
Using Coverage Criteria on RepOK to Reduce
Bounded-Exhaustive Test Suites

Valeria Bengolea1,4, Nazareno Aguirre1,4,
Darko Marinov2, and Marcelo F. Frias3,4

1 Department of Computer Science, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,
Argentina. Emails: {vbengolea,naguirre}@dc.exa.unrc.edu.ar

2 Department of Computer Science, University of Illinois at Urbana-Champaign,
USA. Email: marinov@illinois.edu

3 Department of Software Engineering, Buenos Aires Institute of Technology,
Argentina. Email: mfrias@itba.edu.ar

4 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina

Abstract. Bounded-exhaustive exploration of test case candidates is a
commonly employed approach for test generation in some contexts. Even
when small bounds are used for test generation, executing the obtained
tests may become prohibitive, despite the time for test generation not
being prohibitive. In this paper, we propose a technique for reducing
the size of bounded-exhaustive test suites. This technique is based on
the application of coverage criteria on the representation invariant of the
structure for which the suite was produced. More precisely, the repre-
sentation invariant (which is often implemented as a repOK routine) is
executed to determine how its code is exercised by (valid) test inputs.
Different valid test inputs are deemed equivalent if they exercise the
repOK code in a similar way according to a white-box testing criterion.
These equivalences between test cases are exploited for reducing test
suites by removing from the suite those tests that are equivalent to some
test already present in the suite.
We present case studies that evaluate the effectiveness of our technique.
The results show that by reducing the size of bounded-exhaustive test
suites up to two orders of magnitude, we obtain test suites whose effi-
cacy measured as their mutant-killing ability is comparable to that of
bounded-exhaustive test suites.

1 Introduction

Testing is the primary approach to detect bugs in software. It consists of execut-
ing a piece of software under assessment for a variety of test cases. These cases
often correspond to instantiating parameters of the software with different in-
puts. Moreover, in order to increase the chances of detecting bugs, one typically
seeks these inputs to be as many and as varying as possible [19].

An essential task in testing is test-input generation. It is a difficult task be-
cause one has to come up with inputs exercising the software in many different
ways, and it has been typically done manually. In the last few years, various



approaches and tools have been developed to perform automated test-input gen-
eration. A particularly challenging task is generating test inputs for code that
manipulates complex data structures, e.g., directed graphs or AVL trees, because
these inputs need to satisfy complex constraints to be valid. In this and other
related contexts, the bounded-exhaustive exploration of possible inputs is an ap-
proach that has been quite successful [2, 7, 10,13,17]. This technique consists of
generating all the inputs that satisfy the constraints corresponding to the well-
formedness of the generated structures, within certain prescribed bounds. Tools
following this approach usually involve some form of constraint-solving process,
e.g., based on search, model checking, or combinations of these.

The rationale behind bounded-exhaustive testing dwells on the small-scope
hypothesis [8], which conjectures that (in some contexts) if a program has bugs,
then most of these bugs can be reproduced using small inputs. However, the
exploration of all possible structures within the given bounds is a costly task
that, even for small scopes, may produce very large test suites. Moreover, the
time required to execute the obtained test suite may be many times prohibitive.
For instance, for testing a merge routine on binomial heaps, the bounded ex-
haustive test-suite bounded by 6 nodes for each binomial heap has 57,790,404
tests. Also, there are situations where larger scopes are necessary to achieve cov-
erage and detect bugs, e.g., some insertion/deletion processes in balanced trees
require structures of larger sizes to force rotations or enable other rebalancing
mechanisms.

In this paper we propose a technique for reducing the size of bounded-
exhaustive test suites. This technique is based on the application of coverage
criteria on the representation invariant of the structure for which the suite was
produced. More precisely, the representation invariant, i.e., the constraint in-
dicating whether a structure is well-formed or not, is employed to define an
equivalence relation between valid test inputs. The technique requires the rep-
resentation invariant to be provided as a repOK routine [11], and consists of
analysing how the code of this routine is exercised by different test inputs. Dif-
ferent valid test inputs will be considered equivalent if they exercise the repOK
code in a similar way, according to some white-box testing criterion. These equiv-
alences between test cases are exploited for filtering tests, leaving out of the suite
those tests that are equivalent to some test already present in the suite.

Essentially, our proposal involves the definition of a black-box testing cri-
terion with respect to the code under test, defined in terms of white-box test-
ing criteria with respect to the representation invariant for the inputs of the
code under test. Namely, our criterion specifies when two different inputs are
to be considered equivalent disregarding the structure of the code under test
(hence, black-box), by considering only the structure of repOK routine (hence,
white-box). We present a particular application of this criterion to the reduc-
tion of bounded-exhaustive test suites for imperative/executable representation
invariants. However, the approach presented in this paper can also be adapted
to declarative representation invariants, which are becoming popular in various
object-oriented languages, e.g., invariants as specified in Eiffel or via contract



languages such as JML [3] and Code Contracts [4]; the adaptation is straightfor-
ward when these invariants are involved in run-time contract-checking environ-
ments, where they are made “executable” and the code corresponding to their
run-time evaluation would correspond to an imperative repOK routine.

To assess the effectiveness of the reduced test suites produced using our
approach, we present some case studies comparing bounded-exhaustive suites
with suites whose size is reduced employing a variety of white-box testing criteria
on repOK, for various data structures. We find that the reduction of up to two
orders of magnitude still largely preserves the mutant-killing capability of test
suites for various operations on these data structures.

2 Preliminaries

Test Coverage Criteria. A test coverage criterion is a means for measuring how
well a test suite exercises a program under test. Coverage criteria are mainly
classified into black-box and white-box [6,19]; the former disregard the structure
of the program under test, while the latter may pay special attention to the
structure of the program under test. Black-box coverage criteria “see” the code
under test as a black box, taking into consideration only the specification of the
program. An example of a known black-box criterion is equivalence partitioning
coverage, which consists of partitioning the space of program inputs into equiv-
alence classes, defined in terms of the specification of the expected inputs for
the program under test. White-box coverage criteria analyse the program under
test, and how the tests in the test suite exercise it, in order to measure coverage.
A simple well-known white-box coverage criterion is decision coverage, which,
in order to be satisfied, requires each decision point in the program under test
(conditions in if-then-else statements, loops, etc.) to evaluate to true and false
when different tests in the suite are exercised.

Test-Input Generation for Complex Structures. In the context of test-input gen-
eration for complex structures, two approaches can be distinguished, the gener-
ative approach and the filtering approach [7]. The former works by generating
instances of the input structure by calling a generator routine, that combines
calls to constructors and insertion routines on the structure. The latter builds
candidate structures using only its structural definition, and then employs a
predicate that characterises valid structures, known as a representation or class
invariant, in order to filter out the invalid candidates. The representation invari-
ant can be defined declaratively, e.g., using some contract-specification language
such as JML [3], or operationally, i.e., via a routine that, when applied to a
candidate, returns true if and only if the candidate is a valid one. The latter are
typically called repOK routines [11]. As put forward in [11], developers should
equip their complex structures implementations with repOK routines, since these
routines will greatly help in debugging the implementations.

Bounded-Exhaustive Testing. Bounded-exhaustive testing is a testing technique
that has proved useful in certain testing contexts, in particular, testing code that



manipulates complex data structures. Examples of such code include libraries
of data structures such as AVL trees, graphs, linked lists, etc., and programs
that manipulate source code (where source code can be viewed as data with a
complex structure) such as compilers, type checkers, refactoring engines, etc.

Bounded-exhaustive testing produces, for a given program under test and
a user-provided bound k on the size of inputs, all valid inputs whose size is
bounded by k, and then tests the program using the produced test suite. The
rationale behind the approach is that many bugs in programs manipulating
complex structures can be reproduced using small instances of the structure.
Thus, by testing the program on all possible structures bounded in size by some
relatively small scope one would be able to exhibit many bugs.

3 Reducing Bounded-Exhaustive Test Suites

In this section, we present an approach to help in reducing bounded-exhaustive
test suites. The approach assumes that we have an imperative implementation of
the representation invariant of the structure for which the bounded-exhaustive
suite was produced; thus, it fits better with filtering approaches to test generation
(for which such a representation invariant is often a requirement). The reduction
process works by defining a family of coverage criteria and employing the repOK
routine (i.e., the imperative implementation of the representation invariant) to
define an equivalence between inputs. Then, according to some reduction rate on
the bounded-exhaustive suite, test cases are discarded if they are “equivalent”
to some test cases remaining in the suite.

To describe how the technique works, let us first describe how we define
coverage criteria using repOK. Let C be a class, and let repOK be a parameterless
boolean imperative routine, characterising the representation invariant of C. The
representation invariant is the property that distinguishes well-formed instances
from ill-formed ones. A property expected of C is that its constructors must
establish repOK after their execution, and public methods of C must preserve it.
As an example, let us consider the following Java classes, implementing binary
trees of integers:

public class BinaryTree {

private Node root;

private int size;

...

}

public class Node {

private int key;

private Node left;

private Node right;

...

// setters and getters

// of the above fields

...

}

The representation invariant for this class should check that the linked structure
starting with root is indeed a tree, i.e., that it is acyclic and with a single parent
for every reachable node except the root, and that the value of size agrees with
the number of nodes in the structure. Checking that this property holds for a



binary tree object can be implemented as in the following method from class
BinaryTree (taken from the examples distributed with the Korat tool [2]):

public boolean repOK() {

if (root == null) return size == 0;

Set visited = new HashSet();

visited.add(root);

LinkedList workList = new LinkedList();

workList.add(root);

while (!workList.isEmpty()) {

Node current = (Node) workList.removeFirst();

if (current.getLeft() != null) {

if (!visited.add(current.getLeft())) return false;

workList.add(current.getLeft());

}

if (current.getRight() != null) {

if (!visited.add(current.getRight())) return false;

workList.add(current.getRight());

}

}

return (visited.size() == size);

}

Now suppose that one needs to test a routine that receives as a parameter
a binary tree, e.g., binary tree traversal routine. Notice that, as a (black-box)
criterion for testing the traversal routine, we can define a partition of all possible
binary tree structures according to the way the different structures “exercise”
the repOK routine. The motivation is basically that tests that exercise the code
of repOK in the same way can be considered as similar, and therefore can be
thought of as corresponding to the same class.

We still have to define what we mean by “exercise in a similar way”. This
can be done, in principle, by choosing any white-box coverage criterion, to be
applied to repOK. For instance, we can consider decision coverage on repOK; in
this case, two inputs to the traversing routine (the code under test) would be
considered equivalent if they make the decision points in repOK to evaluate to
the same values. Thus, for instance, of the following three trees:

1

2

null null

3

null null

1

2

null null

3

4

null null

null

1

2

null null

null

the first and the second would be considered equivalent, but none of these would
be equivalent to the third one (notice that, as opposed to these other two, pred-
icate current.getRight() != null never evaluates to true in this case).



In general, notice that any white-box testing criterion Crit gives rise to a
partition of the input space of the program under test, with each class in the
partition usually capturing some path or branch condition expressed as a con-
straint on the inputs. Given a program under test P , a criterion Crit, and an
input c, we will denote by JcKP

Crit the partition c belongs to, i.e., the set of all
inputs that exercise the code of P in the same way c does, according to Crit. Our
technique works by defining an equivalence between inputs. Let C be a repOK-
equipped class, and let Crit be a selected white-box coverage criterion. Given
two valid objects c1 and c2 of C, i.e., two objects satisfying C’s representation
invariant, we will say that c1 is equivalent to c2 (according to repOK under Crit),
if and only if Jc1K

repOK
Crit = Jc2K

repOK
Crit .

In the above example we picked one of the simplest white-box coverage cri-
teria to be applied to repOK; of course, choosing more sophisticated coverage
criteria (e.g., path coverage, condition coverage, MCDC, etc.) would yield finer
grained equivalence relations on the state space of the input data type.

Once one has decided the white-box criterion to be applied to repOK, one can
use it to reduce bounded-exhaustive suites. The approach we followed for doing
so is the following. Suppose that you have used some mechanism for generating
a bounded-exhaustive test suite, to be used for testing, with N tests in it. More-
over, you have realised that you will not have enough resources to analyse the
program under test for all these cases. Instead, you have resources to test your
system for a fraction of this suite, let us say N/10. In this case, we do as follows:

– Determine the number of possible equivalence classes of inputs (depends both
on the white-box criterion chosen on repOK and the complexity of repOK’s
code).

– Set a maximum maxq for the number of tests for every single equivalence class
q. For instance, divide the size of the test suite to be built (in the example
N/10) by the number of equivalence classes, and set this as a maximum.

– Process the bounded-exhaustive test suite, leaving at most maxq tests for
each equivalence class q of inputs.

As we mentioned, the result of applying the above process strongly depends
on the selected white-box criterion. Moreover, this process strongly depends on
the structure of the repOK routine too. For instance, an if-then-else with a com-
posite condition could alternatively be written as nested if-then-else statements
with atomic conditions; such structurally different but behaviourally equivalent
programs may have very different equivalence classes, for the same white-box
criterion, and therefore our approach may result in different reduced suites.

4 On the Effectiveness of Reduced Test Suites

In this section we evaluate the effectiveness of test suites reduced using the ap-
proach presented in the previous section. The evaluation is based on several case
studies, corresponding to analyses of various routines on selected heap-allocated
data structures, namely binomial heaps, binary search trees, doubly linked lists,



and red black trees. We have used the implementation of these structures provided
in the Roops benchmark [15]. We are not dealing in this paper with bounded-
exhaustive generation, so the approach would work with any generation tool. It
is worth mentioning however that we generated the bounded-exhaustive suites
on which reductions are applied, using Korat [2]. Also, we experimented with dif-
ferent coverage criteria on repOK, in order to perform the reductions. We selected
three coverage criteria: decision coverage, path coverage and a variant of deci-
sion coverage, that we call counting decision coverage. Notice that, since we are
comparing with bounded-exhaustive suites, we are able to determine precisely
which are the coverable equivalence classes for each criterion (e.g., we are able
to determine precisely which repOK paths the bounded-exhaustive suites cover),
which is necessary for the reduction process. Of course, this requires executing
repOK for all tests in the bounded-exhaustive suite, a task which would anyway
be done at test generation time, prior to suite reduction and the testing of the
program under test.

We also used counting decision coverage (CDC). This criterion takes into
account the number of times each decision in the program evaluates to true and
false. More precisely, given a program under test P and two inputs c1 and c2

for P , c1 and c2 are equivalent according to P under CDC if and only if, for
every decision point cond in P , the number of times cond evaluates to true (resp.
false) when P is executed for c1 equals the number of times cond evaluates to
true (resp. false) when P is executed for c2. We believe CDC to be useful in our
context since, in general, there is a relationship between the size of a structure
and the number of times a particular decision point in the corresponding repOK
evaluates to true or false (think of conditions inside loops). As a consequence,
as the size of a structure increases, the number of equivalence classes will also
increase, and hence the variety of cases in the reduced suite. For instance, while
decision coverage considers as equivalent the first two trees in the example of
the previous section, CDC will distinguish them.

Structure of the Experiments. We took the repOK code for each of the above
mentioned structures, and we automatically instrumented it to obtain, from a
repOK call on a given valid structure, the equivalence class the structure belongs
to, for each of the selected criteria. We ran the instrumented repOK methods on
tests of the bounded-exhaustive test suite to collect their equivalence class infor-
mation. We then built reduced test suites that select from a bounded-exhaustive
test suite some test cases for each (coverable) equivalence class corresponding to
the criterion. In particular, we reduced the bounded-exhaustive test suites by one
and two orders of magnitude, i.e., 10% and 1% of the starting test suite size. The
test cases selected for the reduced test suite are the first generated/encountered
test cases for each of the coverable equivalence classes. Note that other selec-
tions could be possible, e.g., randomly selecting an appropriate number of test
cases for each equivalence class. The selection has been made taking at most
Nr/M test cases for each equivalence class, where Nr is the size of the reduced
test suite (e.g., 10% of the bounded-exhaustive suite) and M is the number of
equivalence classes. In both cases (10% reduction and 1% reduction), when the



bounded-exhaustive test suite was too small to reduce it to 10% (or 1%) of its
original size, we have taken at least one test case for each covered equivalence
class.

To measure the effectiveness of the approach, we took some sample rou-
tines manipulating the data structures selected for analysis. These routines were
merge, insert, delete and find for binomial heaps, isPalindromic for doubly
linked lists, insert, delete and search for search trees, and add, remove and
contains on red-black trees. We generated mutants of these routines, and mea-
sured the effectiveness of the different suites, bounded-exhaustive and reduced,
in mutant killing. We also included in this assessment the “one per class” suites,
consisting of exactly one test per coverable equivalence class (i.e., a minimal
suite with the same coverage as the corresponding bounded-exhaustive suite).
We used muJava [14] to generate mutants. The mutants we got are those ob-
tained by the application of 12 different method-level mutation operators [12],
including arithmetic, logical and relational operator replacement, when these
ones were applicable to the selected routines.

We have tried to foresee potential threats to the validity of our experimental
results. The case studies represent, in our opinion, typical testing situations in
the context of the implementation of complex, heap allocated data structures (a
main target for bounded-exhaustive testing). We chose case studies of varying
complexities, including data structures with simple, intermediate, and complex
constraints (e.g., linked lists, search trees and binomial heaps, respectively).
Since the approach depends on the structure of repOK, we took implementations
of these routines as provided in Korat, instead of providing our own. Also, for
the evaluation we selected coverage criteria of varying complexities: the rather
simple decision coverage, the more thorough path coverage, and an intermediate
one, counting decision coverage.

4.1 Case Studies

Binomial Heaps (merge). This case study involves testing merge, a routine ma-
nipulating binomial heaps. This routine takes as parameters a pair of binomial
heaps, and produces a binomial heap corresponding to the union of the two pa-
rameters. This is an example of a case in which the bounded-exhaustive suites
quickly become too large, making bounded-exhaustive testing impractical. Fig-
ure 1 shows, for various scopes, the sizes of bounded-exhaustive (BE) suites and
suites with repOK-based reductions to 10% and 1%, for the three mentioned
white-box coverage criteria applied to repOK. For each criterion, it is also indi-
cated the number of equivalence classes of inputs that have been covered (CC,
for covered classes). The scope in this case specifies the maximum number of
elements for both heaps, and the range for nodes’ keys, from zero to the speci-
fied value. Since the bounded-exhaustive suites have been generated using Korat,
these exclude symmetric cases on reference fields (Korat provides a symmetry-
breaking mechanism as part of its generation process).

The merge routine was mutated, obtaining a total of 117 mutants. Then,
the ability to kill mutants of the bounded-exhaustive, the reduced test suites



Scope BE Decision Cov. Count. Decision Cov. Path Cov.

10% 1% CC 10% 1% CC 10% 1% CC

2,2 36 3 3 3 9 9 9 9 9 9
3,3 784 76 4 4 59 16 16 59 16 16
4,4 14,400 1200 144 4 1060 119 25 1060 119 25
5,5 876,096 49,420 7506 4 42,500 6460 36 42,500 6460 36
6,6 57,790,404 2,455,826 342,166 4 1,993,860 315,698 49 1,993,860 315,698 49

Fig. 1. Sizes of bounded-exhaustive and suites with repOK-based reductions, for testing
binomial heap’s merge.

Scope BE Decision Cov. Count. Decision Cov. Path Cov.

10% 1% OPC 10% 1% OPC 10% 1% OPC

2,2 38 100 100 100 42 42 42 42 42 42
3,3 8 11 86 86 8 14 14 8 14 14
4,4 7 7 11 86 7 7 12 7 7 12
5,5 7 7 7 86 7 7 12 7 7 12
6,6 7 7 7 86 7 7 12 7 7 12

Fig. 2. Measurement of effectiveness of bounded-exhaustive and reduced test suites,
on mutant killing for merge (table reports mutants remaining live).

and the minimal “one per equivalence class”, was assessed. Figure 2 reports the
results indicating the remaining live mutants, and highlighting the cases in which
the mutation score of the reduced suites matched that of the corresponding
bounded-exhaustive suite. Out of the 7 mutants that remained live with the
largest bounded-exhaustive suite, 4 are equivalent to the original program. Notice
that in this case, the reduced test suites for all the coverage criteria analysed
were in most cases as effective as the bounded-exhaustive suites, for mutant
killing, even with suites of 1% the size of the bounded-exhaustive ones.

Binomial Heaps (insert, delete and find). Our second case study corresponds
to routines manipulating a single binomial heap, namely insert, delete and find.
Figure 3 shows, for various scopes, the sizes of the various suites. The scopes in
this case simply indicate the sizes of the corresponding binomial heaps.

Routines insert, delete and find were mutated (the number of mutants
obtained were 99, 184 and 28, respectively), and the effectiveness of the different
suites on mutant killing was assessed. Figure 4 reports the results of the analysis
for this case study. Out of the 25 and 31 mutants that remained live with the
largest bounded-exhaustive suite for insert and delete, 2 and 14 are equivalent
to the respective original program. In this case, the reduced suites were not as
effective as the previous case study, especially for the delete routine. However,
notice that the results are still very good, taking into account the reduction in
size of the suites. For instance, for scope 8 and counting decision coverage, the



Scope BE Decision Cov. Count. Decision Cov. Path Cov.

10% 1% CC 10% 1% CC 10% 1% CC

2 12 3 3 3 3 3 3 3 3 3
3 84 8 4 4 8 4 4 8 4 4
4 480 40 4 4 40 5 5 40 5 5
5 4680 264 38 4 339 40 6 339 40 6
6 45,612 1938 270 4 2772 367 7 2772 367 7
7 751,912 37,650 3814 4 33,052 4947 8 33,052 4947 8
8 4,829,952 241,568 24,220 4 217,662 29,494 9 217,662 29,494 9

Fig. 3. Sizes of bounded-exhaustive and suites with repOK-based reductions, for testing
binomial heap’s operations insert, delete and search.

10%-reduced suite only misses one mutant (32 vs. 31 out of 184) compared to
the bounded-exhaustive suite.

Doubly Linked Lists (isPalindromic). Our next case study corresponds to the
routine isPalindromic, which checks whether a given sequence of integers (im-
plemented over a doubly linked list) is a palindrome. Figure 5 shows, for various
scopes, the sizes of the various suites and the number of equivalence classes cov-
ered. The scopes in this case correspond to the number of entries in the list, the
range for the size of the list, and the number of integer values allowed in the
list. The routine isPalindromic was mutated, obtaining 23 mutants. Figure 6
reports the results of the analysis for this case study. Out of the 13 mutants that
remained live with the largest bounded-exhaustive suite, 2 are equivalent to the
original program. In this case study, reduced test suites are again as effective as
the bounded-exhaustive ones, in most of the cases, even reduced to 1% of the
size of the bounded-exhaustive ones.

Search Trees (insert, delete and search). Our next case study regards the
data structure search trees, and the main routines for insertion, deletion and
search. Figure 7 shows, for various scopes, the sizes of the various suites, and the
number of covered classes. The scopes indicate the maximum number of nodes in
the tree, the range for the size field of the tree, and the number of keys allowed
in the tree.

Routines insert, delete and search were mutated (the number of mutants
obtained were 9, 24 and 4, respectively). Table 8 reports the results obtained
for the analysis. In this case study, reduced test suites are again as effective
as the bounded-exhaustive ones, in most of the cases, with less effectiveness in
the delete routine. Notice however that the mutant-killing score is still very
good for delete in the reduced suites, with counting decision coverage at a 10%
almost matching the bounded-exhaustive suite in scope 6,0,6,9 (2 vs. 0 out of 24
mutants).

Red-Black Trees (remove, add and contains) The last case study we present
involves routines manipulating red-black trees. There routines are remove, add



Scope Oper.(#Mutants) BE Decision Cov. Count. Decision Cov. Path Cov.

10% 1% OPC 10% 1% OPC 10% 1% OPC

2 insert(99) 36 44 44 44 44 44 44 44 44 44
delete(184) 124 152 152 152 152 152 152 152 152 152
find(28) 0 12 12 12 12 12 12 12 12 12

3 insert(99) 25 26 34 34 26 34 34 26 34 34
delete(184) 81 106 149 149 106 149 149 106 149 149
find(28) 0 8 12 12 8 12 12 8 12 12

4 insert(99) 25 25 34 34 25 34 34 25 34 34
delete(184) 77 99 149 149 101 149 149 101 149 149
find(28) 0 6 12 12 6 12 12 6 12 12

5 insert(99) 25 25 25 34 25 25 34 25 25 34
delete(184) 61 80 101 149 65 85 149 65 85 149
find(28) 0 2 6 12 2 6 12 2 6 12

6 insert(99) 25 25 25 34 25 25 34 25 25 34
delete(184) 33 65 99 149 48 53 115 48 53 115
find(28) 0 2 6 12 0 3 12 0 3 12

7 insert(99) 25 25 25 34 25 25 34 25 25 34
delete(184) 31 37 82 149 35 49 115 35 49 115
find(28) 0 0 5 12 0 0 12 0 0 12

8 insert(99) 25 25 25 34 25 25 34 25 25 34
delete(184) 31 54 70 149 32 48 115 32 48 115
find(28) 0 2 5 12 0 0 12 0 0 12

Fig. 4. Measurement of effectiveness of bounded-exhaustive and reduced test suites,
on mutant-killing for insert, delete and search for binomial heaps (table reports
mutants remaining live).

and contains. Figure 9 shows, for various scopes, the sizes of the corresponding
suites and the number of equivalence classes covered in each case. The scopes
indicate the maximum number of nodes in the tree, the range for the size field
of the tree, and number of keys allowed in the tree. In this case study, paths and
sizes were for some scopes too large to enable us to perform the analysis. Thus,
we considered in this case study a bounded version of path coverage, namely
path coverage without taking into account repetitions of edges (known as simple
path coverage [19]).

Routines remove, add and contains were mutated (the number of mutants
obtained were 142, 126 and 36, respectively), and the results of the analysis are
reported in Figure 10. Out of the 41, 36 and 6 mutants that remained live with
the largest bounded-exhaustive suite for remove, add and contains, respectively,
4, 11 and 4 are equivalent to the respective original program. In this case study,
reduced test suites showed better effectiveness for the contains routine, match-
ing in many cases the mutant-killing score of the bounded-exhaustive suites. For
the other two routines it was not the same case, although they achieved a very
good mutant-killing score in many cases (e.g., counting decision coverage for add



Scope BE Decision Cov. Count. Decision Cov. Path Cov.

10% 1% CC 10% 1% CC 10% 1% CC

4,0,4,4 156 8 2 2 10 4 4 10 4 4
4,0,4,8 820 42 5 2 50 7 4 50 7 4
5,0,5,5 1555 78 8 2 100 13 5 100 13 5

5,0,5,10 16,105 806 81 2 777 108 5 777 108 5
6,0,6,6 19,608 981 99 2 1035 136 6 1035 136 6

6,0,6,12 402,234 20,112 2,012 2 15,786 2,193 6 15,786 2,193 6
7,0,7,7 299,593 14,980 1,498 2 13,239 1,781 7 13,239 1,781 7

7,0,7,14 12,204,241 610,213 61,022 2 402,933 55,918 7 402,933 55,918 7

Fig. 5. Sizes of bounded-exhaustive suites and suites with repOK-based reductions, for
testing isPalindromic operation for doubly linked lists.

Scope BE Decision Cov. Count. Decision Cov. Path Cov.

10% 1% OPC 10% 1% OPC 10% 1% OPC

4,0,4,4 15 15 23 23 15 22 22 15 22 22
4,0,4,8 15 15 23 23 15 15 22 15 15 22
5,0,5,5 13 15 22 23 13 15 22 13 15 22

5,0,5,10 13 15 15 23 13 13 22 13 13 22
6,0,6,6 13 13 15 23 13 13 22 13 13 22

6,0,6,12 13 13 15 23 13 13 22 13 13 22
7,0,7,7 13 13 13 23 13 13 22 13 13 22

7,0,7,14 13 13 13 23 13 13 22 13 13 22

Fig. 6. Measurement of effectiveness of bounded-exhaustive and reduced test suites,
on mutant-killing for isPalindromic for doubly linked lists (table reports mutants
remaining live).

in scope 7,0,7,7 missed only 4 out of 126 compared to the bounded-exhaustive
suite).

5 Related Work

There exist some approaches that are related to the work presented in this pa-
per. With respect to the reduction of bounded-exhaustive test suites, the work
of some of the authors of this paper [1] is strongly related to the work presented
in this paper, especially because both approaches are based on the use of cov-
erage criteria. However, the previous approach [1] differs from the work of this
paper in two aspects. First, it requires the user to provide the coverage criterion
to perform the suite reduction, as opposed to our work here, where the cover-
age criterion is a standard one applied to the representation invariant. Second,
the previous approach targets the improvement in the test generation process,
whereas our work in this paper concerns the reduction of bounded-exhaustive
test suites to reduce the time for testing. Another work related to ours is the



Scope BE Decision Cov. Count. Decision Cov. Path Cov.

10% 1% CC 10% 1% CC 10% 1% CC

3,0,3,3 45 5 5 5 7 7 7 9 9 9
3,0,3,4 148 10 5 5 14 7 7 9 9 9
3,0,3,6 822 70 5 5 72 7 7 78 9 9
3,0,3,8 2,760 228 25 5 242 21 7 248 27 9
5,0,5,8 29,416 1836 240 5 2634 278 16 2888 260 65
6,0,6,9 167,814 10,158 1095 5 14,430 1605 22 16,665 1576 197

Fig. 7. Sizes of bounded-exhaustive suites and suites with repOK-based reductions, for
testing delete, insert and search operations of search trees.

one presented in [9]. In [9], the authors present various techniques for reducing
the costs of bounded-exhaustive testing. These techniques are sparse test gen-
eration, which attempts to reduce the time to the first failing test (but not the
suite); oracle-based test clustering, which groups together failing tests to reduce
the time for inspection of failing tests; and structural test merging, whose pur-
pose is to generate smaller suites of larger tests by merging together smaller test
inputs. Of these three, the latter is related to our work, since it has as a purpose
to reduce the size of the test suite. However, the approach is rather different,
since bounded exhaustiveness is preserved in structural test merging (although
sets of small inputs are encoded as a single large input), whereas in our case we
drop bounded exhaustiveness by selecting only some tests. The same differences
apply to other works based on test granularity [16].

Other researchers have studied the effects of reducing test suites in finding
bugs, e.g., the work in [18]. Our work is related, but we propose a specific ap-
proach for test-suite reduction (as opposed to studying the effects of test-suite
reductions in general), and we target specifically bounded-exhaustive test suites.

6 Conclusions and Further Work

Bounded-exhaustive test suites are popular in some testing contexts, such as
that of testing complex heap allocated data structures. However, in many cases
bounded-exhaustive test suites become too large as the bound for the gener-
ated suites increases, thus making their (exhaustive) use impractical. We have
presented an approach for reducing bounded-exhaustive test suites, and conse-
quently also the time spent in testing using these suites, for cases in which an
imperative representation invariant routine is available for the inputs for which
the suites were generated. The approach works by defining black-box criteria for
the program under test, based on the definition of equivalence relations of inputs,
defined in terms of white-box criteria on the imperative representation invariant;
basically, the rationale for this is that, if two inputs exercise the representation
invariant code in the same way, according to a white-box criterion, these inputs
may be considered similar, i.e., considered to belong to the same equivalence



Scope Oper.(#Mutants) BE Decision Cov. Count. Decision Cov. Path Cov.

10% 1% OPC 10% 1% OPC 10% 1% OPC

3,0,3,3 delete(24) 2 12 12 12 12 12 12 12 12 12
insert(9) 0 0 0 0 0 0 0 0 0 0
search(4) 0 0 0 0 0 0 0 0 0 0

3,0,3,4 delete(24) 2 12 12 12 12 12 12 12 12 12
insert(9) 0 0 0 0 0 0 0 0 0 0
search(4) 0 0 0 0 0 0 0 0 0 0

3,0,3,6 delete(24) 2 12 12 12 12 12 12 12 12 12
insert(9) 0 0 0 0 0 0 0 0 0 0
search(4) 0 0 0 0 0 0 0 0 0 0

3,0,3,8 delete(24) 2 9 12 12 9 12 12 9 12 12
insert(9) 0 0 0 0 0 0 0 0 0 0
search(4) 0 0 0 0 0 0 0 0 0 0

5,0,5,8 delete(24) 0 9 16 16 9 12 12 9 12 12
insert(9) 0 0 0 0 0 0 0 0 0 0
search(4) 0 0 0 0 0 0 0 0 0 0

6,0,6,9 delete(24) 0 9 16 16 2 9 12 0 12 12
insert(9) 0 0 0 0 0 0 0 0 0 0
search(4) 0 0 0 0 0 0 0 0 0 0

Fig. 8. Measurement of effectiveness of bounded-exhaustive and reduced test suites, on
mutant-killing for insert, delete and search for search trees (table reports mutants
remaining live).

class of inputs. These equivalence classes are then employed in order to filter out
of the exhaustive suites some tests that are equivalent to some others already
present in the suite.

Although our motivation is the reduction of bounded-exhaustive test suites,
the idea of using white-box criteria on the representation invariant is indeed
the definition of a new black-box coverage criterion, for programs whose inputs
count on a representation invariant. This idea can also be adapted to declarative
representation invariants, which are becoming popular, e.g., invariants as speci-
fied in Eiffel or via contract languages such as JML and Code Contracts; these
invariants are typically involved in run-time contract-checking environments, so
they are “executable”, and the code corresponding to their run-time evaluation
would correspond to what we referred to as repOK in this paper.

We presented some case studies showing the performance of suites reduced
using the above approach, compared to bounded-exhaustive suites. As the ex-
periments show, for some white-box coverage criteria on the representation in-
variant, we obtain a performance in mutant killing that is comparable to that
of bounded-exhaustive suites. In particular, we used a variant of decision cover-
age, called counting decision coverage, which takes into account the number of
times each decision point in the program under test becomes true and false. This
criterion, applied to the representation invariant, is useful in our context, since
in general we observe that there is a relationship between the size of the struc-



Scope BE Decision Cov. Count. Decision Cov. Simple Path Cov.

10% 1% CC 10% 1% CC 10% 1% CC

4,0,4,4 164 14 7 7 16 16 16 108 108 108
4,0,4,8 6408 500 62 7 608 64 16 169 157 157
5,0,5,5 575 53 7 7 30 30 30 97 97 97

5,0,5,10 56,790 2732 496 7 5313 532 30 245 165 157
6,0,6,6 1962 174 14 7 184 16 46 113 113 113

6,0,6,12 412,140 10,411 2,652 7 38,579 4,017 46 505 229 157
7,0,7,7 6377 469 61 7 570 66 66 154 142 142

7,0,7,14 3,045,266 89,960 11,654 7 284,408 29,449 66 2211 465 157

Fig. 9. Sizes of bounded-exhaustive suites and suites with repOK-based reductions, for
testing remove, add and contains operations of red-black trees.

ture and the number of times a particular decision point in the corresponding
representation invariant evaluates to true or false.

As work in progress, we are currently examining the approach proposed in
this paper for several additional case studies, based on more complex data struc-
tures. We also plan to assess the approach in the context of testing applications
manipulating source code, such as compilers or, more particularly, refactoring
engines, as is done using ASTGen [5].

References

1. N. Aguirre, V. Bengolea, M. Frias and J. Galeotti, Incorporating Coverage Criteria
in Bounded Exhaustive Black Box Test Generation of Structural Inputs, in Proc. of
Intl. Conference on Tests and Proofs TAP 2011, LNCS 6706, Springer, 2011.

2. C. Boyapati, S. Khurshid and D. Marinov, Korat: Automated Testing based on Java
Predicates, in Proc. of Intl. Symposium on Software Testing and Analysis ISSTA
2002, ACM Press, 2002.

3. P. Chalin, J.R. Kiniry, G.T. Leavens and E. Poll, Beyond Assertions: Advanced
Specification and Verification with JML and ESC/Java2, in Proc. of Intl. Symposium
on Formal Methods for Components and Objects FMCO 2005, LNCS 4111, Springer,
2005.

4. Code Contracts, http://research.microsoft.com/en-us/projects/contracts/

5. B. Daniel, D. Dig, K. Garćıa and D. Marinov, Automated Testing of Refactoring En-
gines, in Proc. of European Software Engineering Conference and Intl. Symposium
on Foundations of Software Engineering ESEC/FSE 2007, ACM Press, 2007.

6. G. J. Myers, The Art of Sofware Testing, 2nd. Ed., John Wiley & Sons, Inc, 2004.
7. M. Gligoric, T. Gvero, V. Jagannath, S. Khurshid, V. Kuncak and D. Marinov,

Test Generation through Programming in UDITA, in Proc. of Intl. Conference on
Software Engineering ICSE 2010, ACM Press, 2010.

8. D. Jackson, Software Abstractions: Logic, Language, and Analysis, The MIT Press,
2006.

9. V. Jagannath, Y.Lee, B.Daniel and D. Marinov, Reducing the Costs of Bounded-
Exhaustive Testing, in Proc. of Intl. Conference on Fundamental Approaches to
Software Engineering FASE 2009, LNCS 5503, Springer, 2009.



Scope Oper.(#Mutants) BE Decision Cov. Count. Decision Cov. Simple Path Cov.

10% 1% OPC 10% 1% OPC 10% 1% OPC

4,0,4,4 remove(142) 47 82 82 81 70 70 70 47 47 47
add(126) 38 58 90 90 90 90 90 44 44 44
contains(36) 6 8 9 9 9 9 9 6 6 6

4,0,4,8 remove(142) 47 66 81 81 65 70 70 82 82 82
add(126) 38 40 43 90 40 58 90 53 62 62
contains(36) 6 6 7 9 6 8 9 8 8 8

5,0,5,5 remove(142) 43 81 82 81 68 68 68 68 68 68
add(126) 38 43 90 90 90 90 90 56 56 56
contains(36) 6 7 9 9 9 9 9 8 8 8

5,0,5,10 remove(142) 43 55 77 81 52 67 68 82 82 82
add(126) 36 40 42 90 39 43 90 49 58 78
contains(36) 6 6 6 9 6 7 9 8 8 8

6,0,6,6 remove(142) 41 66 82 81 46 66 66 71 71 71
add(126) 36 42 58 90 55 90 90 62 62 62
contains(36) 6 6 8 9 7 9 9 8 8 8

6,0,6,12 remove(142) 41 53 60 81 50 61 66 82 82 82
add(126) 36 40 40 90 37 40 90 47 49 78
contains(36) 6 6 6 9 6 6 9 8 8 8

7,0,7,7 remove(142) 41 60 81 81 41 66 66 76 76 76
add(126) 36 40 43 90 40 90 90 53 62 62
contains(36) 6 6 7 9 6 9 9 8 8 8

7,0,7,14 remove(142) 41 50 55 81 44 50 66 76 82 82
add(126) 36 42 58 90 55 90 90 47 49 79
contains(36) 6 6 6 9 6 6 9 8 8 8

Fig. 10. Measurement of effectiveness of bounded-exhaustive and reduced test suites,
on mutant-killing for add, remove and contains for red-black tree (table reports mu-
tants remaining live).

10. S. Khurshid and D. Marinov, TestEra: Specification-Based Testing of Java Pro-
grams Using SAT, Automated Software Engineering 11(4), Springer, 2004.

11. B. Liskov and J. Guttag, Program Development in Java: Abstraction, Specification
and Object-Oriented Design, Addison-Wesley, 2000.

12. Y.-S. Ma, J. Offutt and Y.-R. Kwon, MuJava : An Automated Class Mutation
System, Journal of Software Testing, Verification and Reliability, 15(2), Wiley, 2005.

13. A. Milicevic, S. Misailovic, D. Marinov and S. Khurshid, Korat: A Tool for Gen-
erating Structurally Complex Test Inputs, in Proc. of Intl. Conference on Software
Engineering ICSE 2007, IEEE Press, 2007.

14. MuJava, http://www.cs.gmu.edu/~offutt/mujava/.
15. Roops, http://code.google.com/p/roops/.
16. G. Rothermel, S. Elbaum, A. Malishevsky, P. Kallakuri and B. Davia, The Impact

of Test Suite Granularity on the Cost-Effectiveness of Regression Testing, in Proc.
of Intl. Conference on Software Engineering ICSE 2002, ACM Press, 2002.

17. K. Sullivan, J. Yang, D. Coppit, S. Khurshud and D. Jackson, Software Assurance
by Bounded Exhaustive Testing, in Proc. of Intl. Symposium on Software Testing
and Analysis ISSTA 2004, ACM Press, 2004.



18. Y. Yu, J. Jones and M. Harrold, An Empirical Study of the Effects of Test-Suite
Reduction on Fault Localization, in Proc. of Intl. Conference on Software Engineering
ICSE 2008, ACM Press, 2008.

19. H. Zhu, P. Hall and J. May, Software Unit Test Coverage and Adequacy, ACM
Computing Surveys 29(4), ACM Press, 1997.


