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Abstract—Mutation testing is widely used in research for
evaluating the effectiveness of test suites. There are multiple
mutation tools that perform mutation at different levels, including
traditional mutation testing at the level of source code (SRC) and
more recent mutation testing at the level of compiler intermediate
representation (IR).

This paper presents an extensive comparison of mutation
testing at the SRC and IR levels, specifically at the C pro-
gramming language and the LLVM compiler IR levels. We
use a mutation testing tool called SRCIROR that implements
conceptually the same mutation operators at both levels. We
also employ automated techniques to account for equivalent
and duplicated mutants, and to determine minimal and surface
mutants. We carry out our study on 15 programs from the
Coreutils library. Overall, we find mutation testing to be better at
the SRC level: the SRC level produces much fewer mutants and
is thus less expensive, but the SRC level still generates a similar
number of minimal and surface mutants, and the mutation scores
at both levels are very closely correlated. We also perform a case
study on the Space program to evaluate which level’s mutation
score correlates better with the actual fault-detection capability of
test suites sampled from Space’s test pool. We find the mutation
score at both levels to not be very correlated with the actual
fault-detection capability of test suites.

I. INTRODUCTION

Evaluating the effectiveness of a test suite is a challenging

task. A test suite that has a large number of tests, or achieves a

high statement or branch coverage, does not necessarily have a

high fault-detection capability. A test suite can achieve a high

coverage without exercising some particular paths that reveal

faults in the code under test, and even if the test suite exercises

the faulty paths of interest, it may still not detect the faults if

the test oracle does not capture the intended behavior.

Mutation testing is widely used in research for evaluating

the quality of test suites. Mutation testing proceeds in two

phases. In the first phase, mutation testing generates mutants

by applying mutation operators, which create simple syntactic

changes, to the code under test. Researchers have proposed

mutation operators; some of them are general [33], e.g.,

replacing ‘+’ with ‘-’, and other ones are domain specific, e.g.,

special mutation operators for web services [41] or for security

purposes [39], [40]. We consider only first-order mutation

where each mutant has only one change [31]. In the second

phase, the test suite is run on each mutant. If at least one of

the tests fails on a mutant, the mutant is said to be killed.

The mutation score is the ratio of the killed mutants over

the total number of mutants run, and a higher mutation score

indicates a better test suite. Ideally, the mutants run should not

be equivalent to the original code under test (those mutants

cannot be killed) or duplicate of one another (those mutants

could skew the score).

Multiple mutation tools were developed that perform muta-

tion at different levels, including traditional mutation testing at

the level of source code (SRC), e.g., for the C language [8], [9],

[18], [19], [26], [30], [32], and Java [34], [43], and mutation

testing at the level of compiler intermediate representation

(IR), e.g., for the LLVM IR [5], [28], [29], [49], [55], [56],

[60], and Java bytecode/IR [3], [53]. Applying mutation at

different levels offers different advantages and disadvantages.

First, the mutation testing time is dominated by the time

to run the test suite on each mutant, so generating fewer

mutants leads to faster mutation testing. Second, the quality

of the mutation score is related to the quality of the generated

mutants; if a level generates many redundant mutants, the

mutation score would be misleadingly high or low. Third,

while mutation testing is most commonly used to evaluate

test suites through mutation scores, another use case is to

reason about individual mutants to improve the test suite to

kill said mutants. While comparing the quality of different test

suites using mutation scores can be done with either level,

reasoning about how to kill individual mutants is easier at

the SRC level, due to the changes happening on source code

developers wrote themselves [61]. Lastly, mutating at the SRC

level requires a separate mutation tool for each programming

language. In contrast, a mutation tool at the IR level can be

applied to multiple source languages that compile to the same

compiler IR. For example, the LLVM IR [46] is a popular IR

that supports multiple languages, e.g., C, C++, Objective-C,

Objective-C++, OpenMP, OpenCL, and CUDA.

We present an extensive comparison of mutation testing at

the SRC and IR levels for the C language and the LLVM

compiler IR. We use our publicly available mutation testing

tool SRCIROR [28]. SRCIROR conceptually implements the

same mutation operators at both levels: AOR, LCR, ROR, and

ICR. A similar set of mutation operators is often used in the

existing mutation tools for the C language, e.g., by Andrews et

al. [8], [9] or Jia and Harman [30], [32]. We perform mutation

on all covered code (for all source files) at both levels.

Although we use the same operators at both SRC and IR

levels, mutant generation can still lead to different mutants at

the two levels. This difference is inherent in the nature of the

two levels and in their interplay with compiler optimizations:

SRC applies mutations before optimizations, and IR applies



mutations after optimizations. For example, consider the sim-

ple addition statement z = x + y. At the SRC level, mutant

generation using AOR would replace ‘+’ with other arithmetic

operators. In contrast, at the IR level, the compiler may find

that x and y have constant values, and the optimizations

(constant propagation and constant folding) would eliminate

the add operation, so no AOR mutation would apply. On the

other hand, if this statement was in a loop, then loop unrolling

could make two copies of this statement, and mutating any one

of the two copies at the IR level would not generate the same

mutant as at the SRC level (that effectively mutates both copies

at once). Our goal is not to generate exactly the same set of

mutants at both levels; while in principle one could engineer

tools to do exactly that, there would be nothing to compare

among the resulting set of mutants. Our goal is to compare the

two levels with conceptually same mutation operators applied

in a natural manner at each level.

We also employ automated techniques to account for equiv-

alent and duplicated mutants, and to determine representative

mutants. We statically determine which mutants must be

equivalent and duplicated using the trivial compiler equiva-

lence (TCE) technique proposed by Papadakis et al. [51]. We

dynamically determine which mutants may be equivalent using

a relatively large test pool for each program. We also determine

representative mutants using both minimal mutant sets [7] and

surface mutant sets [25].

We perform our study on 15 Coreutils programs. Coreutils

is a library of command-line Unix utilities written in C.

The source distribution includes a regression test suite for

many of those programs. In total, we carry out our study

on 1022 tests. We run all our mutation testing experiments

within Docker containers [2], with one Docker container for

each program, allowing us to isolate the mutation testing

experiments between the different programs and also to ensure

that running the different mutants does not have a negative

impact on the system running the experiments, e.g., removing

files from the file system or changing all the permissions.

We also perform a case study on the widely studied Space

program. Space is developed by the European Space Agency

and is publicly available in the Software Infrastructure Reposi-

tory (SIR) [21], along with its large pool of tests and a number

of faulty versions. We perform mutation testing on Space at

both the SRC and IR levels and run its tests on the provided

faulty versions (representing real faults) that come with it. We

then compare the mutation scores of the two levels computed

on test suites constructed from the overall pool of tests to the

fault-detection capability of those same test suites.

In our study, we address the following research questions:

• RQ1. How does the number of generated mutants differ

between the SRC and IR levels?

• RQ2. How does the number of equivalent and duplicated

mutants differ between the SRC and IR levels?

• RQ3. How does the mutation score differ between the

SRC and IR levels?

• RQ4. How do the mutation score and the number of

equivalent and duplicated mutants of different mutation

operator classes differ between the SRC and IR levels?

• RQ5. Which of the two levels (SRC or IR) generate more

minimal and surface mutants?

• RQ6. How do mutation scores at the SRC and IR levels

compare with the fault-detection capability of test suites?

The summary of our findings is as follows. First, the

total number of generated mutants and the number of non-

equivalent and non-duplicated mutants are lower at the SRC

level than at the IR level. Second, the mutation scores at the

SRC and IR levels are highly correlated. Third, the summary

conclusions comparing SRC and IR for all operators combined

mostly apply to individual mutation operators. Fourth, the SRC

and IR levels generate a similar number of minimal and surface

mutants. Fifth, based on our case study on Space, the mutation

scores at both levels are not correlated with the actual fault-

detection capability of test suites.

Overall we find that mutation testing at the SRC and IR

levels are more similar than dissimilar, but with the SRC

level offering more advantages than the IR level. As a result,

we recommend that researchers apply mutation testing at the

SRC level rather than at the IR level, although the SRC

level requires implementing a mutation tool for each source

programming language.

II. GENERATING MUTANTS WITH SRCIROR

We use SRCIROR [5], our publicly available tool for

performing mutation testing for the C language at both the

source code level and the LLVM intermediate representation

(IR) level [5], [28]. SRCIROR provides the same mutation

operators at both source code and IR levels, allowing a fairer

comparison of mutation testing between the two levels.

A. Mutation Operators

We use four classes of mutation operators in SRCIROR

that work on both the SRC and IR levels. These are common

mutation operators used in prior work on mutation testing [8],

[9], [30], [32]. The four classes of operators are AOR, LCR,

ROR, and ICR.

AOR replaces every arithmetic operator from the set {+, -,

*, /, %} with another different arithmetic operator from the

same set, creating a new mutant with each replacement; at the

SRC level, the AOR class also includes replacing the arith-

metic assignment operators {+=, -=, *=, /=, %=}, which

does not apply at the IR level where such assignment operators

are already translated into simpler instructions.

LCR replaces every logical connector with another logical

connector. At the SRC level, it replaces every operator from

the set of logical operators {&&, ||}, the set of bitwise oper-

ators {&, |, ˆ}, and the set of logical assignment operators

{&=, |=, ˆ=} with another different operator from the same

set, creating a new mutant with each replacement. At the IR

level, only bitwise operators are applicable, because the other

two sets are translated into different instructions (potentially

bitwise operators or conditional branches).

ROR replaces every relational operator with another relational

operator. At the SRC level, it replaces every operator from the



set of relational operators {>, >=, <, <=, ==, !=} with

another different operator from the same set, creating a new

mutant with each replacement. It also replaces boolean condi-

tions in conditional statements and loops with their negations,

specifically it replaces e with !e for every expression from

the set {if(e), while(e), for(...;e;...)}. At the IR

level, these mutations correspond to replacing every instruction

operator from the set {eq, ne, ugt, uge, ult, ule,

sgt, sge, slt, sle} with a different instruction operator

from the same set.

ICR replaces every integer constant c with a value from the

set {-1, 0, 1, -c, c-1, c+1}\{c}, creating a new mutant with

each replacement.

B. Source-level Mutant Generation

SRCIROR generates mutants at the source (SRC) level in

the form of a source-to-source transformation tool based on

Clang. Furthermore, we configure SRCIROR to collect the

coverage of the tests, allowing SRCIROR to only search for

candidate mutation locations on the covered lines. SRCIROR

applies all mutation operators that are applicable at the covered

lines, generating one mutated source file for each mutant. The

mutated source file is compiled as usual and linked to produce

a final binary executable.

It is important to note that SRCIROR supports mutating

multiple files (one per mutant). This is an essential charac-

teristic of a mutation tool, as code is generally organized in

multiple files and directories according to its functionality. For

example, a significant part of the functionality used by Core-

utils tools is defined in files under a utility directory, which get

compiled into a shared library libcoreutils.a. The shared

library is then linked to the executable. As functionality of

the code under test is in the shared library, it is important to

mutate files from the shared library to ensure the final mutation

testing results properly evaluate the quality of the tests.

C. IR-level Mutant Generation

SRCIROR’s IR level mutant generation part uses transfor-

mation passes in the LLVM compiler infrastructure to generate

mutants. SRCIROR generates IR mutants using two LLVM

passes. The first pass takes as input a file containing the

LLVM IR (also known as bitcode) and generates as output

the locations that can be mutated and the mutations to apply

to each location. The second pass takes as input a file with

LLVM IR and the mutation to apply, and then actually applies

it. Aside from these passes, SRCIROR includes an LLVM

pass that instruments the code and collects coverage at the

IR instruction level. Similar to the SRC level mutations,

SRCIROR allows the use of the coverage collected in this

LLVM pass to restrict the viable locations to mutate.

For our experiments with Coreutils programs, we configure

SRCIROR to first instrument the programs and run the tests

to collect IR coverage. Then, SRCIROR compiles the source

files into LLVM IR files, and takes each IR file to generate

a mutated IR file. SRCIROR finally compiles and links each

mutated IR file into a final binary executable. Due to having

to also compile and link code to create a binary, the cost

of generating a single IR mutant is similar to generating

a single SRC mutant. This is in contrast to how mutation

tools at the IR level for other languages such as Java have

a much smaller cost for generating mutants, e.g., PIT for

Java generates mutants dynamically and in-memory through

bytecode manipulation [16].

III. EXPERIMENTAL SETUP

We describe our experimental setup for comparing mutation

testing at the SRC level and at the IR level (answering RQ1

to RQ5). We first describe the programs and their tests we

used for the evaluation, along with how we sampled the tests

for smaller test suites. We then describe how we determine

equivalent and duplicated mutants. We finally describe how we

run SRCIROR for both SRC and IR using Docker containers.

A. Evaluation Programs

For our evaluation, we use the programs from Coreutils,

a set of programs widely used in empirical evaluations of

research in testing [14], [22], [29], [38], [45]. We use the

Coreutils version 6.11, because this version is commonly used

in previous research and allows for comparison of results

across papers. Some of these programs come with manually

written tests that invoke the program with different inputs and

check expected outputs. Of all the programs from Coreutils,

we selected 15 programs for our evaluation. We eliminated

the other programs because they had too few tests, because

they are not compatible with our Docker running environment

(more details later in Section III-D), or because they had flaky

tests [42]; a test is flaky if it can pass or fail for the same code

under test based on some environment condition that cannot

be easily controlled (e.g., the state of the disk, the environment

variables, or specific timing/performance issue).

The tests for most programs in Coreutils are manually

written scripts that invoke the program multiple times, where

each invocation conceptually represents a different test. Such

scripts are not ideal for evaluating mutation testing. For

example, the program cut has a test script file that contains

186 tests. If we were to execute such a test script directly

on the original and mutated versions of the program, it would

execute all 186 tests and report a failure if any of the 186 tests

fails. Therefore, we would not get the full test-mutant matrix,

i.e., we would not know for each test-mutant pair whether that

test kills that mutant. If the goal is to evaluate the quality of

a test suite, it is enough to know what mutants are killed by

any test in the test suite. However, we want to obtain the full

test-mutant matrix because it can facilitate a further analysis

of mutants, e.g., computation of minimal mutant sets [7]. We

use publicly available artifacts from our prior work [28], where

we manually analyzed all the test script files for the Coreutils

programs and split each long script into several shorter scripts

that each runs an individual test.

The number of tests for each program also affects our

selection of programs for evaluation. About half the programs

have literally no tests or very few tests once skipped tests are



ignored. We ignored those programs because the design of

our experiments requires sampling from the entire test pool to

form smaller test suites for each program (Section III-B).

B. Sampling Test Suites

When evaluating mutation testing at the SRC level or the

IR level, we obtain just one mutation score for the entire test

pool of a single program. However, it is difficult to compare

the two different levels based solely on just one mutation score.

As such, we also sample test suites from the overall test pool

for each program, creating a number of smaller test suites for

each program. Specifically, from each program’s test pool, we

sample four different sizes of test suites: 1/2, 1/4, 1/8, and 1/16

of the test pool size. As our smallest size is 1/16 of the test

pool size, our criterion then for the number of tests in the test

pool for any of the programs we evaluate on is a minimum of

16, to ensure at least one test in a sampled test suite. For each

size, we randomly sample the appropriate number of tests from

the entire test pool to create a test suite, and we sample ten

such test suites per size (with replacement across test suites).

We also ensure that no two test suites are equal to each other

(although they can have overlaps in tests). We use the same

smaller test suites for both SRC level and IR level mutation

testing. With the multiple test suites, we can draw correlations

between the mutation scores at the SRC and IR levels.

C. Mutant Comparison

We studied mutant generation at the IR level using different

optimization levels in our prior work [29]. In this work, we

configure both mutant-generation tools to generate mutants

using the same optimization level, -O3. Furthermore, for both

levels of mutant generation, we discard any mutant that fails

to compile all the way to binary form.

After generating all the mutants, we determine which mu-

tants are equivalent and duplicated. Following Papadakis et

al. [51], equivalent mutants are those that are semantically

equivalent to the original binary, while duplicated mutants are

those that are semantically equivalent to one another but are

not definitely semantically equivalent to the original binary.

To automatically determine equivalent and duplicated mutants,

we use the trivial compiler equivalence (TCE) technique

proposed by Papadakis et al. [51] and subsequently used in

later work [6], [28], [29], [50]. TCE compares the resulting

mutant binaries with the original binary and compares the

mutant binaries with one another to determine the equivalent

and duplicated mutants. Any mutant binary that is identical

to the original binary is an equivalent mutant, and mutant

binaries that are identical to one another (but not identical to

the original binary) are in the same class of duplicated mutants.

To speed up the comparison of these binaries, we compute

the checksum of each binary and compare the checksums;

specifically, we use sha1sum to minimize the chance that

different binaries have the same checksum. Note that a given

mutant can propagate into multiple executables and/or library

files. Similar to our prior work [28], we leverage incremental

compilation to only regenerate what is affected by the mutant

and checksum only the regenerated files.

It is important to properly handle equivalent and duplicated

mutants when computing mutation scores. Equivalent mutants

cannot be killed for any test, and duplicated mutants in the

same equivalence class should have the same kill or not kill

result for any test. As such, keeping equivalent and duplicated

mutants can artificially inflate or deflate the overall mutation

score. In our analysis of mutation testing, we remove all

equivalent mutants and keep only one representative mutant

from each equivalence class of duplicated mutants. From our

prior work [29], we refer to the resulting mutants as NEND

(not-equivalent, not-duplicated) mutants.

Once the NEND mutants are determined, one could run the

entire mutation analysis only on those mutants if all the tests

are deterministic. However, in our evaluation, we run all tests

on all generated mutants as a means to find flaky tests. Flaky

test results are unreliable (unless the same test is explored via

expensive, multiple runs on the same code [23]), so we cannot

easily determine if a mutant is killed or not when the test does

not give deterministic results. However, we can determine that

we have flaky tests by examining the results of running tests on

equivalent and duplicated mutants. If a test kills an equivalent

mutant, then the test must be a flaky test. Similarly, if a test

kills a mutant from an equivalence class of duplicated mutants

but does not kill another mutant from the same equivalence

class, then the test is also flaky. By comparing the test results

on equivalent and duplicated mutants, we found that tests

from some programs (e.g., join and uniq) have tests that

kill equivalent mutants, while tests from some other programs

(e.g., ln) have tests that do not equally kill all the mutants in

the same class of duplicated mutants. As such, we removed

several programs from our evaluation.

D. Running Tests on Mutants

The Coreutils programs we use in our evaluation perform

functionality that modifies the system underneath. For exam-

ple, a program from Coreutils that we evaluated on is chmod,

which changes the permissions of files and directories in the

file system. While the manually written tests for chmod may

be controlled and only change permissions for specific files

related to the tests, any mutant created off of chmod may

not function so cleanly, e.g., modifying the permissions of

file to a different set of permissions that are rather hard to

recover from. Executing tests on such a mutant can negatively

impact the entire system, destroying the environment not just

for when doing mutation testing with other programs but also

for using the same system again in general. To prevent our

mutation testing experiments from affecting each other and

the system where we run them, we use Docker [2] to run our

mutation testing experiments. We build a basic Docker image

that contains Coreutils and SRCIROR along with all the basic

dependencies these tools need. We then run mutation testing

experiments for each program it its own Docker container built

from this basic Docker image, isolating the mutation testing

for the mutants of that program from the mutation testing for



TABLE I
NUMBER OF TESTS, FAILED TO COMPILE, SUCCESSFULLY COMPILED, EQUIVALENT, AND DUPLICATED MUTANTS AT BOTH LEVELS FOR EACH PROGRAM

Program Tests SRC IR
#F #M #E E% #D D% #NEND #F #M #E E% #D D% #NEND

chmod 51 269 6546 323 4.9 821 12.5 5402 1627 8288 487 5.9 1199 14.5 6602
cut 186 64 1241 49 3.9 145 11.7 1047 385 3926 165 4.2 524 13.3 3237
dd 16 167 5396 285 5.3 679 12.6 4432 1696 12614 798 6.3 1932 15.3 9884
expr 86 20 535 34 6.4 78 14.6 423 2846 13107 1032 7.9 1741 13.3 10334
factor 31 8 364 12 3.3 37 10.2 315 10 603 66 10.9 62 10.3 475
head 85 47 946 43 4.5 123 13.0 780 385 3642 257 7.1 412 11.3 2973
readlink 159 159 2979 154 5.2 411 13.8 2414 308 3639 288 7.9 542 14.9 2809
seq 37 50 989 40 4.0 123 12.4 826 789 4491 370 8.2 598 13.3 3523
stat 68 64 1815 86 4.7 265 14.6 1464 1102 7162 401 5.6 952 13.3 5809
sum 20 90 2224 121 5.4 300 13.5 1803 39 922 53 5.7 120 13.0 749
tac 52 99 2139 105 4.9 313 14.6 1721 1140 8238 446 5.4 1136 13.8 6656
tail 125 139 3443 193 5.6 447 13.0 2803 1142 7847 410 5.2 1095 14.0 6342
touch 28 129 4763 255 5.4 564 11.8 3944 2076 12662 874 6.9 1744 13.8 10044
unexpand 38 5 343 8 2.3 37 10.8 298 35 1174 52 4.4 212 18.1 910
wc 40 91 2805 140 5.0 382 13.6 2283 2130 11796 603 5.1 1694 14.4 9499

Overall 1022 1401 36528 1848 5.1 4725 12.9 29955 15710 100111 6302 6.3 13963 13.9 79846

the mutants of other programs, as well as isolating the effects

of mutation testing runs from the rest of the system.

Given the need for isolation between mutants when running

tests on them, it might be ideal to run each mutant and test

in their own Docker containers. However, starting up a new

Docker container for each test run on a mutant is extremely

expensive, especially when computing the full test-mutant

matrix as we are doing in this work. As such, for performance

reasons, we run all tests for a single project for all its mutants

in the same Docker container, but we isolate the mutation

testing runs across projects.

However, using a Docker container to run mutation testing

for a program is not perfect. Given the nature of the types

of tests for Coreutils programs, we find several where the

tests actually behave differently in the Docker container and

sometimes the tests, even when run on just the unmutated

program, cause negative, not recoverable effects in the Docker

container. For example, the program rm would have tests that

create very deeply nested directories that reach the limits of

how deep directories can nest. Unfortunately, such a directory

structure cannot be deleted in a Docker container (whereas it

would be possible in the native system environment), and the

program cannot even be rebuilt afterwards due to the creation

of such structures. As such, we exclude several Coreutils

programs that cannot run properly in a Docker container.

IV. RESULTS AND ANALYSIS

Table I tabulates the programs we use in our evaluation and

the number of tests they have.

A. Number of Generated Mutants

Table I also shows the number of mutants that failed to

compile (#F), the number of mutants that were compiled

successfully (#M). Mutants can fail to compile due to not the

mutation tool not having enough context to determine if a

mutation is valid or not, e.g., at the SRC level, mutating array

initialization such as int a[10] with int a[-1] would not

compile successfully. From the table, we see that there are

many more mutants at the IR level that did not compile

successfully compared against the SRC level. The percentage

of generated mutants that did not compile successfully is 3.7%

at the SRC level, versus 13.6% at the IR level.

Table I also shows the number of equivalent (#E) and

duplicated (#D) mutants, along with their corresponding per-

centages computed with respect to the mutants compiled

successfully, at each level. We can see that the total number of

successfully compiled mutants at the IR level is almost three

times higher than at the SRC level. The numbers are also

higher for the individual programs, as well as for the NEND

mutants (removing the equivalent and duplicated mutants).

We next discuss several example mutants from chmod to

illustrate cases with a one-to-one mapping between SRC

and IR mutants, and other cases where one SRC mutant

corresponds to multiple IR mutants, and vice versa.

One-to-one mapping between SRC and IR mutants: A

mutation applied at the SRC level can in some cases be

mapped directly to a mutation at the IR level. For example, in

the conditional ‘if (optind >= argc)’, ROR at the SRC

level replaces the operator ‘>=’ with ‘>’. Looking at the IR

bitcode, we find the same mutant obtained by replacing the

instruction ‘icmp sge’ with ‘icmp sgt’ also using ROR.

IR presents more mutation opportunities: It is intuitive to

expect that IR can present more mutation opportunities than

SRC knowing that one SRC statement translates into multiple

IR instructions. However, that is not the only reason, and

we show here an example not due to the increase in the

number of instructions, but due to the more freedom an

IR instruction can present in manipulating the functionality.

Applying ROR on the line ‘if (!change)’ negates the

condition of the if statement, namely replaces it with ‘if

(!(!change))’. At the IR level, the if statement translates

into multiple instructions, including the following integer

comparison instruction that checks for equality ‘%tobool25

= icmp eq %r* %call24, null’. The application of ROR

replaces ‘icmp eq’ with ‘icmp neq’ and ‘icmp ugt’, gen-

erating two mutants at the IR that are similar to the one at



the SRC level. Therefore, the type of the instruction at the IR

level enabled more mutants to be generated.

SRC presents more mutation opportunities: In some cases,

a SRC statement can present more mutation opportunities

than the corresponding IR code. For example, the prepro-

cessed version of function ‘mode_changed’ includes this: ‘if

(new_mode & (04000|02000|01000))’. Applying ICR at

the SRC level generates multiple mutants, e.g., replacing the

first occurrence of the constant ’04000’ with ’00’. Note that

there are multiple constants that ICR can mutate. Going to

the corresponding IR bitcode, the constant folding compiler

optimization leads to replacing the entire expression contain-

ing multiple constants with just the value ‘3584’. Now there

is only one constant that ICR can mutate at the IR level, so

there are fewer mutants generated.

Answering RQ1, the number of generated mutants is much

higher at the IR level than at the SRC level both before

and after taking into consideration equivalent and duplicated

mutants; suggesting that mutation testing at the SRC level is

much faster to run than mutation testing at the IR level.

B. Equivalent and Duplicated Mutants

Our results partly agree with those reported in previous

work using TCE for equivalent and duplicated mutants [6],

[29], [51]. Our experiments show that, on average, 5.1% of the

generated mutants at the SRC level are equivalent, while 6.3%

of the generated mutants at the IR level are equivalent. For

duplicated mutants, the percentage at the SRC level (12.9%)

is slightly smaller than at the IR level (13.9%). In general, the

percentage of equivalent and duplicated mutants are similar

between the two levels. Prior work has reported equivalent

mutants ranging between 7% and 7.2%, and duplicated mu-

tants ranging between 13.2% and 21%. Our results show

similar ratios. The difference between us and prior work on IR

mutation [29] is that first we mutate only covered code, and

second we mutate all source files (not just the file containing

the main code of the tool).

Answering RQ2, The ratios of both equivalent and dupli-

cated mutants are similar at both the SRC and IR levels.

Controlling for equivalent and duplicated mutants is essential

to avoid the skewing of mutation scores.

C. Mutation Score

The mutation score is the main metric in mutation testing,

so we compare a variety of mutation scores at the SRC and IR

levels. We first compare the mutation scores for only NEND

mutants for the entire test pool. We then sample test suites

from the test pool, as detailed in Section III-B. For these

sampled test suites, we compare the mutation score for both

the set of all NEND mutants and the refined mutant set [25].

A refined mutant set is a subset of all NEND mutants that are

killed by at least one test. Similarly to previous studies [25],

[57], [63], we use refined mutant sets to remove the mutants

that may be equivalent to the original program.
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Fig. 1. Distribution of NEND mutation score for the entire test pool at both
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Fig. 2. NEND mutation score for sampled test suites from seq at both levels

1) Entire Test Pool: Figure 1 shows in boxplot form the

distribution of the NEND mutation scores of all programs

for both SRC and IR levels. The median (red line) and

(unweighted) mean (white dot) mutation scores are higher for

the SRC level compared against the IR level. The weighted

mean mutation score (not shown in the figure) at the SRC level

is also higher than the one at the IR level, (28.6% vs. 24.1%).

Examining individual values and from Figure 1, we can see

that the mutation score for both at the SRC level tends to

be higher than at the IR level. The Wilcoxon paired rank

test for the NEND mutation score shows a p-value of 0.018.

Computing the effect size of the difference using Cliff’s delta

results in a value of 0.28, a small effect size.

2) Sampled Test Suites: We compute the mutation score

of sampled test suites of different sizes, considering both

all NEND mutants and the refined NEND mutants (when

sampling, we only sample from refined NEND mutants w.r.t.

the entire test suite). Our key goal here is to compare the

mutation scores that the sampled test suites obtain at the

SRC and IR levels: because most uses of mutation testing in

research are to compare test suites, we want to know whether

the SRC and IR levels agree on the quality of test suites. If

the two levels largely agree, we can use the level that is better

by other metrics (e.g., runs faster or is easier to implement).



TABLE II
NUMBER OF GENERATED, EQUIVALENT, AND DUPLICATED MUTANTS ACROSS OPERATOR CLASSES AT THE SRC LEVEL

Program SRC
AOR LCR ROR ICR

#M E% D% NEND #M E% D% NEND #M E% D% NEND #M E% D% NEND

chmod 811 1.1 6.9 746 608 9.4 0.8 546 3512 5.5 12.8 2871 1615 4.0 1.5 1526
cut 127 0.8 5.5 119 85 7.1 0.0 79 780 4.1 12.1 654 249 4.0 0.4 238
dd 727 2.1 5.4 673 538 8.6 0.7 488 2886 5.8 13.8 2322 1245 4.6 1.5 1169
expr 45 0.0 4.4 43 21 0.0 4.8 20 319 5.3 14.1 257 150 11.3 1.3 131
factor 29 0.0 0.0 29 22 0.0 0.0 22 225 4.0 11.1 191 88 3.4 1.1 84
head 89 1.1 4.5 84 57 14.0 0.0 49 587 5.1 13.6 477 213 1.9 0.5 208
readlink 334 1.8 8.7 299 231 10.8 1.3 203 1765 4.8 13.4 1444 649 6.0 2.2 596
seq 148 1.4 8.8 133 60 0.0 0.0 60 550 6.0 12.0 451 231 2.2 2.2 221
stat 256 1.6 8.6 230 161 9.3 1.2 144 1005 4.9 13.9 816 393 4.6 2.0 367
sum 312 1.3 6.1 289 212 13.7 0.9 181 1225 5.5 14.0 987 475 4.4 1.5 447
tac 299 1.3 7.7 272 174 13.2 1.1 149 1215 4.8 14.1 986 451 4.4 1.1 426
tail 488 3.3 5.3 446 261 11.5 0.8 229 1969 5.2 13.8 1594 725 6.1 1.0 674
touch 606 2.5 6.1 554 443 9.5 0.9 397 2488 5.7 12.7 2031 1226 4.6 1.8 1148
unexpand 20 0.0 5.0 19 14 0.0 0.0 14 226 3.5 11.9 191 83 0.0 0.0 83
wc 359 1.1 7.8 327 245 11.0 0.8 216 1610 5.3 13.5 1308 591 4.1 0.8 562

Overall 4650 1.7 6.6 4263 3132 9.8 0.9 2797 20362 5.3 13.3 16580 8384 4.6 1.4 7880

TABLE III
NUMBER OF GENERATED, EQUIVALENT, AND DUPLICATED MUTANTS ACROSS OPERATOR CLASSES AT THE IR LEVEL

Program IR
AOR LCR ROR ICR

#M E% D% NEND #M E% D% NEND #M E% D% NEND #M E% D% NEND

chmod 540 0.0 20.6 429 365 2.2 0.3 356 3403 7.9 16.0 2588 3980 5.3 7.4 3476
cut 300 0.0 15.3 254 180 0.0 1.7 177 1822 5.9 14.1 1457 1624 3.5 2.9 1520
dd 995 0.0 18.5 811 500 1.4 1.6 485 4864 7.8 16.7 3675 6255 6.6 6.6 5430
expr 762 0.0 29.3 539 475 3.8 0.4 455 5310 8.5 14.3 4102 6560 8.6 6.7 5556
factor 60 0.0 18.3 49 16 6.2 0.0 15 261 5.7 8.4 224 266 18.8 2.3 210
head 346 0.0 10.7 309 114 0.9 0.9 112 1453 5.2 14.0 1175 1729 10.5 2.8 1499
readlink 184 0.0 25.0 138 146 2.1 0.7 142 1764 8.8 17.6 1298 1545 8.3 5.4 1332
seq 420 0.2 21.2 330 92 0.0 0.0 92 1654 7.0 12.5 1331 2325 10.9 6.1 1931
stat 498 0.0 18.1 408 246 1.6 0.0 242 2700 7.5 15.4 2083 3718 5.2 4.9 3342
sum 132 0.0 7.6 122 32 6.2 3.1 29 342 7.6 14.3 267 416 6.0 4.3 373
tac 654 0.0 15.3 554 282 1.8 0.4 276 3267 7.0 16.0 2513 4035 5.2 4.8 3631
tail 593 0.0 18.7 482 272 1.5 0.4 267 3050 7.1 16.0 2346 3932 4.8 4.8 3553
touch 848 0.0 19.6 682 406 1.0 0.5 400 4825 7.4 15.3 3732 6583 7.8 5.8 5685
unexpand 120 0.0 20.0 96 46 0.0 4.3 44 603 8.1 16.3 456 405 0.7 4.0 386
wc 996 0.0 19.8 799 420 1.2 0.5 413 4378 6.8 15.4 3403 6002 5.0 5.9 5351

Overall 7448 0.0 19.4 6002 3592 1.7 0.7 3505 39696 7.4 15.4 30650 49375 6.7 5.7 43275

We measure correlation using Pearson’s R2, which checks

for a linear relationship: a high value would show that the

mutation scores at the SRC and IR levels change by a linearly

proportional amount (irrespective of the direction).

To visualize the correlation we want to compute between

SRC and IR level mutation scores, we show Figure 2, a scatter

plot of mutation scores computed on all NEND mutants for

one sample program, seq. We show this scatter plot for only

seq as most of the other programs demonstrate a similar trend.

Each point in the scatter plot corresponds to a sampled test

suite from seq. The darker the point color, the bigger the test

suite is (the darkest corresponding to the entire test pool and

the lightest corresponding to the size 1/16th of the test pool).

The x-coordinate is the IR level mutation score, and the y-

coordinate is the SRC level mutation score. The strong linear

correlation between SRC and IR level mutation scores for seq

can be seen from the figure, with a high R2 value (1.0).

We compute theR2 values comparing mutation scores across

levels using all sampled test suites for each program for the set

of NEND mutants and the set of refined mutants. The average

values of R2 across all programs is 0.8 for NEND mutants, and

0.8 for refined mutants. We also inspected the individual values

per tool and noticed that there is a strong positive correlation

between the mutation scores at the SRC and IR levels for

most programs. Five programs have R2 values less than the

average value of 0.8 (four programs when considering refined

mutants), though all programs have R2 values of at least 0.6.

All R2 values are statistically significant with p < 0.001.

Answering RQ3, mutation scores at the SRC and IR levels

are correlated and can be used as good proxies of each other.

D. Analysis Across Mutation Operators

So far we have analyzed mutation testing by examining the

number of generated mutants, the number of NEND mutants,

and the mutation score for all four classes of the mutation

operators combined. To better understand how mutation testing

at the SRC and IR levels compare to each other, we perform



our analysis for each operator class separately, which is a

finer granularity that sheds light on whether the results are

generalizable or due to a specific mutation operator.

1) Number of Mutants: Tables II and III show the number

of mutants generated across different operator classes at the

SRC and IR level, respectively. The total number of mutants

at the SRC level is lower than at the IR level for every single

operator class . Similarly, the number of NEND mutants is

lower at the SRC level than at the IR level. For ROR, the SRC

level would generate five (likely NEND) mutants replacing

each relational operator by a different one from the set {>, >=,

<, <=, ==, !=}, whereas IR would generate nine (likely NEND)

mutants replacing each operator by a different one from the set

{eq,ne,ugt,uge,ult,ule,sgt,sge,slt,sle}. The dif-

ference of five vs. nine leads to having about twice as many

ROR mutants at the IR level than the SRC level. Inspecting the

ICR mutants, IR has almost seven times more mutants due to

large number of getelementptr instruction (which contributes

the majority of the ICR mutants) in LLVM used to compute

offsets. Another reason that the IR bitcode presents more

opportunities is that the compiler introduces more instructions

that require address computations, such as replacing array

indexing a[i] with a+4*i.

2) Equivalent and Duplicated Mutants: We look at the

percentage of equivalent and duplicated mutants broken down

across each mutation operator. We use both the Wilcoxon

paired rank test and compute Cliff’s delta comparing the

percentages of equivalent and duplicated mutants per each

operator across all programs between SRC and IR. For equiv-

alent mutants, we observe statistically significant differences

(p < 0.001 for ROR, with a large Cliff’s delta effect size,

-0.90. For duplicated mutants, we observe statistically signif-

icant differences (p < 0.001) for AOR and ICR, with large

Cliff’s delta effect size values of -0.96 and -1.00, respectively.

3) Mutation Score: Table IV shows the mutation scores

of the NEND mutants across mutation operators. The overall

mutation scores for the same mutation operators are rather

similar between the SRC and IR levels. A Wilcoxon paired

rank test comparing mutation scores for each operator between

the two levels results in no p-value less than 0.01.

Table V shows p-values for using the Wilcoxon paired

rank test comparing number of NEND mutants, percentage

of equivalent/duplicated mutants, and mutation scores across

operators between SRC and IR levels. The p-values for the

tests vary across the different operators.

Answering RQ4, the summary conclusions comparing SRC

and IR for all operators combined mostly apply to individual

mutation operator and therefore are generalizable.

E. Minimal and Surface Mutants

So far the SRC level mutation looks better than the IR level

mutation, because SRC level generates fewer NEND mutants,

and though they result in somewhat higher mutation scores,

the mutation scores between the two levels are very corre-

lated. However, these scores could be affected by redundant

mutants [7] that do not add any value to the evaluation of test

TABLE IV
NEND MUTATION SCORE ACROSS MUTATION OPERATOR CLASSES

Program SRC IR
AOR LCR ROR ICR AOR LCR ROR ICR

chmod 28.8 35.5 29.3 28.8 31.7 37.4 29.4 32.0
cut 35.3 49.4 53.4 50.0 37.8 40.1 39.1 35.5
dd 16.8 19.3 19.3 14.2 21.0 15.7 17.1 11.2
expr 86.0 50.0 63.4 60.3 76.4 51.6 45.8 54.6
factor 62.1 59.1 49.7 61.9 91.8 86.7 55.4 57.1
head 50.0 24.5 45.9 53.4 35.0 15.2 29.7 23.7
readlink 28.8 12.3 22.8 23.2 18.8 6.3 13.0 13.7
seq 69.2 45.0 61.2 55.2 73.6 30.4 43.6 37.6
stat 32.2 7.6 14.1 23.2 13.0 7.4 9.7 7.4
sum 38.8 17.7 16.4 27.1 82.0 75.9 43.1 58.7
tac 35.7 9.4 21.2 24.9 23.5 6.2 13.5 8.1
tail 34.5 17.5 25.5 30.4 14.7 4.9 9.1 5.7
touch 33.9 16.6 27.6 26.3 27.0 16.0 21.1 17.2
unexpand 73.7 71.4 62.8 68.7 69.8 84.1 48.5 53.1
wc 38.2 25.0 26.0 30.4 31.5 15.5 18.9 15.5

Overall 33.1 22.9 27.9 28.8 34.9 23.3 24.7 22.3

TABLE V
p-VALUES FOR WILCOXON PAIRED RANK TEST COMPARING DIFFERENT

VALUES AT SRC AND IR LEVEL

Comparison point Operators
AOR LCR ROR ICR

Number of NEND mutants 0.073 0.191 0.004 < 0.001

% equivalent mutants 0.002 0.003 < 0.001 0.020
% duplicated mutants < 0.001 0.889 0.006 < 0.001

Mutation score 0.303 0.530 0.025 0.012

suites. These mutants can misleadingly inflate the mutation

score, e.g., some mutants may be easy to kill by any test.

We want to find the mutants that are representative of all

the other mutants as well as being harder to kill. Following

Gopinath et al. [25], [26], we compute two sets of mutants:

the minimal set of mutants and the surface set of mutants1.

Both sets are defined using dynamically subsuming mutants:

a mutant m subsumes another mutant m′ for a test pool T if

every test from T that kills m also kills m′; the subsuming

mutant m is a higher quality mutant that is harder to kill. The

subsuming mutants are killed by a more diverse set of tests,

and the idea is that they are representative of all mutants [49].

The subsuming mutants are considered harder-to-kill than the

subsumed mutants [49]. Given a set of mutants, a surface

mutant set is a maximal subset that has no subsumed mutants,

with subsumption computed over the entire test pool. A

minimal mutant set is computed the same, except subsumption

is computed over a minimal test suite (i.e., a test suite that is a

subset of the test pool, has the same mutation score as the test

pool, and if one test is removed, the mutation score drops).

Table VI shows the number of minimal and surface mutants

computed for each program. We see that the numbers of

minimal and surface mutants are similar at both levels. The

main exceptions are expr and tail, where there are many

more minimal and surface mutants at the IR level than at the

SRC level for expr, while the opposite occurs for tail.

1There is some terminology mismatch: what Gopinath et al. [25], [26]
define as “surface” mutants is what Ammann et al. define as “minimal”
mutants [7] and is what Kintis et al. define as “disjoint” mutants [36]. What
Gopinath et al. [26] call “minimal” could have been called differently, e.g.,
“doubly minimal”. We follow the terminology from Gopinath et al. [25], [26]
as they are the most recent of these papers.



TABLE VI
NUMBER OF MINIMAL MUTANTS AND SURFACE MUTANTS

Program #Minimal #Surface
SRC IR SRC IR

chmod 17 14 23 16
cut 17 19 20 24
dd 8 10 9 11
expr 19 46 19 47
factor 3 5 4 6
head 15 17 21 22
readlink 10 6 25 10
seq 16 18 17 19
stat 11 9 19 15
sum 7 7 10 9
tac 6 6 8 9
tail 28 9 36 9
touch 15 16 15 16
unexpand 6 7 13 11
wc 12 15 14 17

Overall 190 204 253 241

Performing a Wilcoxon paired rank test between the number

of minimal mutants for each program at SRC and IR shows

a p-value of 0.6207; the Cliff’s delta is 0.04, a neglible effect

size. The same tests for surface mutants shows a p-value of

0.9545; the Cliff’s delta is 0.14, again, a neglible effect size.

Answering RQ5, the SRC and IR levels generate a similar

number of minimal and surface mutants.

V. CASE STUDY WITH REAL FAULTS

We have found that SRC and IR are good proxies for each

other, with the mutation score of SRC being higher than that

of IR on average. The next question that arises is: which of

the two levels has a mutation score that correlates better to

the actual fault-detection capability of the test suite?

To answer this question, we conduct a case study on Space,

an interpreter of an array definition language (ADL) developed

by the European Space Agency [1]. We use the version 2.0,

most recent available version in SIR [4] at the time. It comes

with a test pool of 13496 test cases and with 35 documented

real faults, with a mapping from tests to faults detected. (The

total number of versions documenting real faults that come

with Space is 38, but only 35 of them are not equivalent to

the original program for the given test suite, i.e., the other

three are not detected by the given test suite.)

A. Setup

We generate SRC and IR mutants for Space, and we run

the entire test suite for the NEND mutants. We compare the

output (standard output and error) of each test to that we obtain

when executing the test on the original program (we compute

the checksum of the outputs to compare them). If the output is

not the same, we consider the test to have killed the mutant.

Following Andrews et al. [8], we generate 5000 test suites

by randomly selecting test suites of size 100 each from the

full test pool. We then calculate for each test suite S the

mutation detection ratio Am(S), defined as the number of

mutants killed by S divided by the total number of mutants,

and Af(S) as the number of faults detected by S divided

by the total number of faults (35). For each test suite S, we

compare Am(S) of SRC and Am(S) of IR to Af(S).

B. Results

We generate a total of 8647 SRC NEND mutants and 22187

IR NEND mutants. We again use Pearson’s R2 to see if there

is any linear correlation between SRC and IR Am(S) of the

different test suites against each test suite’s Af(S). For SRC,

the R2 value is 0.24, p < 0.001; for IR, the R2 value is

0.30, p < 0.001. From this value, IR is actually slightly more

linearly correlated with a test suite’s fault-detection capability,

but both levels are not very correlated. To see if there is any

correlation, not just linear, we use Kendall’s τb. Kendall’s τb
reports a τb value, which ranges from 0 to 1, with 0 meaning

no correlation and 1 meaning a perfect correlation. For SRC,

the τb value is 0.15, p < 0.001; for IR, the τb value is 0.19,

p < 0.001. Once again, IR has a slightly better correlation,

but both values are still very low. These statistics suggest

that there is very little correlation between mutation score at

either level with a test suite’s fault-detection capability. The

low correlation agrees with recent findings from Papadakis et

al. [52], where they find the correlation between mutants killed

and fault-detection to drop as test-suite size is controlled.

Answering RQ6, Both levels show very little correlation

with the fault detection capability of test suites with IR having

a slightly higher correlation than SRC.

VI. THREATS TO VALIDITY

Our results may not generalize to all software because the

programs we chose for our evaluation may not be representa-

tive of all software. To address this threat, we used Coreutils,

which is commonly used in previous research. We chose a

total of 15 programs from Coreutils, i.e., all programs that

had a non-trivial number of tests and had tests that were not

flaky. For each program, we used all its tests.

In our evaluation, we rely on Clang and LLVM, along with

their built-in optimizations, to perform mutation testing at

both the SRC and IR levels. Our results may not generalize

when compiling with other compilers, such as gcc, which

may use different intermediate representations. The evaluation

is conducted over four classes of mutation operators at each

level. The general results obtained could be specific to those

operators and may not generalize to other classes of operators.

In fact, repeating our analysis by each class of the mutation

operators already shows that the general conclusions can be

influenced by some class and need not be similar for each and

every class. To determine equivalent and duplicated mutants,

we use trivial compiler equivalence (TCE) [51] and we also

compare using refined mutants. While TCE finds mutants

that are definitely equivalent and duplicated, it gives a lower

bound on the actual number of equivalent mutants; in contrast,

refined mutants give an upper bound on the actual number of

equivalent mutants. The true number of equivalent mutants

is between these bounds and could affect our findings of the

mutation score. However, detecting all equivalent mutants is an

undecidable problem [12], so we use both NEND and refined

mutants to compare SRC and IR level mutation.



VII. RELATED WORK

Mutation testing has been widely studied since its introduc-

tion [20], [64]. A large number of mutation tools have been

introduced for multiple programming languages including

C [19], [32], C++ [37], Java [43], [44], and many others [13],

[15]. Jia and Harman [33] provide a survey of mutation testing.

One area of research on mutation testing has focused on the

comparison of mutation testing tools for a single programming

language. Multiple studies [17], [25], [58] compared different

mutation testing tools for Java programs. The work most

similar to ours is the work by Gopinath et al. [25]. In their

work, they compared three mutation testing tools that work on

Java applications. Two of the tools used in the study generated

mutants on the Java byte-code (effectively the IR for Java)

while the remaining tool generated mutants on the Java source

code. As such, the authors were able to evaluate the effects of

generating mutants at different levels, SRC vs. IR, and they

found that the level at which mutants are generated does not

significantly affect the mutation score. However, they used the

tools out-of-the-box and did not control for mutation operators.

In our study, we use mutant generation tools with the same

operators at both levels, allowing for a fairer comparison of the

effects of mutants generated at different levels. Furthermore,

we evaluate with C applications. Our findings are similar

to theirs in terms of mutation score, but we also study the

number of equivalent and duplicated mutants, the breakdown

per operator, and multiple types mutation scores at more depth.

In our prior work [29], we studied the effects of compiler

optimizations on mutation testing. We mutated IR that was

compiled at different optimization levels (-O0 vs. -O3). We

later released our tool SRCIROR for performing mutation

testing at both the SRC and IR levels [5]. Expanding on our

prior work [28], we compare SRC and IR on more Coreutils

programs, and we sample the test pools to create smaller test

suites to measure the correlation of mutation scores between

the two levels. We futher investigated minimal and surface

mutants and comparing against faults in Space.

Another line of research involves identifying equivalent

mutants. The problem is known to be undecidable in gen-

eral [12]. One common methodology that has been used to

detect equivalent mutants is the development of heuristics that

can point to likely equivalent mutants [10], [27], [54]. For

example, Offutt and Pan formulated the problem of identifying

equivalent mutants as a constraint optimization problem [48].

Their approach analyzes the original code and a mutant’s path

conditions, and it uses those as constraints to determine if the

mutant is equivalent to the original code. Another example is

the work of Papadakis et al. [51] that evaluated trivial compiler

equivalence (TCE) to identify definitely equivalent mutants.

They show that a significant portion of equivalent mutants

can be detected by comparing the mutated binaries with

the original binary. We also use TCE to identify equivalent

mutants and compare the number of equivalent mutants at each

level. We find that TCE is crucial when a tool mutates all code

and not only selected functions [51].

Another similar problem is detecting redundant mutants.

Redundant mutants are mutants that map to similar potential

faults in the program, such that test suites that kill any of

these mutants only can detect the same kind of faults [35].

Having fewer redundant mutants can increase the efficiency of

mutation testing, because not all redundant mutants should be

run during mutation testing. Gopinath et al. [26] defined both

minimal and surface mutant sets, used to identify and avoid

redundant mutants. We compare both minimal and surface

mutant sets at the two levels, following the terminology from

Gopinath et al.. The surface mutants from Gopinath et al. are

also defined by Ammann et al. [7] as minimal mutants (dif-

ferent than what Gopinath et al. defined as minimal mutants)

and by Kintis et al. [36] as disjoint mutants. Papadakis et

al. [49] recently studied surface mutants as part of their work

on comparing indicators of mutant quality, classifying surface

mutants as mutants that are diversely killed by different tests,

being representative of all the other mutants.

Selective mutation aims to select a subset of mutants to be

used for evaluation. Most selection methods work by compar-

ing the mutants generated by different mutation operators to

identify a subset of the operators that produce high quality

mutants [11], [24], [47], [59]. Zhang et al. [63] compared

selective mutation based on operators with random mutant

selection and concluded that random mutant selection can

also give similar results. A more recent study [62] combined

operator based mutant selection with random selection by

sampling mutants from selected operators and reported that

the combination is also effective. We compare mutation testing

at the two different levels while breaking down the results

based on mutation operator to see if any specific operator has

a bigger effect on one level or the other. We find that for the

comparison of SRC vs IR, the results for different operators

are similar for mutation scores.

VIII. CONCLUSIONS

We present the first extensive study that compares mutation

testing at the SRC and IR levels. We perform our study on

15 applications from Coreutils programs with 1022 tests. To

ensure a fair comparison between the two levels, we use the

same mutation operators for SRC and IR.

Our results show that mutation testing at the SRC level is

more economical to run than at the IR level. We also find

that the NEND mutants at both levels have similar quality

and lead to mutation scores that are highly correlated. These

results generalize across operators, and are not specific to

only some operators. Furthermore, we show the effect of

mutating test code on the mutation score. For researchers using

mutation testing to compare test suites or testing techniques,

we recommend performing mutation testing at the SRC level.
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