
Automated Testing of
Refactoring Engines

Brett Daniel
Danny Dig
Kely Garcia

Darko Marinov

ESEC/FSE 2007

2

Refactoring engines are tools that
automate the application of

refactorings

3

Eclipse and NetBeans

4

Why Test Refactoring Engines?

● Widely used
● Complex

– Complex inputs: programs
– Require nontrivial program analyses and

transformation

● Can silently corrupt large bodies of code

Refactoring engines contain bugs

5

Example: Encapsulate Field

Replaces all field reads and writes with
accesses through getter and setter methods

class A {
int f;

void m(int i) {
f = i * f;

}
}

class A {
private int f;

void m(int i) {
setF(i * getF());

}

void setF(int f) {
this.f = f;

}

int getF() {
return f;

}
}

Encapsulate
Field

1

2

4 3

5

6

Eclipse Bug

Encapsulate
Field

class A {
 int f;
}

class B extends A {
 void m() {
 super.f = 0;
 }
}

class A {
 private int f;

 void setF(int f) {
 this.f = f;
 }
 int getF() {
 return this.f;
 }
}

class B extends A {
 void m() {
 super.getF() = 0;
 }
}
super.setF(0);

7

NetBeans Bug

class A {
 int f;

 void m() {
 (new A().f) = 0;
 }
}

class A {
 private int f;

 void setF(int f) {
 this.f = f;
 }
 int getF() {
 return this.f;
 }

 void m() {
 (new A().f) = 0;
 }
}

Encapsulate
Field

new A().setF(0);

8

Testing a Refactoring Engine

Refactoring
Engine

Program

Refactoring

Refactored
Program

WarningWarningWarnings

9

State of the Practice

● Manually written tests
– Input: Program files and code to invoke

refactoring
– Output: Hand-refactored program file or

warnings

● Automatically executed tests
– Eclipse 3.2 has over 2,600 manually-written

JUnit tests
– NetBeans 6.0M3 has 252 XTest tests

10

Automated Testing

● Goal: Automate input generation and
output checking

● Assumptions
– Tester has intuition for input programs that

might expose bugs
● e.g. Encapsulating inherited fields

– It is labor-intensive to manually write many
input programs

● e.g. Thousands of ways to reference an inherited field

11

Challenges

● How to “codify” the tester's intuition to
create many interesting programs

● How to automatically check that
refactoring completes correctly

12

Solution

● Developed ASTGen
– Framework for generating abstract syntax

trees
– Provides library of generators that produce

simple AST fragments
– Tester writes complex generators composed

of smaller generators

● Developed variety of oracles

13

ASTGen Design Goals

● Imperative
– Tester can control how to build complex data

● Iterative
– Generates inputs lazily, saving memory

● Bounded-Exhaustive
– Catches “corner cases”

● Composable
– Tester can create complex generators by

reusing simpler parts

14

Testing Process

● Tester builds a generator using ASTGen
● Tester instantiates the generator for the

test at hand.
● Tester runs generator in a loop. For each

generated value:
– Run refactoring
– Check oracles

Testing Encapsulate Field

String fieldName = "f";
IGenerator<Program> testGen = new ...(fieldName);

for (Program in : testGen) {
 Refactoring r = new EncapsulateFieldRefactoring();
 r.setTargetField(fieldName);

 Program out = r.performRefactoring(in);
 checkOracles(out);
}

16

class A {
 int f;
}

class B extends A {
 void m() {
 super.f = 0;
 }
}

Example Generator

● Double-class field reference generator

“Produces pairs of classes related by containment
and inheritance. One class declares a field, and

the other references the field in some way.”

class A {
 boolean f;
}

class B {
 void m() {
 new A().f = true;
 }
}

class A {
 int f;

 class B {
 void m() {
 int i = f;
 }
 }
}

...

17

class A {
 int f;
}

class B extends A {
 void m() {
 super.f = 0;
 }
}

Example Generator

“Produces pairs of classes related by containment
and inheritance. One class declares a field, and

the other references the field in some way.”

class A {
 boolean f;
}

class B {
 void m() {
 new A().f = true;
 }
}

class A {
 int f;

 class B {
 void m() {
 int i = f;
 }
 }
}

...

18

class A {
 int f;
}

class B extends A {
 void m() {
 super.f = 0;
 }
}

Example Generator

“Produces pairs of classes related by containment
and inheritance. One class declares a field, and

the other references the field in some way.”

class A {
 boolean f;
}

class B {
 void m() {
 new A().f = true;
 }
}

class A {
 int f;

 class B {
 void m() {
 int i = f;
 }
 }
}

...

19

class A {
 int f;
}

class B extends A {
 void m() {
 super.f = 0;
 }
}

Example Generator

“Produces pairs of classes related by containment
and inheritance. One class declares a field, and

the other references the field in some way.”

class A {
 boolean f;
}

class B {
 void m() {
 new A().f = true;
 }
}

class A {
 int f;

 class B {
 void m() {
 int i = f;
 }
 }
}

...

20

class A {
 int f;
}

class B extends A {
 void m() {
 super.f = 0;
 }
}

Example Generator

“Produces pairs of classes related by containment
and inheritance. One class declares a field, and

the other references the field in some way.”

class A {
 boolean f;
}

class B {
 void m() {
 new A().f = true;
 }
}

class A {
 int f;

 class B {
 void m() {
 int i = f;
 }
 }
}

...

21

Composing Generators

×

class A {
 class B {}
}

class A {}
class B {}

class A {
 void m() {
 class B {}
 }
} ...

class A {}
class B {}

class A {}
class B extends A {} ...

int f; boolean f; public char f; ...

f this.f this.A.f new A().f super.f ...

Containment
Generator

Inheritance
Generator

Field Declaration
Generator

Field Reference
Generator

×

×

22

● Composition may be invalid

● Three solutions
– Tester writes filter that verifies values
– Dependent generators

– Delegate to compiler

Invalid Combinations

int f;super.f depends on

class A {
 class B {}
}

class A extends B {}
class B {}+

class A extends B {
 class B {}
}

=

23

Oracles

● Check that the program was refactored
correctly

● Challenges
– Don't know expected output
– Semantic equivalence is undecidable
– Need to verify that correct structural changes

were made

24

Oracles

● DoesCrash
– Engine throws exception

● DoesNotCompile (DNC)
– Refactored program does not compile

● WarningStatus (WS)
– Engine cannot perform refactoring
– Presence or lack of WarningStatus may

indicate bug

25

Oracles

● Inverse (I)
– Refactorings are invertible
– Check that a refactoring is undone by its

inverse
– ASTComparator: Compares normalized ASTs

● Custom (C)
– Check for desired structural changes

● Differential (Diff)
– Perform refactoring in both Eclipse and

NetBeans

26

Case Study

● Tested Eclipse and NetBeans
● Eight refactorings

– Target field, method, or class

● Wrote about 50 generators
● Reported 47 new bugs
● Compared effectiveness of oracles

27

Generator Evaluation

● Generation and compilation time less
than refactoring time and oracles

● Human time: Took about two workdays to
produce MethodReference
– Reused many generators

Bugs
Refactoring Generator Inputs NB

72 0:45 1 0
1512 15:19 4 3
3969 41:45 1 2
48 1:16 1 0
417 8:45 3 3

Rename(Class) 88 1:02 0 0
Rename(Method) 9540 89:12 0 0

Rename(Field) 1512 28:20 0 1
Rename(Field) 3969 76:55 0 0

...
Total 21 26

Time (m:ss) Ecl

EncapsulateField

ClassArrayField
FieldReference

DoubleClassFieldRef.
SingleClassTwoFields

DoubleClassGetterSetter
ClassRelationships
MethodReference

FieldReference
DoubleClassFIeldRef.

28

Oracle Evaluation

● DoesNotCompile found the most bugs
● WarningStatus, Inverse, and Differential

can give false positives
● Many input programs exhibit same bug

WS DNC
C/I

Bugs
Refactoring Generator NB NB NB

0 0 48 0 0 48 1 0
0 0 320 432 14 121 4 3
0 0 187 256 100 511 1 2
0 0 0 0 48 15 1 0

216 0 162 162 18 216 3 3
Rename(Class) 0 0 0 0 0 0 0 0

Rename(Method) 0 0 0 0 0 0 0 0
Rename(Field) 0 0 0 304 0 40 0 1
Rename(Field) 0 0 0 0 0 0 0 0

...
Total 21 26

DiffEcl Ecl Ecl

EncapsulateField

ClassArrayField
FieldReference

DoubleClassFieldRef
SingleClassTwoFields

DoubleClassGetterSetter
ClassRelationships
MethodReference

FieldReference
DoubleClassFieldRef.

29

Results

● 47 new bugs reported
– 21 in Eclipse: 20 confirmed by developers
– 26 in NetBeans: 17 confirmed, 3 fixed, 5

duplicates, 1 won't fix
– Found others, but did not report duplicate or

fixed

● Currently working with NetBeans
developers to include ASTGen in testing
process

30

Related Work

● Grammar-based test data generation
– P. Purdom 1972

– P. M. Maurer 1990

– E. G. Sirer and B. N. Bershad 1999

– B. A. Malloy and J. F. Power 2001

● Declarative, bounded-exhaustive
generation
– C. Boyapati, S. Khurshid, and D. Marinov 2002

– S. Khurshid and D. Marinov 2004

– R. Lämmel and W. Schulte 2006

● QuickCheck
– K. Claessen and J. Hughes 2000

31

Future Work

● More refactorings
● Apply ASTGen to other program analyzers
● Removal of redundant tests, bug

targeting
● Reduce or eliminate false alarms

– Improved AST Comparator

32

Conclusions

● Despite their popularity, refactoring
engines contain bugs

● ASTGen allows one to create many
interesting ASTs

● We reported 47 new bugs

http://mir.cs.uiuc.edu/astgen/

Imperative vs. Declarative

● How to produce data
vs.
What data should look like

● TODO

34

Refactorings are behavior-
preserving program transformations

that improve the design of a program

