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Abstract—Regression testing in very large software ecosystems
is notoriously costly, requiring computational resources that even
large corporations struggle to cope with. Very large ecosystems
contain thousands of rapidly evolving, interconnected projects
where client projects transitively depend on library projects.
Regression test selection (RTS) reduces regression testing costs
by rerunning only tests whose pass/fail behavior may flip after
code changes. For single projects, researchers showed that class-
level RTS is more effective than lower method- or statement-level
RTS. Meanwhile, several very large ecosystems in industry, e.g.,
at Facebook, Google, and Microsoft, perform project-level RTS,
rerunning tests in a changed library and in all its transitive
clients. However, there was no previous study of the comparative
benefits of class-level and project-level RTS in such ecosystems.

We evaluate RTS opportunities in the MAVEN Central open-
source ecosystem. There, some popular libraries have up to
924589 clients; in turn, clients can depend on up to 11190
libraries. We sampled 408 popular projects and found that 202
(almost half) cannot update to latest library versions without
breaking compilation or tests. If developers want to detect these
breakages earlier, they need to run very many tests. We compared
four variants of class-level RTS with project-level RTS in MAVEN
Central. The results showed that class-level RTS may be an order
of magnitude less costly than project-level RTS in very large
ecosystems. Specifically, various class-level RTS variants select,
on average, 7.8%–17.4% of tests selected by project-level RTS.

I. INTRODUCTION

Very large software ecosystems are becoming more com-
mon in both industry and in the open-source community. A
very large ecosystem contains thousands of rapidly evolving,
interconnected projects where client projects transitively de-
pend on library projects. Examples of such ecosystems in
industry include those at Facebook, Google, and Microsoft,
where many software projects typically reside in a monolithic
repository and clients are built and tested against latest library
versions whenever the library changes. Open-source ecosys-
tems also exist for popular programming languages—e.g.,
MAVEN Central for Java [1], NPM for JavaScript [2], NUGET
for .Net [3], CRAN for R [4], RUBYGEMS for Ruby [5], PYPI
for Python [6], etc.—even if the source code is not centralized
in one monolithic repository.

Regression testing [7], [8], [9], [10], [11], [12], [13], [14],
[15] is notoriously expensive [16], [17] in very large software
ecosystems but still valuable to quickly detect whether library
changes break some clients. Several large proprietary software
organizations have developed regression testing systems, e.g.,

Facebook’s Buck [18], Google’s TAP [16], [19], and Mi-
crosoft’s CloudBuild [17]. When a library changes, the tests in
the library, and, ideally, the tests in all its clients, are rerun to
check for regressions. Even in open-source ecosystems, which
lack the centralized governance and regression testing systems
that these companies have, regression testing of client code
after library changes can be highly beneficial: (i) clients’ tests
can test library code in ways that library developers did not
foresee, (ii) library developers can more quickly see if their
changes break some popular clients, (iii) client developers
can more quickly discover how library changes break their
code (even if they choose not to upgrade to the latest library
version), and (iv) client developers might find it easier to
incrementally update their code as libraries evolve.

Regression test selection (RTS) [13], [20], [21], [22], [23],
[24], [25], [26], [27], [28], [29] aims to reduce the cost
of regression testing by rerunning only tests whose pass/fail
behavior may flip due to the code changes. An RTS technique
works by tracking test dependencies on an old code version.
Then, only tests for which some dependency changed are rerun
in the new code version. RTS techniques vary in the granularity
at which they select tests and compute test dependencies, e.g.,
at statement, block, method, class, or project levels. Tracking
test dependencies can be done statically or dynamically.

There is a gap between the research on RTS, which so
far mostly evaluated individual projects, and RTS practiced
in several very large software ecosystems in industry, e.g.,
at Facebook, Google, and Microsoft. Specifically, researchers
showed that, for individual projects, class-level RTS can be
more beneficial than RTS only at lower granularities, e.g.,
method-level [28], [29], [30]. Meanwhile, regression testing
systems for very large ecosystems (e.g., Buck, CloudBuild,
and TAP) perform project-level RTS. Yet, no prior study com-
pared class-level and project-level RTS in very large software
ecosystems. Section II shows via examples some benefits that
class-level RTS can provide over project-level RTS. While
these benefits would be ideally evaluated in industry, we
cannot easily access the proprietary systems and code.

In this paper, we evaluate RTS opportunities by comparing
class-level with project-level RTS in the MAVEN Central open-
source ecosystem. There, popular libraries have up to 924589
clients; in turn, clients depend on up to 11190 libraries.
This underapproximates the number of clients because we
only count clients deployed in MAVEN Central. To show that
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MAVEN Central libraries evolve in a way that breaks clients,
we first conducted a small formative study on a sample of
408 popular GitHub Java projects released in MAVEN Central
for which we could successfully run tests. 202 projects (i.e.,
almost half) could not update to the latest versions of their
libraries because some libraries broke the clients’ compilation,
some broke tests, and some broke both. While not all libraries
care about breaking all clients and not all clients want to
update to the latest library versions, developers who do care
about detecting such breakages earlier could benefit from a
regression testing system in the MAVEN Central ecosystem.
Some Apache projects started an effort on Gump [31], but
MAVEN Central has no widely used regression testing system.

Our comparison of class-level and project-level RTS in
MAVEN Central showed that class-level RTS can be an order
of magnitude cheaper than project-level RTS in very large
ecosystems. We compared four variants of class-level RTS
with project-level RTS; MAVEN Central projects are Jar files,
so we use “Jar” and “project” interchangeably. We refer to
the project-level RTS as JJ: it computes both dependencies
and changes at the Jar granularity. When a library changes,
JJ reruns all tests in the library and all tests in all the
library’s transitive clients. JJ mimics what companies with an
abundance of resources do for RTS, but even these companies
have reported the increasing costs of JJ [16], [19], [32]. The
question we ask is how much could be saved by lower-
granularity, class-level RTS.

We compared project-level RTS against four class-level
RTS variants that all track dependencies at the class level
but differ in whether they track changes at the class or Jar
level, and whether they compute dependencies statically or
dynamically. We used Java projects that release Jars in MAVEN
Central and keep source code in GitHub. We performed the
comparison on 13961 change sets in 168 libraries that have
test Jars and a total of 580876 clients. The results for this
very large software ecosystem showed that class-level can be
much cheaper than project-level. Specifically, various class-
level RTS variants select, on average, only 7.8%–17.4% of
the tests that project-level RTS selects.

This paper makes the following contributions:
? Comparison of RTS Techniques at Scale: We are the first

to empirically compare RTS techniques at class and project
levels of granularity of dependencies and changes for both
static and dynamic RTS techniques at scale.

? Empirical Evaluation: Our study is the largest study so
far of RTS for open-source projects. We compare five RTS
techniques using 13961 change sets in 168 projects while
performing RTS in 580876 clients in MAVEN Central.

? Formative Study: We show that client-library breakages
occur in the MAVEN Central ecosystem. Almost half of 408
clients in our formative study cannot safely update to their
libraries’ latest versions, and 41.3% of breakages manifested
as test failures. Yet, library developers have no good way to
test whether their changes break clients.
The scripts we used for this work are available online at

http://mir.cs.illinois.edu/issre2018.zip
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Fig. 1. Two test dependency levels for alibaba.druid: Jar shown by
solid edges and Class shown by dashed edges

II. MOTIVATING EXAMPLES

We provide three examples to (i) illustrate the benefits that
class-level can provide over project-level RTS, (ii) motivate
the need for better regression testing in very large open-source
ecosystems, and (iii) show that regression testing is critical in
very large ecosystems, even for seemingly harmless changes.

A. Potential Benefits of Class-Level over Project-Level RTS

Consider alibaba.druid [33], which is is an impor-
tant library released in MAVEN Central [34]—it has 52
direct clients in MAVEN Central. alibaba.druid is also
a client of many libraries, depending directly on 46 li-
braries. At the time of our study, alibaba.druid de-
pends on hibernate-core version 5.1.0 but the latest
version of hibernate-core is 5.2.4. All alibaba.druid
tests pass with hibernate-core 5.1.0 but one test
(HibernateCRUDTest) fails with hibernate-core 5.2.4.
The alibaba.druid and hibernate-core developers were
likely unaware of this failure right after the change broke
the test. If alibaba.druid developers decide to update
hibernate-core, they will have to handle this issue, at
which point it is too late for hibernate-core developers to
reconsider their change from 5.1.0 to 5.2.4. Had the developers
been immediately informed about the impact of the library
change on the client, they may have made different decisions.
Regression testing can help to detect such breakages earlier.

Figure 1 shows both project-level and class-level test
dependencies from alibaba.druid to hibernate-core.
Solid arrows show project-level test dependencies and
dashed arrows show class-level dependencies. At the
project level, if hibernate-core changes, all 1912
test classes in alibaba.druid will be rerun. In con-
trast, only two test classes in alibaba.druid can reach
hibernate-core; HibernateCRUDTest (shown as T2) di-
rectly accesses three hibernate-core classes (H1, H2,
H3), while DruidConnectionProviderTest (T1) uses
DruidConnectionProvider (A1) which implements three
hibernate-core interfaces (H4, H5, H6). At most two tests
(T1 and T2) could be selected through Class dependencies for
any change to hibernate-core. In fact, we ran class-level



1 public static Setter create(Field f, Object bean) {
2 + if (Modifier.isFinal(f.getModifiers()))
3 + throw new IllegalStateException(...);
4 if(f.gettype().isarray())
5 return new arrayfieldsetter(bean,f);

Fig. 2. Code change in commit 6e11f89d in ARGS4J

RTS on 107 commits and found that usually only one test (T2)
gets selected (three hibernate-core interfaces were stable
and did not change, so T1 did not get selected). For some com-
mits, zero tests were selected (changes in hibernate-core
were not reachable from classes H1–H6). This example shows
that class-level RTS can substantially reduce the number of
tests run, compared with project-level RTS.

B. Need for Regression Testing in Open-Source Ecosystems

Guava is a popular open-source library for creating and
manipulating several collection types. Guava is maintained by
Google and is partially mirrored publicly on GitHub. Guava’s
GitHub commit 73e382 [35] modifies 170 files; this commit
accumulates several internal commits that are exported as a
single public commit. Accumulated commits are common in
some open-source repositories that mirror proprietary projects.

Google runs the TAP regression-testing system, which tests
all Guava changes against all its clients that are internal to
Google but does not test Guava against clients external to
Google. Commit 73e382 breaks Square OkHttp, an open-
source client that depends on Guava. While Google developers
may have expected this commit to break some clients, they
likely did not know how many external clients would break.
Moreover, they likely did not know that some client(s) will
break right after they changed a subset of the 170 files in a
small internal commit. Google could afford to run some im-
portant external clients on the TAP system. However, the open-
source ecosystem has no regression testing system like TAP
to quicker detect library changes that break some clients. Our
formative study (Section III) shows that breakages do occur
in the MAVEN Central open-source ecosystem, so developers
may want to run regression testing across projects.

C. All Changes Should be Regression Tested in the Ecosystem

Figure 2 shows an example change in ARGS4J [36]. ARGS4J
is a fairly popular library; its artifacts in MAVEN Central
have 17006 direct and indirect clients (and potentially many
more clients that are not deployed to MAVEN Central). The
change in Figure 2 modifies the Setter object to throw an
IllegalStateException if a Setter is created for a final
field. Before this change, a different exception was thrown.

Adding a new exception seems innocuous, but it breaks
at least one ARGS4J client, Google Closure Templates, a
project in our formative study (Section III). We first found
that updating the ARGS4J version from 2.0.23, the version
declared in the Google Closure Templates build file, to 2.33
breaks a Google Closure Templates test. We then used git
bisect to find the specific commit between these two ARGS4J

versions that breaks the Google Closure Templates test. Had
ARGS4J developers been aware of this issue, they may have
reconsidered making the change, or they may have informed
the Google Closure Templates developers to update their code.

D. Improving Regression Testing in Very Large Ecosystems

In an open-source ecosystem, developers may choose to run
tests from multiple projects after code changes, e.g., they may
run the tests of a library that changed and the tests of some/all
of its clients. The goal is to test that the library changes do not
break the clients, which is hopefully reflected as test failure(s)
in the client tests. The sooner library developers discover
test failure(s) in the clients’ tests, the better they may decide
how to proceed. We envision that library developers would
select clients that are relevant to run (e.g., they may choose
to run only tests in “important” clients), or client developers
may choose to run their own tests whenever one of their
libraries changes. It is up to developers to decide how to
handle information on failing tests. Library developers may
decide to create a patch script to apply on all the breaking
clients when possible; alternatively, they may decide to revert
changes to avoid breaking (important) clients or may inform
clients that changes break some tests. Client developers may
refine their code to handle library changes. Facebook’s Buck,
Google’s TAP, and Microsoft’s CloudBuild users already get
such timely information. Open-source developers should also
get similar information. This paper evaluates RTS techniques
that can provide such information faster, improving regression
testing in open-source ecosystems as well as in proprietary
systems like Buck, CloudBuild, and TAP.

III. FORMATIVE STUDY

The goal of our formative study is to quantify how often
library updates break clients’ compilation or tests in MAVEN
Central. If breakages do not happen, there would be no need to
test clients when libraries change. If breakages do happen, they
can be detected quicker with RTS run for the entire ecosystem.
We do not assume that all libraries care about all clients or
that all clients need to always update to the latest library
versions. In fact, researchers already showed that library devel-
opers make backwards-incompatible changes [10], [37], [38]
and that clients do not always update [37], [39], [40]. However,
if libraries and clients care about breakages, obtaining more
precise information about such breakages more frequently
and cheaply can be highly beneficial for decision making
by both library and client developers. Knowing the precise
number of (important) clients that a library change breaks
can help to better decide whether to proceed with the change.
Dually, client developers may benefit from knowing whether
each library change breaks their code to decide whether to
incrementally co-evolve their code (if breakages occur), or
ignore the update (if no breakages occur).

For our study, we used GitHub Java projects that use
MAVEN, the most popular build system for Java. Many prior
projects [37], [38], [39], [40], [41], [42], [43], [44], [45], [46]
studied the impact of library updates on clients, e.g., stale



dependencies, but we are the first to perform such a study with
a view to evaluate RTS opportunities in a very large software
ecosystem. Section VIII discusses specific differences between
our formative study and these related studies. In brief, we
consider both compilation and test failures of clients, and not
just statically computed metrics [10], [47], [48], [49].

Our formative study analyzes the staleness in MAVEN
Central and the breakages it causes from three perspectives
of (i) dependencies as pairs of client and library, (ii) clients,
and (iii) libraries. We answer the following research questions:
RQ1 (Dependency View): How common are stale depen-
dencies, i.e., a newer version of the library is available,
among Maven-based projects? RQ1.1 How often would clients
break if updated? RQ1.1.1 How often would updates break
compilation? RQ1.1.2 How often would updates break tests?
RQ2 (Client View): How many projects use stale dependen-
cies, i.e., do not use the latest version of a library available?
RQ2.1: How often can clients not be updated to latest versions
of their libraries? RQ2.2: How often do updates break client
compilation? RQ2.3: How often do updates break client tests?
RQ3 (Library View): How many unique libraries cannot
be updated to the latest version? RQ3.1: How many unique
libraries break client compilation? RQ3.2: How many unique
libraries break client tests?

Our formative study considers 408 projects selected from
among the most popular 3000 GitHub Java projects. All
3000 projects contain a pom.xml file in their root directories,
indicating that they likely use MAVEN. The 408 projects in
our corpus are those that remain after filtering out projects
that we could not build, or for which some tests fail on the
latest version at the time of our study. We excluded projects
with failing tests as those may indicate instability or mis-
configuration on our end. These 408 projects have a total
of 12231 direct dependencies. We ran all formative study
experiments on an Ubuntu 16.04 VM with Oracle Java 8_u121.

For each project in our corpus, we first check whether the
project has any stale dependency, i.e., whether the project
depends on a library that has some newer version released
in MAVEN Central. We use MAVEN’s versions plugin
to check for stale dependencies. Specifically, the command
mvn versions:display-dependency-updates finds
all (direct) dependencies with newer versions released
in MAVEN Central. Additionally, the command mvn
versions:display-property-updates handles the case
where projects use build properties (similar to variables) to
declare dependency versions.

Table I summarizes the results of our formative study. The
number of stale dependencies (6828) is larger than the num-
ber of non-stale dependencies (5403), which answers RQ1:
6828 (55.8%) dependencies, pairs of client and library, are
stale, i.e., a library has a newer version. It also answers RQ2:
375 (91.9%) of 408 projects have at least one stale dependency.
The high percentage shows that even popular projects do not
always update their libraries to the latest version.

For each project with some stale dependency, we first update
at once all the dependencies to their latest possible versions,

TABLE I
FORMATIVE STUDY RESULTS

RQ Statistic Abs Relative(%)
Non-Stale Dependencies 5403 44.2%

RQ1 Stale Dependencies 6828 55.8%
RQ1.1 Breaking Updates 812 11.8%
RQ1.1.1 Compilation Breaking Updates 476 58.6%
RQ1.1.2 Test Breaking Updates 336 41.3%

Projects in Corpus 408 n.a.
RQ2 Projects with Stale Dependencies 375 91.9%
RQ2.1 Non-updateable Projects 202 53.9%
RQ2.2 Compilation-Breaking Projects 176 46.9%
RQ2.3 Tests-Breaking Projects 101 26.9%
RQ3 Unique Libraries 2133 n.a.
RQ3.1 Compilation-Breaking Libraries 320 15.0%
RQ3.2 Tests-Breaking Libraries 239 11.2%

to mimic a global update of all dependencies. After the global
update, we recompile and run all the tests for the project. If
compilation or tests fail, then some library update broke the
client. We get the answer for RQ2.1: out of 375 projects with
at least one stale dependency, 202 (53.9%) cannot trivially
update all their dependencies to the latest version because
either compilation or tests break. The fact that more than
half of projects with stale dependencies cannot update their
dependencies shows that updating is non-trivial. (Note: 202
may underestimate projects that we could not update; even if
a project compiles and passes tests with the update, it may
still break for scenarios not covered by tests.)

For 202 projects that failed our global updates, we roll back
the global updates, update each dependency one by one, and
run the tests. We find that several dependencies can inde-
pendently break each project’s compilation or tests. RQ1.1:
812 (11.8%) of the stale dependencies break the projects
when updated; RQ1.1.1: 476 (58.6%) of dependencies cause
compilation failure; RQ1.1.2: 336 (41.3%) of dependencies
cause test failures in their clients. While 11.8% is a relatively
low percentage of stale dependencies that break the projects, at
least one such dependency affects more than half the projects,
53.9%. Breakdowns of compilation and test failures per project
also have high percentages; RQ2.2: 176 (46.9%) of projects
with stale dependencies have at least one dependency that
breaks the project compilation when updated; RQ2.3: 101
(26.9%) of these projects have at least one dependency that
breaks at least one project’s test when updated.

Finally, we analyzed breakages from the view of libraries.
After all, even if a large number of dependencies break, and a
large number of projects are affected, all the issues could, in
theory, stem from just a tiny number of widely used libraries.
For RQ3: our corpus has 2133 unique libraries. In MAVEN,
libraries are uniquely identified by GAV triples: group, artifact,
and version. For RQ3, we count a library as unique based on
the pair of group and artifact. We found that a significant
percentage of libraries break their clients when updated to
the latest version; RQ3.1: 320 (15.0%) of the libraries break
compilation in at least one client; RQ3.2: 239 (11.2%) of the
libraries break at least one test in at least one client.

In sum, we quantified the breakages that occur for library
updates in very large ecosystems like MAVEN Central. Im-



portantly, 41.3% of breakages manifested as test failures in
clients, offering opportunities for regression testing to help
quicker detect such cases for library-client pairs that care about
breakages. The updates that break tests could be detected even
quicker and cheaper using RTS rather than running all tests.
Semantic Versioning. One concern is whether the break-
ages we identify are intentional or not, and whether library
developers are already aware that many of their changes
are backwards-incompatible. One approach to answer this
question would be to ask developers, but this approach would
be hard to scale in practice. An approach that developers
use to signal when a change in a library is intended to
break backwards compatibility is semantic versioning [50].
Projects that follow semantic versioning indicate backwards-
incompatible changes by changing the major version number;
new features and other backwards-compatible changes would
only modify the minor version number, while small changes
(which still maintain backwards compatibility) would change
only the patch number.

While our study did not aim to evaluate whether projects use
semantic versioning or not, our findings generally confirm the
findings of Raemaekers et al. [51] that many projects do not
follow semantic versioning. For example, hibernate-core’s
backwards-incompatible change that broke alibaba.druid
was only a minor version change form 5.1.0 to 5.2.4. Similarly,
the change in ARGS4J that broke Google Closure Templates
was also a minor change from version 2.0.23 to 2.33. While
the fact that developers introduced backwards incompatibility
in changes to only the minor version does not unequivocally
show they were not aware that the changes are backwards-
incompatible, it illustrates a gap in even being able to iden-
tify whether a change is or is not backwards compatible.
Ecosystem-level testing of clients could even assist developers
into following semantic versioning more rigorously.

IV. CHOOSING LIBRARIES, CLIENTS, AND CHANGES

This section describes how we set up our experiments to
compare class- and project-level RTS in the MAVEN Central
open-source ecosystem. An important objective of our evalu-
ation is to identify a large number of libraries, clients, code
changes, and tests so that the results are more representative
of very large software ecosystems. Therefore we needed to
(1) identify popular libraries in MAVEN Central for which
we can map release versions to GitHub changes, (2) identify
clients for these libraries, and (3) evaluate how many library
and client tests would have been selected by each technique
after real code changes. Section IV-A describes how we
identified libraries. Section IV-B describes how we identified
clients. Section IV-C describes how we performed RTS.

A. Finding Popular Libraries with GitHub Changes

Mapping from Libraries to Source code is Challenging.
For our experiments, we need to identify libraries that have
(1) code changes on GitHub, and (2) many clients with tests.
Meeting both requirements is challenging because the data
for each is in different stores of information, and we need

to map the information from these stores. The best place
to identify libraries with code changes is in open-source
repositories like GitHub [52] but such repositories do not store
data in ways that make it easy to identify the libraries’ clients.
One can easily find the libraries on which a client depends
(e.g., “mvn dependency:list” lists all dependencies—Jar
files that a Maven-based project transitively depends on),
but one cannot easily find all clients of a library. More so,
mapping dependencies which are listed as Jar files to GitHub
repositories is not trivial, and mapping to specific commits
that produced the Jar files is even harder. On the other hand,
MAVEN Central is a great place to identify clients for libraries
but it does not map Jars to source code repositories. Due
to these challenges, we had to map the information stored
between MAVEN Central and GitHub.
Mapping from GitHub to MAVEN Central is Better. When
identifying evolving libraries for use in our experiments, we
mapped from GitHub data about the libraries to MAVEN Cen-
tral data. In theory, one can map data from either repository
to the other in either direction. In practice, however, we found
three reasons why identifying the source-code repository for
a randomly selected MAVEN Central Jar can be less optimal,
even when the pom.xml file contains a URL for the repository.
First, the Jar may be old and its repository may not exist
because the project was discontinued, is private, or was moved
to another repository altogether. Second, even if a repository
is found, it could be using a different or older version-control
system (e.g., SVN or CVS). Third, an old Jar can mean that
code changes for that project are not representative of modern
software development best practices. Researchers have studied
how commit patterns differ between centralized and distributed
version-control systems [53].
Process for Selecting Evolving Libraries. Given the afore-
mentioned challenges, we selected libraries for our experi-
ments using the following process: (i) select an initial set
of projects based on GitHub popularity, (ii) map GitHub
repositories to MAVEN Central Jar files that were likely built
from these repositories, and (iii) map the GitHub commits to
the MAVEN Central Jar versions.
(i) Selecting an Initial Set of GitHub Projects. We started
from the top 3000 Java projects on GitHub (ranked by the
number of stars and forks) which contain a pom.xml file in
the root directory. We chose Maven because it is still the most
popular build system for Java, many projects that use Maven
release their Jars on MAVEN Central, and our tool-chain was
developed to work with Maven.
(ii) Mapping GitHub Repositories to MAVEN Central
Jars. It is extremely tedious to read through thousands of
pom.xml files from GitHub to find which of them produced
each Jar. We automated this by attempting to build Jars from
each GitHub repository, using the command, mvn install
-DskipTests. The build command succeeded for only 1901
of the 3000 top projects. Out of these, a few projects do not
create Jars, and some projects created Jars but did not put
them in the local cache where most MAVEN projects typically
install their Jars. For projects that installed successfully to



the MAVEN cache, we relied on the default MAVEN naming
convention to map the created Jars to MAVEN Central Jars.
MAVEN uniquely identifies Jars by the GAV triple g:a:v, short
for groupId:artifactId:version. The install command names
Jars as a-v.jar. We ignored the version in our mapping,
because latest commit in project’s GitHub repository typically
produces version of the Jar that does not match any of the
versions released on MAVEN Central. However, the code
version for older GAVs is still in the same repository. We
successfully mapped 1204 GitHub projects to 7954 MAVEN
Central Jars. Note that one project can create multiple Jars;
the number of Jars mapped per project ranged from 1 to 232.
(iii) Mapping GitHub Commits to MAVEN Central Jar
Versions. MAVEN’s default automated release workflow cre-
ates a Git tag using the corresponding commit id. For each
GitHub repository that we successfully mapped to a MAVEN
Central Jar, we searched through the repository’s Git tags for
tags that match a release versions, resulting in a mapping
from commit to MAVEN Central GAV. For each repository,
we analyze changes for only one Jar version so as not to bias
our results. We picked the most popular version of the Jar, i.e.,
version with the most clients in MAVEN Central (Section IV-B
describes client identification). We select up to 100 commits
created after the selected release tag but before the next release
tag. In sum, we used actual changes that developers made to
the code for the Jars released in MAVEN Central, and we used
changes only between two tags/versions, so even if projects
follow semantic versioning, all commits we selected are for
the same version.

B. Identifying Clients for Selected Libraries

Process for Identifying Clients. For each library that we
selected in Section IV-A, we computed the transitive closure
of all GAVs in the MAVEN Central graph that depend on
at least one node that corresponds to the library. We then
found how many of these GAVs release test classes. One GAV
can release several Jars, e.g., one Jar containing application
binaries, one Jar containing sources, and one Jar containing
binaries for test classes. A convention on MAVEN Central is
that a-v-tests.jar contains test classes for the binaries in
a-v.jar. Out of 1204 libraries from Section IV-A, only 215
have corresponding test Jars on MAVEN Central. (Section VII
discusses threats to validity, including that many project do not
release their tests on MAVEN Central.) We further excluded 13
projects for which we found no code changes corresponding
to MAVEN Central Jars, and 34 projects which had more tests
than all their clients combined.
Ratios of Client to Library Jars. We analyzed 168 libraries,
46 of which released their own test Jars on MAVEN Central.
The number of transitive clients for these libraries ranges
from 1 to 443306 (average 22884.6). The number of transitive
clients with tests ranges from 1 to 75923 (average 3593.3).
Figure 3 shows the number of client and test Jars for the
libraries that we use. Seven libraries have more test Jars than
client Jars that depend on them, because some GAVs release
only test Jars, and some release web-archives (.war or .ear)

Fig. 3. Total clients and clients with tests for projects under analysis

Fig. 4. Tests in client vs. tests in library itself

which we exclude. Figure 3 shows that not all client Jars have
corresponding test Jars (difference of “Client Jars” and “Tests
Jars” lines), many such client Jars contain tests.
Ratios of Client to Library Tests. Figure 4 plots the number
of client tests to library tests. Each dot in the plot corresponds
to a library; libraries with 0 tests in the Jar are depicted
with a different color. Figure 4 also shows that libraries
contain relatively much fewer tests than their clients. The
number of test classes in libraries ranges from 0.0 to 374.0
(average 17.0). The number of test classes in clients ranges
from 1.0 to 80460.0 (average 5462.4). Most importantly, for
libraries that contain their own tests, the ratio of client’s test
classes (excluding tests in the library) to test classes in the
library ranges from 1.3 to 15441.6 (average 555.3). This ratio
represents how many more tests library developers have to run
in addition to their own tests, if they run all clients’ tests. The
goal of RTS is to reduce the cost of running these tests.

C. Evaluated Dimensions of RTS

We describe different RTS aspects that we explored and
our experimental setup for comparing class-level and project-
level RTS. The inputs to RTS are two program versions
together with their tests. RTS computes changes between the
two versions and intersects them with the test dependencies
in the old version, i.e., program elements that each test
depends on. Then RTS reruns in the new version only tests
for which some dependency changed, i.e., affected tests. In our



experiments, we explored alternatives along three RTS aspects:
(i) change computation, (ii) test dependency computation, and
(iii) analysis of test dependencies to find affected tests.
Granularity of Code Changes and Test Dependencies.
Changes and test dependencies can be computed at different
granularity, e.g., statements, methods, classes, Jars, etc. Unlike
most prior RTS studies that track changes and dependencies at
the same granularity, we use variants of RTS techniques that
track changes and dependencies at different granulates. For
example, one RTS technique tracks class-level dependencies
but computes changes at the Jar level. Tracking changes at
the Jar level means that when any class in a Jar changes,
the RTS technique select tests as if all classes in the Jar;
it trades lower change-computation time for over-selection.
The over-selection induced by Jar level change computation
is unlikely to make it beneficial for individual projects, but
could still be beneficial in large ecosystems because analysis
results can be cached. Tracking changes at smaller granularity
than the dependency granularity would give the same results
as tracking changes at the same granularity as the analysis,
because changes need to be projected on the dependencies.
Computing Test Dependencies. Test dependencies can be
computed statically or dynamically, at class or project (i.e.,
Jar) granularity. Class-level dependencies are classes that each
test depends on, while Jar-level dependencies computation
involves discovering all test-containing Jars that can reach a Jar
containing a changed class. Techniques that statically compute
test dependencies typically analyze compile-time information
to extract a class- or project-level dependency graph. Statically
computing dependencies at the Jar level requires knowledge
of each project’s dependencies. At Facebook, Google and
Microsoft, each Jar (also called targets, modules, or nodes)
explicitly declares in its build file, all Jars that it depends
on. Similarly in MAVEN Central, each Jar declares its Jar-
level dependencies in the pom.xml file. By parsing infor-
mation from these build files, one can statically construct
a Jar-level dependency graph. Techniques that dynamically
compute class-level test dependencies require to instrument
test executions to record all classes that each test invokes
as its dependencies. Therefore, in this paper, we compare
RTS techniques along three dimensions of test dependency
computation: (i) statically at the Jar level, (ii) statically at the
class level, and (iii) dynamically at the class level. Note that
statically computed project-level dependencies are accurate, as
declared in the build files. However, statically computed class-
level dependencies can be incomplete as the analysis could
miss dependencies that can only be reached via reflection [29].
Computing Affected Tests. RTS involves analyzing depen-
dencies against the changes to compute affected tests. This
analysis is always done statically, regardless of the granularity
of changes and dependencies, and whether dependencies are
computed statically or dynamically. Affected tests refers to
the set of tests which have at least one dependency that
changed. When dependencies are computed statically from a
dependency graph (class or Jar level), reachability analysis
on the dependency graph is used to analyze the dependencies

against the changes [20], [23], [29]. In our experiments, a test
is affected if its node can transitively reach a node for any
changed class (or the Jar containing a changed class) in the
dependency graph. The intuition for the cost savings obtained
from running only affected tests is that code changes typically
affect a small portion of the code. Therefore the set of affected
tests is typically only a fraction of all tests.

V. EXPERIMENTAL SETUP

RTS Techniques Studied. In our RTS experiments we com-
pared project-level and class-level RTS in the MAVEN Central
ecosystem. For brevity, we refer to the RTS techniques that
we evaluated as JJ, CC_st, CJ_st, CC_dyn and CJ_dyn.
The first letter means Class- or Jar-level dependency tracking,
and the second letter means Class- or Jar-level granularity
for computing changes. st means static dependency tracking;
dyn means dynamic dependency tracking. JJ is similar to
the project-level RTS performed at Facebook, Google, and
Microsoft. JJ builds Jar-level dependencies from pom.xml files
and computes changes at the Jar level. CC_st and CJ_st are
two variants of static class-level RTS. They track dependencies
at the Class level and compute changes at the Class and Jar
level respectively. CC_dyn and CJ_dyn are two variants of
dynamic RTS. They track dependencies at the Class level and
compute changes at the Class and Jar level respectively.
Finding Changes. Section IV-A describes how we selected
commits for evolving libraries from GitHub. For each Java
file changed in a commit, we first had to find which bytecode
(.class) files in the corresponding MAVEN Central Jars could
have changed. We approximate changed .class files as those
whose names match the changed Java files, or are inner classes
thereof. We may have missed additional classes in the changed
Java file which do not share the same name. We projected the
class-level changes that we so computed to the Jar level in the
following way: if a .class file in a Jar changed, we consider
all classes in that Jar as changed.
Computing Test Dependencies. We computed test dependen-
cies (i) statically at the Jar level, (ii) statically at the class
level, and (iii) dynamically at the class level. Computing test
dependencies statically at the Jar level was trivial after con-
structing the Jar-level dependency graph of MAVEN Central
Jars. Dependencies for a test Jar in the MAVEN Central graph
are simply all GAVs that it can transitively reach. To compute
static class-level test dependencies, we used the class firewall
algorithm [20] on all Jars for all (i) libraries that we identified
in Section IV-A, (ii) clients of these libraries, obtained from
our MAVEN Central graph, and (iii) released test Jars on
MAVEN Central that can transitively reach any of the libraries
in our MAVEN Central graph. For each library, we first find
all class-level dependencies for each class and construct a
class-level dependency graph (CLDG). Nodes in the CLDG
are classes and edges represent uses or inheritance. Next,
we combine the library’s CLDG with the CLDGs of all its
transitive clients plus CLDGs for all test Jars that transitively
reach the library’s node in the MAVEN Central graph. Finally,
the class-level dependencies of each test class are all classes



that the test class can reach in the combined CLDG. Note that,
for each library, we only build the CLDG once in memory and
then “query” the same graph with various change sets.

We used Ekstazi [28] to collect dynamic class-level test
dependencies while running all test classes in all test Jars
that reach any of the libraries. For fair comparison with
statically computed test dependencies, we only use passing
tests. The reason is that a dynamic technique may miss to
collect some dependencies for a test execution that fails as
those dependencies may not be used before the failure.We
ran over 1200000 test classes and over 350000 passed with
Ekstazi. The other tests fail for a variety of reasons such as
missing platform dependencies. Considering the sheer scale at
which we conducted our experiments, it would have been too
tedious to set up all the right environments for all tests.
Analyzing Dependencies and Finding Affected Tests. Given
a change set, we compute affected tests. For JJ, all tests
in a test Jar are affected if the test Jar can reach a Jar
containing changed class in the MAVEN Central graph. For
statically computed class-level dependencies, we followed the
class firewall approach [20], [23], [29]: classes that can reach
a changed class form a “firewall” around that changed class,
and the test classes in the “firewall” are the affected tests.
Therefore, for static class-level dependencies, we compute
affected tests as test classes that can reach any changed class
in the CLDG. Finally, for dynamic class-level dependencies,
a test is affected if the dependency file generated by Ekstazi
while running that test contains at least one class that changed.
We use Ekstazi in two steps. First, we run Ekstazi on each Jar
to collect dynamic dependencies as coverage files (one per
test). Then, we intersect changes in each commit with Ekstazi
coverage files to obtain the affected tests.
Evaluation Metric. We compute the ratio of tests selected by
a class-level RTS technique to the tests selected by JJ:

Definition 1: We define the selection rate as:
SelectionRate-RTS(GAV, δ,∆) = SelectedTestsRTS(GAV,δ)

SelectedTestsJJ (GAV,∆)
SelectedTests is a function parameterized by a technique
RTS ∈ {JJ, CC_st, CJ_st, CC_dyn, CJ_dyn} that takes as
input a change-set and the GAV that is analyzed for changes.
(change granularity is either Class (δ) or Jar(∆)) and produces
a set of tests that are affected by the given change.

VI. SELECTION RESULTS

We discuss the results of our experiments to compare the po-
tential savings of various class-level test selection techniques
with a baseline project-level (or, Jar-level) technique (JJ) in
the MAVEN Central open-source ecosystem. The JJ technique
tracks both dependencies and changes at the level of Jars. We
compare JJ with two static RTS techniques (Section VI-A):
(i) CC_st computes both dependencies and changes at the
class level; (ii) CJ_st computes dependencies at the class level
but computes changes at the Jar level. We also compare JJ with
two dynamic RTS techniques (Section VI-B): (iii) CC_dyn
computes class-level dependencies and class-level changes;
(iv) CJ_dyn computes class-level dependencies and Jar-level
changes. Finally, we provide some data about the scalability

Fig. 5. Selection rate for CC_st and CJ_st

of the evaluated techniques, in terms of the sizes of the graphs
that we compute and the time it takes to compute them; these
numbers give some sense of how feasible an actual tool that
implements these techniques could be (Section VI-C).

A. Static Class- vs. Jar-Level Dependencies

Figure 5 shows average selection rates for the projects in
our experiments, showing the percentage of tests that would
be selected by static techniques that track dependencies at
the class-level relative to a technique that tracks dependencies
at the Jar-level. Specifically, we compare the tests that are
selected by CC_st and CJ_st relative to those selected by JJ.
The horizontal axis corresponds to project identifiers, and the
vertical axis corresponds to selection rates for CC_st (orange
line, label: Classes Changed) and CJ_st (blue line, label:
All Jar Changed) relative to JJ for each of the projects in
our corpus. The percentages shown are computed over the
number of tests that JJ would select. The plot shows some
interesting findings. First, it can be observed that a significant
number of tests that JJ would select are not selected by the
class-level techniques. CC_st selects on average across all
our projects and changes only 7.8% (SelectionRate-CC_st).
CJ_st selects on average across all our projects and changes
only 10.5% (SelectionRate-CJ_st). Second, the results also
confirm that the percentage of tests selected by CJ_st is
always at least as high as the percentage of tests selected by
CC_st, for every project. The small difference among all the
projects between CC_st and CJ_st demonstrates that the over-
approximation of the changes that CJ_st computes is not much
larger than the more precise class-level changes computed by
CC_st. Therefore, at this scale, it may be profitable to perform
selection with changes computed at the Jar level, which also
has the added benefit that one may be able to reuse some of
reachability computations involved in analyzing the changes.

B. Dynamic Class- vs. Jar-Level Dependencies

Figure 6 shows average selection rates for CC_dyn and
CJ_dyn relative to JJ_|passing. The horizontal axis corre-
sponds to project identifiers and the vertical axis to selection
rates for CC_dyn and CJ_dyn. The labels are the same as
in Figure 5. The results show that the CC_dyn selects on
average 8.4%, while CJ_dyn selects on average 17.4%. Once



Fig. 6. Selection rate for CC_dyn and CJ_dyn

again, the results suggest that it may be worthwhile to compute
changes at the Jar level rather than at the more precise class
level, but this time the differences are higher than for the static
class-level RTS. These results for the dynamic RTS techniques
should not be compared directly with those for the static
RTS techniques because the denominator for computing the
percentage of tests selected by the dynamic RTS techniques
differs from the denominator used to compute the percentages
for the static RTS techniques—recall that for dynamic RTS,
we only consider tests that passed while collecting coverage
with Ekstazi.

C. Size and Timing of Analysis

Because we analyze all clients and track dependencies at
the class level, the size of our dependency graphs could
become a concern during the analysis. The number of nodes
in the dependency graphs varies from 59 to 3142313 (average
279153.7), and the number of edges varies from 103 to
29997498 (average 2321483.6). The size of these graphs
affects two computational costs. With our non-optimized im-
plementation, we obtain the following times. First, building the
dependency graph can take a considerable amount of time,
ranging from 0.2s to 4756.4s (average 167.2s); the time is
spent parsing Jar files and class files to extract nodes and
edges. Second, computing what tests reach the changed classes
ranges from 0.0s to 178.4s (average 3.8s). Each change re-
quires a reachability query of the graph, but for the techniques
that track changes at the granularity of Jar, the query can be
done only once, and cached for any change to the (library) Jar
(as long as the clients do not change); we do not implement
this caching and our implementation is quite unoptimized so
these times could be much better.

VII. THREATS TO VALIDITY

Internal. Our scripts that analyze MAVEN Central, GitHub,
perform RTS, and analyze the results produced may have bugs.
To mitigate bugs we use mature tools from prior work, e.g.,
Ekstazi [28], we used assertions in our scripts as sanity checks,
e.g., CC_st should select fewer or equal number of tests as
CJ_st, we reviewed our scripts, and carefully inspected results.
External. We only analyzed a subset of MAVEN Central
therefore our results may not generalize beyond the subjects

and the kinds of changes that we analyzed. To address this,
we used over 500K clients for the libraries we analyze; we
use 13961 changes across our libraries.
Construct. We analyze tests in MAVEN Central but many
projects do not release test Jars therefore we are underesti-
mating the number of tests that may depend on any given
project. However, because our sample of test Jars is rather
large, 90703 there is reason to believe that our selection ratios
should be similar to those clients and those tests that we did
not find in Maven Central as for those clients and tests that
we did find in Maven Central.

VIII. RELATED WORK

Studies of Client Breakages Caused by Library Updates.
Our formative study is different from prior studies of client
breakages caused by library updates in the scale of the ecosys-
tem that we target and the fact that we quantify breakages
in both compilation and tests. Bavota et al. [37] study the
impact of changes to Apache ecosystem libraries on clients
in terms of the impacted classes and lines of code. However,
they did not quantify compilation or test breakages caused by
library changes as we do in our formative study (Section III).
de Souza and Redmiles [39] analyze how developers manage
dependencies and changes. Their study involves only two
teams—i.e., not an ecosystem—and they do not report on
breakages that occur when clients upgrade to latest library
versions. Bavota et al. [41] consider the impact that unstable
APIs have on ratings that Android users assign to apps. Their
work is not concerned with test or compilation breakages in
ecosystems but shows the impact unstable APIs can have on
users. Tufano et al. [46] report on the frequency and reasons
behind compilation (not test) failures of historical snapshots in
the Apache ecosystem, finding that the most common reason
for such compilation failures is missing dependencies. Our
formative study reports on both compilation and test failures
that occur in releases (i.e., not snapshots) when updating
versions of dependencies that are present (i.e., not missing)
in the MAVEN Central ecosystem, with the goal of evaluating
regression testing opportunities. McDonnell et al. [40] studied
the rates of adoption of API updates by Android ecosystem
developers, which showed that developers are slow to adopt
new versions of APIs. However, they did not quantify the
manner in which apps fail when they adopt new versions of
APIs like we do in our formative study.
Previous Studies on RTS. The study presented in this paper
is the largest study of RTS till date in terms of the number
of projects evaluated and also because we consider not just
individual projects in isolation but inter-related projects in a
very large ecosystem. Many techniques were proposed for
RTS [13], [20], [21], [22], [23], [24], [25], [26], [27], [28],
[29], [30], [54]. These techniques compute test dependen-
cies statically or dynamically. RTS techniques that compute
dependencies purely statically were proposed in the mid
1990s [20], and we recently showed that, at the class-level,
computing dependencies statically can perform comparably
with those that compute dependencies dynamically [29]. Vasic



et al. [54] compared class- and module-level RTS within
individual projects; we compared class- and project-level RTS
across projects, in a very large ecosystem. We are the first to
evaluate statically and dynamically computed dependencies at
the class level for RTS at ecosystem scale.
Open-Source Environments and Compatibility. Raemaekers
et al. [51] study binary compatibility in MAVEN Central to
determine whether binary releases follow semantic versioning,
i.e., only major version releases may break compatibility.
They found that, in practice, releases do not follow semantic
versioning. Our work is complementary: we show how library
developers could use RTS to cheaper run clients’ tests.

Kalra et al. [14] propose POLLUX, a system that advises
whether clients can update to a newer library version. POL-
LUX compares traces and test outcomes from running tests in
both the old and new library versions. POLLUX analysis is
only from the perspective of the clients; we are concerned with
both clients and libraries. Further, our goal is to quantify how
much class- vs. project-level RTS can benefit large ecosystems.

Zhou and Walker [15] observed that some very popular
libraries sometimes removed some API, then restored it before
finally marking it as deprecated. Their hypothesis is that
library developers realized after removing the API that some
clients were still using the API. It would have been better
if these library developers had a way to quicker and cheaper
check if removing APIs would break clients.

Mezzetti et al. [55] proposed type-regression testing to
check that changes to types in library APIs do not break clients
in NPM. They found breakages in minor and patch versions of
projects that follow semantic versioning. Their work focuses
on finding regressions due to changed types in an ecosystem
for a dynamically typed language; we study opportunities for
RTS to speed up regression testing in an ecosystem for Java.
Studies of Open-Source Environments. Other studies have
been based on large repositories containing many project arti-
facts. Specifically, Vargas-Baldrich et al. [56] proposed Sally,
a learning-based technique for tagging (assigning keywords to
software artifacts) Maven-based projects. They compared the
Sally results with the set of manually assigned tags for a
subset of projects on mavenrepository.com and SourceForge.
Also, Mitropoulos et al. [57] have provided a data-set about
projects obtained from Maven Central, and show results of
statically analyzing these projects with FindBugs. Hilton et
al. [58] study the usage of continuous integration (CI) in
open-source GitHub projects and find that popular projects
use CI, with overall CI usage increasing. Our RTS can enable
enhancing CI to run the client tests in addition to the projects’
own tests; our results show potential benefits of running class-
level vs. project-level RTS. Raemaekers et al. [48] study
MAVEN Central and provide many metrics (with regards to
size, inter-dependencies, and versions) but do not consider the
problem of running tests against clients.
Inter-Project Regression Testing. There has been a lot of
work on building systems that perform regression testing
across projects in industry. Companies have built practical
systems that perform RTS at the equivalent of Jar level, e.g.,

Facebook’s Buck [18], Google’s TAP [16], [19], and Mi-
crosoft’s CloudBuild [17]. CloudBuild addressed several scal-
ability challenges in distributing test runs, caching analyses,
and results. Google reported on their pre-submit methodology
of testing software to enforce, before merging the changes into
the repository, that all tests of all clients pass [32]. Dosinger
et al. [59] describe a system to perform regression testing
among projects by setting up a network of communicating
CI servers that notify dependent projects’ CI whenever there
is a change and run all the tests in the dependent project.
CRAN [4] has a regression testing system which ensures that
any new release of a library passes its own tests as well as the
tests of all its clients [38]. Similarly, NPM has a tool, called
dont-break [60], to ensure that new library changes do not
break clients [55]. All these systems motivate our research on
evaluating RTS opportunities in open-source ecosystems, and
especially the opportunities for class-level RTS to improve on
the project-level RTS that these systems currently employ.

IX. CONCLUSION AND FUTURE WORK

We evaluated RTS opportunities at the scale of MAVEN
Central, the largest ecosystem for Java. Our formative study
showed that half of the libraries we analyze may benefit from
early and frequent running of tests not only in libraries but
also in all their clients. We investigated five RTS techniques,
spanning several granularities at both the dependency tracking
and change computation level, which can reduce the costs to
run clients’ tests for evolving changes in libraries. The results
showed that finer-grained, class-level techniques can select an
order of magnitude fewer tests than coarser-grained, project-
level techniques currently used in industry: static class-level
RTS selects 7.8%–10.5% of tests, and dynamic class-level RTS
selects 8.4%–17.4% of tests.

Our empirical study has implications for both practice and
research. We show that client-library breakages do occur at
the ecosystem level, and we show that finer-grained RTS
techniques offer opportunities to make ecosystem-scale RTS
more tractable. Our results motivate further research on RTS
at scale in very large (open-source) ecosystems, including
building practical systems that can work at this scale. Potential
future work includes: (1) evaluating the end-to-end time of
class-level RTS to analyze changes, select affected tests, and
run them rather than just measuring test-selection ratios as
done in this paper; (2) investigating techniques for culprit
finding—at this scale, it will be critical to efficiently find
root cause(s) of test failures, beyond just reporting that tests
fail; and (3) investigating opportunities to prioritize or select
important clients to test rather than all clients.
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