs

◮ Checks results with oracles

11/30



Bounded-Exhaustive Testing
Case Study: Testing Refactoring Engines

Reducing Costs
Conclusions

Refactorings & Refactoring Engines
Why Test Refactoring Engines?
Bounded-Exhaustive Testing of Refactoring Engines
Results and Costs

ASTGen: Example Inputs

Description: Three classes related through sub/super class and
inner/outer class relationships. A sub class has a method that
refers to a field in a super class and also has another method that
invokes that method

12/30



Bounded-Exhaustive Testing
Case Study: Testing Refactoring Engines

Reducing Costs
Conclusions

Refactorings & Refactoring Engines
Why Test Refactoring Engines?
Bounded-Exhaustive Testing of Refactoring Engines
Results and Costs

ASTGen: Example Generator

Triple Class Method Child Generator:

13/30



Bounded-Exhaustive Testing
Case Study: Testing Refactoring Engines

Reducing Costs
Conclusions

Refactorings & Refactoring Engines
Why Test Refactoring Engines?
Bounded-Exhaustive Testing of Refactoring Engines
Results and Costs

Results and Costs

Promising results

◮ Dozens of faults found and reported in Eclipse and NetBeans

◮ Being included in the NetBeans testing process

Costs

Time To First Failure (TTFF)

◮ User wait time after starting tool until a failing test is found

◮ Important metric in an interactive testing scenario

14/30



Bounded-Exhaustive Testing
Case Study: Testing Refactoring Engines

Reducing Costs
Conclusions

Sparse Test Generation
Structural Test Merging
Oracle based Test Clustering

Three Techniques to Reduce Costs

Sparse Test Generation

◮ Reduces TTFF (but increases the total time)

Structural Test Merging

◮ Reduces the total time and TTFF

Oracle-based Test Clustering

◮ Reduces human effort for inspection

15/30



Bounded-Exhaustive Testing
Case Study: Testing Refactoring Engines

Reducing Costs
Conclusions

Sparse Test Generation
Structural Test Merging
Oracle based Test Clustering

Sparse Test Generation

Observation: Failing tests often located close together due to
combinatorial nature of generation

Intuition: Jump through input space to find failures faster

◮ Width and periodicity of failing runs unknown, so random
jumps within bounded length

16/30



Bounded-Exhaustive Testing
Case Study: Testing Refactoring Engines

Reducing Costs
Conclusions

Sparse Test Generation
Structural Test Merging
Oracle based Test Clustering

Sparse Test Generation

Two passes through test generation:

◮ Sparse Generation
◮ Jumps through the generation sequence with random jumps

within bounded length
◮ Significantly improve TTFF while slightly increasing total time
◮ Random jump lengths between 1-20, expect ∼10% increase in

total time

◮ Exhaustive Generation
◮ Performs basic exhaustive generation
◮ No compromise in failure-detection capability

17/30



Bounded-Exhaustive Testing
Case Study: Testing Refactoring Engines

Reducing Costs
Conclusions

Sparse Test Generation
Structural Test Merging
Oracle based Test Clustering

Sparse Test Generation Results

◮ Up to 10x improvement in TTFF

◮ ∼10% increase in Total Time

18/30



Bounded-Exhaustive Testing
Case Study: Testing Refactoring Engines

Reducing Costs
Conclusions

Sparse Test Generation
Structural Test Merging
Oracle based Test Clustering

Sparse Test Generation Results

◮ Also significantly improves APFD (Average Percentage Fault
Detection)

19/30



Bounded-Exhaustive Testing
Case Study: Testing Refactoring Engines

Reducing Costs
Conclusions

Sparse Test Generation
Structural Test Merging
Oracle based Test Clustering

Structural Test Merging

Inspired by previous work on Test Granularity [Rothermel et al. ICSE 02]

◮ Append smaller tests to form larger tests

◮ Smaller number of larger tests rather than larger number of
smaller tests

◮ Save setup and teardown costs

◮ Could mask old faults or reveal new faults

Challenge and solution

◮ Cannot generally append two ASTs to form larger ASTs

◮ Merge structurally smaller inputs to form larger inputs

◮ Save setup, teardown, and execution costs

20/30



Bounded-Exhaustive Testing
Case Study: Testing Refactoring Engines

Reducing Costs
Conclusions

Sparse Test Generation
Structural Test Merging
Oracle based Test Clustering

Structural Test Merging: Recall the Example

Unmerged generator structure:

21/30



Bounded-Exhaustive Testing
Case Study: Testing Refactoring Engines

Reducing Costs
Conclusions

Sparse Test Generation
Structural Test Merging
Oracle based Test Clustering

Structural Test Merging: Unmerged inputs

Unmerged test inputs from generator

22/30



Bounded-Exhaustive Testing
Case Study: Testing Refactoring Engines

Reducing Costs
Conclusions

Sparse Test Generation
Structural Test Merging
Oracle based Test Clustering

Structural Test Merging: Merged versions

Merged generator and test input

23/30



Bounded-Exhaustive Testing
Case Study: Testing Refactoring Engines

Reducing Costs
Conclusions

Sparse Test Generation
Structural Test Merging
Oracle based Test Clustering

Structural Test Merging: Results

Orders of magnitude reduction in total time
No reduction in fault detection for M1 (but not always for higher)

24/30



Bounded-Exhaustive Testing
Case Study: Testing Refactoring Engines

Reducing Costs
Conclusions

Sparse Test Generation
Structural Test Merging
Oracle based Test Clustering

Structural Test Merging: Results

Orders of magnitude reduction in total time
No reduction in fault detection for M1 (but not always for higher)

25/30



Bounded-Exhaustive Testing
Case Study: Testing Refactoring Engines

Reducing Costs
Conclusions

Sparse Test Generation
Structural Test Merging
Oracle based Test Clustering

Structural Test Merging: Results

Orders of magnitude reduction in total time
No reduction in fault detection for M1 (but not always for higher)

26/30



Bounded-Exhaustive Testing
Case Study: Testing Refactoring Engines

Reducing Costs
Conclusions

Sparse Test Generation
Structural Test Merging
Oracle based Test Clustering

Structural Test Merging: Results

Orders of magnitude reduction in total time
No reduction in fault detection for M1 (but not always for higher)

27/30



Bounded-Exhaustive Testing
Case Study: Testing Refactoring Engines

Reducing Costs
Conclusions

Sparse Test Generation
Structural Test Merging
Oracle based Test Clustering

Oracle-based Test Clustering

Inspired by work in test clustering/filtering/indexing/bucketing

◮ Relies on oracles that provide more than just pass/fail

◮ Groups failing tests based on oracle information to reduce the
inspection time

◮ Abstraction of information provided by oracles
◮ “field f not visible” instead of “field f not visible at line 2 col 5”

28/30



Bounded-Exhaustive Testing
Case Study: Testing Refactoring Engines

Reducing Costs
Conclusions

Sparse Test Generation
Structural Test Merging
Oracle based Test Clustering

Oracle-based Test Clustering Results

Handful of clusters instead of hundreds of failures

Comparison with three other techniques available in the paper

29/30



Bounded-Exhaustive Testing
Case Study: Testing Refactoring Engines

Reducing Costs
Conclusions

Conclusions

Bounded-Exhaustive Testing effective but has many costs
Presented three techniques that reduce some costs

◮ Sparse Test Generation reduces TTFF

◮ Structural Test Merging reduces total machine time

◮ Oracle-based Test Clustering reduces human inspection effort

Ongoing work: reduce human effort in writing generators

◮ UDITA: unified declarative/imperative generation

◮ Promising results: shorter generators (easier to write), faster
generation, more bugs

30/30


	Bounded-Exhaustive Testing
	What/Why?
	Costs
	Contributions

	Case Study: Testing Refactoring Engines
	Refactorings & Refactoring Engines
	Why Test Refactoring Engines?
	Bounded-Exhaustive Testing of Refactoring Engines
	Results and Costs

	Reducing Costs
	Sparse Test Generation
	Structural Test Merging
	Oracle based Test Clustering

	Conclusions

