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Abstract—Modern integrated development environments
(IDEs) make many software engineering tasks easier by providing
automated programming support such as code completion and
navigation. However, such support – and therefore IDEs as a
whole – operate on one revision of the code at a time, and leave
handling of code history to external tools or plugins, such as
EGit for Eclipse. For example, when a method is removed from
a class, developers can no longer find the method through code
completion. This forces developers to manually switch across
different revisions or resort to using external tools when they
need to learn about previous code revisions.
We propose a novel approach of adding a temporal dimension
to IDEs, enabling code completion and navigation to operate
on multiple revisions of code at a time. We previously intro-
duced the idea of temporal code completion and navigation,
and presented a vision for how that idea may be realized.
This paper realizes that vision by implementing and evaluating
a prototype tool called Tempura. We describe our algorithm
for processing and indexing historical code information from
repositories for Tempura, and demonstrate Tempura’s scalability
with three large Eclipse projects. We also evaluate Tempura’s
usability through a controlled user study. The study participants
learned about the code history with more accuracy when using
Tempura compared to EGit. Although the sample size was not
large enough to provide strong statistical significance, the results
show a promising outlook for our approach.

I. INTRODUCTION

Modern integrated development environments (IDEs) pro-
vide automated programming support that make many soft-
ware development tasks easier. For example, many IDEs
offer context-specific programming assistance with code com-
pletion, providing developers with proposals for completing
identifiers, such as type, method, or field names, from a given
prefix of element names. IDEs also offer navigation support,
allowing developers to quickly find and navigate to type,
method, and field declarations. These IDE support features are
continuously being studied and improved. For example, Code
Recommenders [1] in Eclipse can suggest identifier completion
from a given partial name match and suggest completion for
longer code snippets. Others have introduced a tool that auto-
matically synthesizes code snippets using program elements
available in the current scope of code [2]. Some research
prototypes additionally use dynamic program information to
improve navigation [3], [4].

While such automated programming support in IDEs help
developers’ programming tasks, these features, and thus the
IDEs as a whole, operate on one revision of the code at a
time. However, developers working on continuously evolving
projects not only have to work with the most current revision
of code but also frequently need to understand code changes
from past revisions made by colleagues or even by themselves.

This is because successful software development relies heavily
on implicit knowledge, an important subset of which is under-
standing the history of the code [5]. When the developer’s
implicit knowledge becomes incorrect or outdated, their pro-
ductivity is hindered as they are forced to switch context from
writing or fixing code to rebuilding the knowledge.

Version control systems (VCSs) build and maintain an
explicit knowledge base by recording all changes over the
history of a project. VCSs, however, record all the changes
to a project’s code, whether it is a renaming of a method
or a spelling correction in comments. Therefore it is left
up to developers to sift through all the recorded changes in
order to find pertinent changes that impact their program-
ming tasks. In addition, while most modern IDEs provide
functionality that supports different VCSs, this functionality
mostly exists as add-ons or plugins, for example, EGit and
Subversive for Eclipse. There is a distinct separation between
core IDE features like code completion and navigation and
VCS features. Current IDEs that restrict core IDE features
to operate only on one revision of code inherently hamper
developers’ productivity, because developers are forced to
tediously search through revision history in VCSs or manually
switch to different revisions when seeking information from
past revisions of code.

For example, consider a scenario where a field is renamed.
Alice, one of many developers working on a project, tries to ac-
cess a field called NUM_EDGES that she used before by invoking
code completion on its declaring class, LexerATNSimulator.
Unbeknownst to Alice, however, the NUM_EDGES field was
renamed by her colleague. When Alice does not find the
NUM_EDGES in the completion proposal list, she suspects that
the field is either renamed or removed, which forces Alice to
pause her programming task and search through the revision
history in the project’s VCS. One of the biggest challenges
Alice faces in her search is the sheer volume of change history,
for example, by using Git’s log operation, that she has to filter
through even before she finds the specific commit that contains
the pertinent changes. For example, there may be many com-
mits made by her colleagues since the last time she updated her
local Git repository. The declaring class LexerATNSimulator
itself may have undergone many changes, or been deleted
altogether. Also, if the commit messages are unclear, or if
the commits contain multiple unrelated changes, Alice’s task
becomes even more complicated and tedious. Her search
process will likely become slower as the size, duration, and
number of people involved in her project increases. While
many VCS tools provide operations like “blame” that show
the last person to make changes to the selected file or line of
code, these operations cannot be performed on deleted lines.
However, if Alice can still find the NUM_EDGES field in the



Fig. 1. Tempura’s historical code completion proposals for LexerATNSimulator class are shown in gray, with historical information displayed in tooltip.
Example code is from ANTLR4 project.

completion proposal list and use it to pinpoint the exact change
that removed the field, she could complete her task much more
efficiently.

We envision a new approach of extending IDEs by adding
a temporal dimension, allowing the familiar programming
support in IDEs such as code completion and navigation to
work with multiple revisions at a time without resorting to
manual revision switching. This paper builds on our short
paper that introduced the idea of temporal code completion and
navigation [6]. Our approach locates types and members from
past revisions of code that are relevant to the current context
and presents them through code completion. Our approach also
allows developers to search for and navigate to types in any
revision, even deleted types. We implemented our approach
in an Eclipse plugin called Tempura1. This paper makes the
following contributions:

• An algorithm for processing and indexing past revisions
of code in VCSs in order to support temporal dimension
in IDEs.

• An open-source prototype Eclipse plugin, Tempura, that
embodies our approach for temporal dimension, support-
ing the Java programming language and Git VCS.

• An evaluation of Tempura that answers the following
two research questions:

RQ1: How efficiently can code history information be
collected from a project’s repository? How scalable can
the computation be for large real-world projects?
RQ2: Does the history information that Tempura
provides through Eclipse’s code completion and
navigation features help developers to learn code
history more accurately and efficiently?

We conducted an experiment with three large Eclipse
projects to show scalability of Tempura (RQ1), and a
controlled user study with 10 participants to evaluate
how Tempura compares with EGit that handles code
history separately from the current revision of code
(RQ2). The results show that Tempura can index the
history of projects with over 80,000 files and 20,000
revisions in less than 12 minutes, with less than 3
second run-time response time, and that Tempura allows
developers to learn about code changes with 36% higher
accuracy and with 50% higher efficiency in terms of rate
of information acquirement compared to EGit.

1Tempura is a Japanese dish, but we derived the name from the word
“temporal” for our tool.

All materials, including Tempura’s source code and user
study materials, are publicly available at http://mir.cs.illinois.
edu/tempura, and more details of our work can be found in [7].

II. TEMPURA TOOL

Tempura embodies our approach of extending IDEs with
a temporal dimension by allowing Eclipse to simultaneously
operate on previous revisions of the code as well as the
current revision. Tempura processes and indexes historical API
information from a project’s VCS in order to provide quick
feedback in an interactive use, and supports two main features,
(1) temporal code completion, and (2) temporal code navi-
gation with type search. While our Tempura implementation
focuses on the Java programming language and the Git VCS,
our ideas generalize to other languages and VCSs. Tempura
supports one Git repository at a time, requiring an Eclipse
workspace to have projects from a single Git repository.

A. Temporal Code Completion

Tempura augments Eclipse’s code completion with pro-
posals that were possible in all the previous revisions of
the code in the given context. The context is defined by
program elements involved in the code completion invocation,
their package and inheritance relationships, and the access
restriction rules between Java program elements. More pre-
cisely, let us call the element on which code completion
is invoked the receiver element (a static type reference of
LexerATNSimulator type in our example), and the element
from which the code completion was invoked the caller ele-
ment (the pushMode method in Figure ). The receiver element
may be a reference variable that can be resolved, or a string
token that can be used as a prefix of a name. The caller element
can be a method or a type. The resolved type or name of the
receiver element and the resolved type of the caller element’s
(enclosing) type, together with their package and inheritance
relationships, form the code completion context C.

Figure shows the code completion proposals for the
LexerATNSImulator class, where historical proposals are
displayed in gray. Each historical proposal item also displays
relevant information from the VCS in its tooltip, including the
date, author, message, and ID of the commit (Git uses SHA-1
hash for commit ID) that removed the particular method or
field. The historical code completion proposals cannot be used
in the same way as the current code completion proposals,
because they will cause compilation errors if inserted into the
current code. Therefore, when a developer selects a historical
proposal, Tempura displays a comparison (or a diff view)
between the revision that last contained the historical proposal



Fig. 2. Selecting a historical code completion proposal opens Eclipse’s diff view, comparing the revision that removed the proposal (left) with the previous
revision (right).

Fig. 3. Tempura’s Open Type in History dialog shows historical types,
including deleted ones (listed with a strike-through). Selecting a type displays
details about the last revision of the type at the bottom of the dialog window.
Tempura also identifies and displays the renamed or moved types with arrows.

and the revision that removed it (Figure I). It is easy to
conjecture that if Alice is using Tempura when searching for
the NUM_EDGES field, not only could she very quickly learn that
NUM_EDGES was renamed to MAX_DFA_EDGES and assigned a
different value in revision 71e0c66, but she could also see
other changes that were made in the same commit.

B. Temporal Code Navigation

Tempura supports temporal code navigation by allowing
developers to search for and open any type from any revision
of their projects using the Open Type in History dialog
(Figure II-B), including deleted types that are no longer
present in the current revision. When a developer searches
for a type, the dialog lists all the search matches, where
deleted types are shown with a strike-through. For example,
Figure II-B shows search results for classes whose names start
with ParserATN, and shows that ParserATNFactory and
ParserATNSimulatorVariationInnerOuterContexts
are deleted types that no longer exist in the current revision.
Selecting a type from the search result displays at the bottom
of the dialog window the date and the revision ID of the
commit that last changed the selected type. In addition,
Tempura identified that ParserATNSimulator was renamed
from a type called v2ParserATNSimulator, and describes
the change with an arrow depicting the rename (or move)
change (Section III-A).

If the developer chooses to open a type from the dialog,
Tempura opens the type in a read-only historical editor (Fig-
ure 4). The historical editor contains a list of revisions in which
the file containing the historical type was modified, along with

date, commit ID, author, and commit message. The editor also
uses background colors to show changes with respect to a
previous revision. For example, Figure 4 shows the contents of
LexerATNSimulator class in revision 71e0c66, and the line
of code highlighted in blue background shows the code that
has changed since revision 5225604 (the change corresponds
to renaming of the NUM_EDGES field to MAX_DFA_EDGE, shown
in Figure I). Similarly, green background highlights added
lines of code. Tempura also allows developers to open a
diff view comparing the selected revision in the list and its
parent revision (Figure I) with the “Show Diff with Previous
Revision” button.

III. ALGORITHM

The goal of Tempura is to present developers with all
the code completion proposals and type search results that
were possible at some point in time in the past. The most
straight-forward way of collecting the historical proposals for
a context C is to check out every revision of a project and
invoke code completion in C in each revision, and similarly for
collecting type search results. However, this approach proved
to be prohibitively expensive as our initial experiment with
the ANTLR4 project [8] took roughly 30 seconds to check out
and build each revision of the project. There were total of
1636 revisions of the project at the time of experiment, which
would have translated to over 13 hours to process all revisions.
In addition, Eclipse allows developers to use different build
systems other than its own, and it is impossible for Tempura
to support every possible build system. Our goal for Tempura
is to make it usable in terms of computation efficiency and
portability, therefore we implemented an algorithm that can
operate independently of any build system.

Our algorithm is a two-step algorithm that (1) parses
every revision of every class from the VCS and indexes API
information of types and members by (declaring) types’ fully-
qualified names (FQNs), and (2) retrieves and filters code
completion proposals and type search results.

1) Parsing Past Revisions of Code: Different VCSs track
changes in different ways. VCSs such as CVS and Subversion
store information as a list of file-based changes, and track
changes made to each file over time. In contrast, Git stores
a snapshot of added or modified files every time a commit is
made. For files that have not changed, Git stores a link to the



Fig. 4. Tempura’s Historical read-only editor with a list of revisions on the left hand side. Blue background color highlights the snippet of code that was
changed since the last revision (similarly, green highlights added code).

previous identical file it has already stored for efficiency [9].
Note that this difference does not preclude other VCSs or make
Git more advantageous for Tempura. Our decision to support
Git was based on its popularity, and we believe supporting
other VCSs would require only minor implementation changes.
The following pseudo code describes how we parse historical
code revisions.

function processRepository(Repository)
foreach commit C in a Repository

in chronological order
foreach file A that is added in this commit

parse(A)
foreach file M that is modified in this commit

parse(post-modification revision of M)
foreach file D that is deleted in this commit

parse(pre-deletion revision of D)
foreach file R that is renamed in this commit

//Git-specific
parse(post-rename revision of R)

function parse(File)
//parse compilation unit in File with ASTVisitor
foreach top-level Class, Interface, or
Enum declaration T in File

store commit data {commit ID, File’s next commit ID,
path of File, and File ID}, T’s FQN,
and FQNs of T’s superclass and interfaces

foreach nested Class, Interface, or
Enum declaration T in File

store commit data, T’s FQN, T’s enclosing type’s FQN,
and FQNs of T’s superclass and interfaces

foreach Method declaration M in File
store commit data, access modifier,
return type’s FQN, method signature,
and M’s enclosing type’s FQN

foreach Field declaration F in File
store commit data, access modifier, type’ FQN,
and F’s enclosing type’s FQN

Tempura uses Eclipse’s Java parser to parse the added, modi-
fied, deleted, or renamed files in each commit from a project’s
Git repository. The rename changes are detected by using Git’s
rename detection capability, and Section III-A details how
Tempura uses it to identify renamed or moved types. Tempura
extracts API information from each file, i.e., declarations of
types defined in a file, and their method, field, and inner class
declarations (and their members recursively). The parsed API
information is stored in a data object called HistoryElement,
which is a simplified abstract syntax tree (AST) node object
that also records the ID of the commit (SHA of the commit
object) in which the file containing the type or member was
modified, ID of the file’s next commit (child revision in the
current branch), ID of the file (SHA of the blob object), and
the path of the file (this is to efficiently support VCSs which
track files, not individual classes). Tempura will store the
HistoryElements in a set indexed by the (enclosing) type’s
FQN.

Parsing a Java file every time it is added, modified,
renamed, or deleted effectively records for each type or
member the revision in which it was last observed in the
file. For example, NUM_EDGES field was last observed in the
LexerATNSimulator class in a file in revision 5225604.
The file’s child revision, 71e0c66, then renamed the field
to MAX_DFA_EDGE, effectively removing the NUM_EDGES field
from the class (Figure I). Therefore, by also recording the child
revision’s ID, Tempura can easily and quickly show a diff view
when a historical proposal is selected. In addition, the parsing
and indexing of the API information allows Tempura to use
the information for both code completion and type search.

2) Retrieving and Filtering Proposals: For code comple-
tion, when a developer invokes code completion in a context
C, Tempura uses Eclipse JDT’s code completion to resolve
and identify the caller and receiver types. Tempura then uses
the receiver type’s FQN to find the set of HistoryElements.
While traversing the set of HistoryElements, Tempura uses
the caller and receiver types’ identities to compute access
rules and filter the HistoryElements. For example, any
HistoryElement with private access modifier is excluded un-
less the caller and receiver types are the same type. In addition,
Tempura disregards proposals that exist in the current revision
of the receiver type so as not to duplicate the proposals. For
type search, Tempura matches the search phrase to the FQNs of
all the types indexed from the repository. Unlike temporal code
completion, however, temporal navigation with type search is
not restricted to any context, and also includes the types that
are present in the current revision of code along with deleted
types. This is because the read-only historical editor allows
developers to choose any revision of the type using the list of
revisions on the left-hand side. Limiting runtime computations
to simple index lookup and filtering for code completion and
type search allows for a fast response time regardless of the
length of project or receiver type’s history.

A. Challenges

There are a number of important aspects in presenting code
history through the current workspace with code completion
and navigation that require careful consideration. We describe
what they are and how Tempura handles them.

Handling Complex Changes: As described earlier, Tem-
pura collects code completion proposals from all past revisions
in the given invocation context, which are a set of receiver and
caller elements and their resolved types that determine acces-
sible program elements. Those program elements, however,
could also have had complicated history. While such changes
would have little to no impact on temporal code navigation



with type search, temporal code completion is more sensitive to
them. We have identified three such cases and their solutions.

Firstly, consider a type T that extends a super type T ′ in the
current revision. When a developer invokes code completion on
an element E of type T , the proposals include some members
from T ′ that are accessible through T . However, it is possible
that T extended a different super type in the past, T ′′, in which
case Tempura’s historical code completion also needs to in-
clude accessible members of T ′′, or otherwise Tempura would
be ignoring some parts of the code history. Tempura handles
the possible changes in inheritance relationships by recording a
type’s super type and interfaces during indexing. Then, while
filtering, Tempura recursively searches a type’s all past and
current super types and interfaces to collect accessible fields
and methods. Filtering, however, would need to be improved
in the future to take into account the possible changes in the
past super types and interfaces. Any changes to T ′′, or more
specifically deletion of its members, after it was unextended by
T should not affect the temporal code completion results for
E. This could be implemented by recording the last revision in
which T ′′ was extended and filtering out members that existed
only in the subsequent revisions.

Secondly, changes in non-identifying components of an
element can also affect the result of temporal code completion.
For example, a type in Java is identified by its FQN, which
does not include the value of the type’s access modifier.
However, changes in the access modifier can change whether
or not the type is included in some temporal code completion
results. Similarly, identifying members of a type simply with
their signatures during indexing presents some limitations. For
example, while access modifiers and return type are not part of
a method’s signature, any change in them affects the resulting
set of code completion proposals. Tempura therefore records
such components when indexing. For example, if a field F of
a type T had its access modifier changed from protected to
public at some point in the past, two instances of F will be
indexed with T ’s FQN, one with protected access modifier
and the other with public access modifier.

Lastly, there may be cases where seemingly identical
elements in different revisions may in fact be different. For ex-
ample, consider a type T that had a method with the following
signature setLocalTime(LocalTime t) in revision r1. In
a later revision r2, the type T was modified where an import
statement import java.time.LocalTime; was changed to
org.joda.time.LocalTime;. While the change in import
statements clearly changes the signature of the setLocalTime
method, simple parsing cannot identify the change of the argu-
ment LocalTime’s type. Tempura therefore computes simple
type resolution whenever possible to identify actual types, by
searching in import statements for their simple names. If an
import statement contains a wildcard (‘*’), Tempura only uses
the simple name of the types. If the simple name is not found in
the import statements or the java.lang package, and there is
no wildcard import statement, then Tempura uses the declaring
type’s package name to resolve types.

Supporting Branches: Code history of large projects is
rarely linear. They involve multiple branches throughout their
life cycle, and they present various challenges when merging
the branches. For example, some researchers aim to predict
merge conflicts ahead of time by identifying code changes in

branches that relate to code changes in the main development
branch [10]. Multiple branches and their merging also pose
an important issue when presenting code history information
to developers, as presenting a code completion proposal or
type search result that pertains only to a different branch can
confuse developers and lead them to build wrong implicit
knowledge of their code. Tempura therefore maintains a
separate index for each branch. As Tempura processes the
commits in chronological order, it checks if a commit is in the
log of each branch, and updates a branch’s index only if it is.
A separate index for each branch is necessary because an index
effectively compresses a branch’s history, and the timestamp
on each commit conveys no information about which branch
it belongs to.

Handling merge commits also present challenges for
Tempura during indexing, most importantly because a non-
conflicting merge commit effectively groups and duplicates the
changes that were made in individual branches. For example,
when Tempura processes each commit in the repository in
chronological order, a field added to a class in one of the
branches prior to merging will appear to be added again in the
merge commit, resulting in an inaccurate commit information
being indexed with the field. This means, in a larger scale, that
the entire history of a project will be represented by few merge
commits. Our solution is therefore to skip the merge commits
during indexing. However, this is only a partial solution for
non-conflicting merge commits. If a merge required developers
to manually resolve conflicts, which may involve removal or
addition of members, skipping merge commits may result in
loss of valuable information. One possible solution is to parse
the file snapshots in merge commits only if it is a conflicting
merge. However, while identifying a future merge commit as
either conflicting or non-conflicting would be trivial, identify-
ing for a past merge commit may require extra computation
(e.g. re-merging of the involved branches) to determine the
conflict status.

Inferring Changes: While inferring the nature of changes,
specifically refactorings [10-14], is out of scope of our work,
Tempura infers class rename and move refactorings by lever-
aging Git’s rename/move detection capability. Git can easily
detect renaming of a file with no changes in its content because
Git tracks file contents and not file names. However, because
the Java syntax requires changes in both the file name and
class (or package) name in the file content in case of a
class rename (or move), Tempura uses Git’s rename detection
threshold score to infer class rename or move refactorings.
The threshold score is the minimum byte content similarity
in percentage required to pair a deleted and an added files
in a commit as a renamed (or moved) file. Tempura sets the
threshold to a conservative 99. When parsing, Tempura keeps
a record of pairs of paths indicating pre- and post-rename (or
move) files, and uses the path pairs to identify the FQNs of
pre- and post-rename (or move) classes (including non-public
and inner classes declared in a file). This information is then
displayed to developers in the Open Type in History dialog
(Figure II-B). Because the rename/move detection is based
on Git’s byte comparison and not on syntactic and semantic
analysis of Java code, Tempura makes conservative heuristic
decisions when required. For example, if Git detects that a
file containing one class is renamed to a new file containing
multiple classes, Tempura chooses not to report the rename



TABLE I. INDEXING OF EVERY JAVA FILE IN EACH REVISION FROM GIT REPOSITORIES.

Project # of Commits Time (s) # of Files Parsed Parsed Data Size (bytes) File Size (bytes)

org.eclipse.jdt.ui 26684 308.732 118225 1486824832 41287550
org.eclipse.platform.ui 25052 237.29 102567 1259510656 42480222
org.eclipse.jdt.core 21165 711.92 83194 4661719552 24077726
ANTLR4 1636 28.20 7781 108760168 4979603
LANSimulation 21 0.96 54 416672 15813

TABLE II. TEMPORAL CODE COMPLETION INVOCATIONS.

Class # Revisions # Hist. Proposals Time (s)

org.eclipse.jdt.core.JavaCore 712 599 2.08
org.eclipse.jdt.internal.compiler.problem.ProblemReporter 611 1385 1.30
org.eclipse.jdt.internal.compiler.parser.Parser 556 1699 1.36
org.eclipse.jdt.internal.compiler.lookup.ReferenceBinding 212 1229 2.58
org.eclipse.jdt.internal.compiler.Compiler 125 58 0.57
org.antlr.v4.runtime.atn.LexerATNSimulator 107 200 0.58

change. Similarly, if Git detects that a file containing n classes
is renamed to a new file containing the same number of classes,
Tempura checks the equality of each class’ simple name before
and after the change.

Tempura limits refactoring inference only to class rename
and moves, because inferring refactorings on members is a
non-trivial problem and an active research topic. For example,
researchers have extracted refactorings from software archive
to help detect possible sources of errors and capture intent of
changes [11], and proposed a heuristic-based algorithm that
detects renamed methods between two revisions of code [12].
Tempura may be extended to leverage existing research tools
to infer refactorings in the future. For example, Negara et al.’s
method of assigning unique IDs to every AST node when
tracking changes [13] suggests a promising approach.

IV. EVALUATION

We evaluated Tempura in two ways. First, we evalu-
ated Tempura’s efficiency in indexing historical data from
a project’s repository and runtime computation. Second, we
conducted a controlled user study to compare and evalu-
ate Tempura against EGit [14], a widely used Git plugin
for Eclipse, in helping developers learn about code history.
Through both evaluations, we answer the following questions:

RQ1: How efficiently can code history information be col-
lected from a project’s repository? How scalable can the
computation be for large real-world projects?

RQ2: Does the history information that Tempura provided
through code completion and navigation features that are
common in IDEs help developers to learn code history more
accurately and efficiently?

A. Indexing and Runtime Efficiency

To answer RQ1, we evaluated Tempura’s efficiency in
indexing API information from Git repositories of three large-
scale projects. The experiment was performed on a dual-core
2.66 GHz MacBook Pro, with Eclipse 3.8 and Java 1.6. The
results are shown in Table I. The values for the Time (s) column
were calculated by averaging three separate indexing processes
for each project. # of Files Parsed column shows the total
number of files that Tempura parsed. We also included ANTLR4
project and the LANSimulation project (used in our user
study, described in Section IV-B) for references. The indexing

takes place when Tempura is first installed, and subsequent
revisions are parsed immediately following a commit to the
repository, thus incurring only negligible cost. Our experiments
showed that Tempura can index the code history of even large-
scale projects with more than 20,000 revisions in less than 12
minutes, which we believe demonstrates Tempura’s efficiency
and scalability.

In addition, we also evaluated Tempura’s runtime efficiency
by invoking code completion on six classes semi-randomly
selected from the org.eclipse.jdt.core project (Table II).
The top three classes, namely JavaCore, ProblemReporter,
and Parser classes, are defined in files that have undergone
the most number of revisions in the project. Other classes
from the project were randomly selected, and we also include
the LexerATNSimulator class from the ANTLR4 project that
we use as an example in this paper. The # Hist. Proposals
column indicates the number of proposal candidates each
algorithm inspects in order to collect the historical proposals,
and the Time (s) shows how long it takes for each algorithm
to collect historical proposals, averaged over three invocations.
With further caching, subsequent code completion invocations
showed sub-second response times, and they can be further
reduced, for example, by limiting the number of past revisions
to inspect.

One-time indexing takes between 5∼12 minutes for large
projects with over 80,000 files and 20,000 revisions. Also,
because runtime computation is limited to index lookups,
our algorithm shows fast response time, e.g., under three
seconds for types with more than 600 revisions (RQ1).

B. Controlled User Study

The goal of our controlled user study is to determine
whether the temporal dimension that Tempura adds to Eclipse
can help developers learn about code history more quickly
and accurately (RQ2). While a more long-term study is better
suited to accurately evaluate Tempura since its main purpose
is to extend an IDE with code history information, we con-
ducted a small scale study as a preliminary demonstration of
Tempura’s usability and efficacy.

We conducted a between-group user study with 10 partici-
pants. They were randomly divided into two groups, a control
and a treatment. We gave the participants a project that they



TABLE III. CHANGES MADE TO LANSIMULATION PROJECT.

1. Encapsulate fields in Message class
2. Encapsulate fields in Node class
3. Non-code changes
4. Extract a new method called log in Network class
5. Rename Message class to Packet
6. Non-code changes
7. Inline printAccounting method in Network class
8. Add getter and setter methods for firstNode field, and getter method
for workstations field in Network class
9. Move DefaultExample method from Network class to
LANSimulation class
10. Move log method from Netowork class to Node class
11. Move printDocument method from Network class to Node
class
12. Non-code changes
13. Add Printer and Workstation classes that extend Node class,
and remove type field from Node class
14. Extract isAtDestination method in Network class
15. Rename printDocument method in Node class to
printJobStatus
16. Add LANSimulationUtil.jar that contains
NetworkPrinter hierarchy, and deprecate previous print methods in
Network class
17. Fix assertEquals calls in LANTests class
18. Clean up try-catch statements in LANTests class
19. Non-code changes
20. Add empty test methods for testing simple, XML, and HTML print
functions

TABLE IV. QUESTIONS GIVEN TO USER STUDY SUBJECTS.

1. What happened to Message class?
2. What happened to private Network.printAccounting method?
3. What happened to Network.printDocument method?
4. Can you identify any other methods that were previously defined in
Network class?
5. What are the changes made to/in Node class?
6. Implement the bodies of testPrint, testHTMLPrint, and
testXMLPrint methods in LANTests class.

were not familiar with, and asked them to answer questions
about its code history. The participants in the control group
used only EGit, and those in the treatment group used only
Tempura to explore code history. EGit follows the conventional
approach of separating VCS operations and programming, in
much the same way as other VCS plugins (e.g., Subversive).
We conducted a between-group study rather than an in-group
study because once participants learn the history of the subject
program using either EGit or Tempura, they cannot unlearn it
to produce fair results.

1) Study Design: We used a Java project called
LANSimulation from the Refactoring Lab Session exercise
developed at LORE [15] and used in several previous user stud-
ies [16], [17], [18], [19]. While the original LANSimulation
project is small with only 5 classes, we believe that it is of a
reasonable scale for subjects to understand and work with in
a short period of time. The study involved two sessions, with
the entire study lasting about 1 hour. During the first session,
participants were given a revision of LANSimulation project,
adopted and modified from the original LANSimulation
project, and asked to study and understand the code in 15
minutes. In the second session immediately following the first,
participants were given the same project that has undergone
20 revisions. The first paper author built the LANSimulation
project’s history by making a set of systematic changes (Ta-
ble III), mainly refactorings adopted from the LORE exer-

TABLE V. GRADING RUBRIC.

1. Renamed to Packet (2pts), Other changes (1pt)
2. Inlined (2pts), Other changes (1pt)
3. Moved from Network to Node (1pt)
Renamed (1pt)
4. DefaultExample (1pt), log (1pts)
5. Encapsulation (1pt)
log from Network (1pt)
Added NetworkPrinter hierarchy (1pt)
printDocument from Network (1pt)
printJobStatus (renamed from printDocument) (1pt)
6. Implement test methods using NetworkPrinter classes (2pt per test
method)

Maximum possible score: 21

cise, interspersed with non-code changes (e.g., formatting).
Participants answered a set of questions regarding the changes
(Table IV, given in a text file). Both groups were given a
written user guide for the tools they used prior to the the
user study [20], [21], and were also allowed to refer to the
user guides at any point during the user study. There were no
time restrictions for the second session, and participants were
allowed to answer the questions in any order.

To answer RQ2, we scored participants’ answers following
a clearly defined rubric (Table V) and measured the time it took
for participants to answer the questions using the designated
tools. We then scored each participant’s answers without
knowing to which group the participant belonged. Each user
study session was recorded using a screencast software, and
the recordings were analyzed after the study to determine the
time that participants spent using the designated tools. The uses
of the tools were marked by any window or interface of the
tools being in focus. We concentrated on the tool usage time
as opposed to the time that each participant took to finish the
user study in order to eliminate as much variables as possible,
for example, participants’ experiences with Eclipse and speed
of programming. We also calculated the rate of information
acquirement by dividing the raw score by tool usage time, to
obtain a more precise indication of how efficiently the tools
help developers gain understanding of code history.

One of the participants was a professional software engi-
neer, and the rest of the participants were graduate students in
the computer science department at the University of Illinois
at Urbana-Champaign, majoring in various sub-disciplines. All
participants had at least three years of Java experience, with
seven participants having more than eight years of experience.
Five participants indicated that they use Eclipse IDE for their
programming tasks, one uses IntelliJ, and the rest do not use
IDEs regularly. All participants had at least two years of expe-
riences using VCSs (Git, SVN, or Mercurial). The control and
treatment groups had similar average years of programming
experience (7.2 years and 7.4 years, respectively), but the
control group had overall more experience with VCS (5.8
years) than the treatment group (3.8 years). Also, three out
of five participants in the treatment group stated that they do
not use IDEs regularly, whereas the control group had one
non-IDE user.

Participation was strictly voluntary with no rewards of-
fered, and invitations to the study were sent through individual
emails and departmental mailing lists.



TABLE VI. USER STUDY RESULTS.

Control - EGit Treatment - Tempura
Participant Score (%) Time (s) Score per min. Participant Score (%) Time (s) Score per min.

C1 28.6 1387 0.26 T1 42.9 595 0.91
C2 57.1 1341 0.54 T2 66.7 1202 0.70
C3 42.9 961 0.56 T3 66.7 1393 0.60
C4 52.5 797 0.83 T4 76.2 1384 0.69
C5 57.1 1521 0.47 T5 71.4 843 1.07

AVG. 47.6 1201 0.53 AVG. 64.8 1083 0.79

2) Results: Table VI shows the user study results from
10 participants. The Score (%) columns show the scores each
participant received for their answers, and the Time (s) columns
show the tool usage time in seconds. The Score per min.
columns show the rate of information acquirement, calculated
in terms of raw score that each participant gained per minute.
Our results show a higher average rate of information acquire-
ment for participants using Tempura than those using EGit,
suggesting Tempura enabled them to learn about code history
more quickly.

On average, the participants using Tempura scored 36%
higher accuracy with 50% higher efficiency than the
participants using EGit (RQ2).

We performed several statistical analyses on the scores and
tool usage times to verify their statistical significance. The p-
values for the score and time from each test are shown in the
table below.

Statistical Analysis Score P-values Time P-values

Welch’s t-test 0.03097 0.2941
Kolmogorov-Smirnov 0.04076 0.8187
Exact Bootstrap 0.03250 0.5759

Since we hypothesized that participants using Tempura would
earn higher scores than those using EGit, we tested the null
hypothesis versus the one-sided alternative hypothesis for the
scores data. The first test we performed is Welchs two-sample
t-test. As shown in the table, this test resulted in a statistically
significant P-value of roughly 0.03 (<0.05). Thus, we conclude
that the one-sided alternative hypothesis is true, that the mean
score using Tempura is greater than the mean score using
EGit. However, while Welchs two-sample t-test is robust and
is especially designed for small sample sizes, it does require
that the populations from which the data are collected be
normally distributed, and normality is difficult to verify with
small sample sizes.

Therefore, we also tested these hypotheses using two other
analyses, to serve as checks. The first of these analyses is
the two-sample Kolmogorov-Smirnov test, which is a non-
parametric test that does not place any distribution assump-
tion on the underlying population. The p-values from the
Kolmogorov-Smirnov test show similar results as the Welch’s
t-test, with the p-value of scores of roughly 0.04. Thus we
conclude that the mean score for those using Tempura is
greater than the mean score for those using EGit. The second
of these analyses is the Exact Bootstrap test, which allows
for the simulation of thousands of new data sets that, when

taken as a whole, can be used to estimate the unknown
underlying population. More precisely, the Exact Bootstrap test
examines every possible permutation of each of our data set
(55 = 3125), and compares the mean of each of the control
bootstrap datasets with that of the treatment bootstrap dataset,
resulting in 3125× 3125 = 9765625 comparisons. Again, the
Exact Bootstrap test resulted in the p-value for the score being
roughly 0.03, confirming the results of and conclusions from
the first two tests. Since the mean score was found to be greater
for participants using Tempura, but no difference was found
between the mean times to completion, it stands to reason that
the mean rate of information acquirement (score per minute) is
also greater for participants using Tempura. More importantly,
however, these p-values provide a promising outlook for our
approach of extending IDEs with a temporal dimension, by
demonstrating efficiency and utility of Tempura.

All data collected from the user study, including the an-
swers, and surveys from each participant are publicly available
at http://mir.cs.illinois.edu/tempura.

V. THREATS TO VALIDITY

The main threat to internal validity is the completeness of
the temporal dimension that Tempura implements. While the
decision to add the temporal dimension to the code completion
and type search features was made based on authors’ personal
experiences about the usefulness of these features and discus-
sions with colleagues with extensive Eclipse experiences, it is
likely that other IDE features can also benefit from addition
of the temporal dimension. Also, user study participants were
given a choice to either use their own machines for familiarity
or use a designated machine for convenience. These machines
varied greatly in terms of specifications and operating systems,
which could have affected the computation time of Eclipse,
EGit, and Tempura. Lastly, because we only had 10 partici-
pants in our study, we cannot trust that random assignment
of participants to the treatment and control groups would be
sufficient to make the groups homogeneous. The small sample
size also prevented us from blocking on possible confounding
variables such as machine used, job, Java experience, IDE
experience, and VCS experience.

The main threats to external validity are the degree to which
the experiments and user study scenarios are representative of
the target population and practice. Firstly, while the Eclipse
projects used in our experiment for evaluating scalability are
widely used by many developers, they may not be represen-
tative of all repositories used for Java projects. Secondly, we
analyzed the results from only 10 study participants, and all but
one were graduate students in the computer science department
at the University of Illinois at Urbana-Champaign. Although
collectively they have diverse experiences in Java, Eclipse, and



Git, they may not be representative of the target population.
Thirdly, the LANSimulation project used in the user study is
of small scale in terms of size and complexity, and the changes
made to the project were mainly refactorings interspersed
with superfluous formatting or comment changes. While these
were deliberately and carefully made choices to ensure that
participants can complete their studies roughly within one
hour, the size and complexity of the project as well as the
nature of the changes may not represent the daily programming
tasks of professional developers. Lastly, Tempura is an Eclipse
plugin for Java projects with Git VCS, and was evaluated
only against Eclipse’s EGit plugin. While many other IDEs
follow the convention of handling only the latest revision of
code and leaving code history to separate VCS tools, which
was the main problem that Tempura is designed to resolve,
differences between IDEs and their VCS tools could require
different implementations of the temporal dimension extension
and thus lead to different study results.

VI. FUTURE WORK

Firstly, we asked the user study participants for additional
features they would like to have in Tempura, and suggestions
included simplified comparisons between revisions and refac-
toring detections:

“[...] it would be nice to have diffing at the
API level, essentially just showing the two eclipse
‘outlines’ for the two different versions.”

“It would be great if there was a way to quickly
tell from where a method was moved.”

These suggestions corroborate supporting refactoring infer-
ence that Tempura currently only partially provides; extending
the refactoring inference support is potential future work.

Secondly, as discussed previously, the Tempura’s support
for the temporal dimension may also be extended. For example,
we have implemented proof-of-concept feature called Open
Call Hierarchy in History that extends Eclipse’s Open Call
Hierarchy, which finds all the previous callers of the selected
member even if they no longer call it, or even if the selected
member is now deleted and no longer present in the code.
Such a feature may be useful, for example, when an incorrectly
implemented method was inlined into its callers. Developers
would greatly benefit from being able to quickly find and fix
the callers that now have the method inlined. While the feature
is not mature yet, we plan to improve and support even more
temporal features that can benefit developers in their everyday
development tasks.

Lastly, a more extensive and thorough evaluation of Tem-
pura is needed. While our experiment with three large Eclipse
projects showed scalability of Tempura, a more rigorous evalu-
ation of Tempura’s performance and scalability is desirable. In
addition, our controlled user study demonstrated that Tempura
can help developers learn the code history efficiently and
quickly, but there are other potential benefits of Tempura
that we wish to evaluate more thoroughly. For example, we
believe Tempura will help prevent developers from having to
switch context between programming and searching in the
history, which can drastically improve their efficiency. Our
controlled user study, however, required minimal programming

from participants, because we wanted to focus on the learning
of code history. We plan to conduct a long-term study with
developers out in the wild, in order to evaluate Tempura’s
impact on developers’ daily programming tasks.

VII. RELATED WORK

A. Code Completion and Navigation

Many researchers have focused on improving code com-
pletion. For example, Omar et al. developed a system archi-
tecture that allows library developers to introduce interactive
interfaces, called palettes, for library users to use for code
completion in the context of class instantiation [22]. However,
palettes are highly susceptible to changes. If the code for which
palettes are implemented is modified, the palettes will also
need to be modified. Perelman et al. defined a language of
partial expressions that makes type-directed predictions to help
developers find method names based on the given arguments,
arguments based on the method name, or to complete binary
expressions such as assignment statements [23]. Similarly,
Duala-Ekoko and Robillard [24] developed a tool called API
Explorer that helps developers discover API methods or types
that are inaccessible from a given API type, by leveraging
the structural relationships between API elements. While such
tools help developers use the unknown APIs, they do not help
developers with the APIs they used to know but have changed,
and as such, the existing tools would be useful for stable APIs,
but the development process in general is inherently dynamic
where the code and APIs change constantly.

Other researchers have focused on providing predictive
support for code completion. Muşlu et al. [25] introduced
an Eclipse plugin called Quick Fix Scout, that computes on
behalf of developers the consequences of Quick Fix recom-
mendations. Quick Fix Scout allows developers to remove
compilation errors faster, but it does little to help developers
rebuild their mental model of the code that may have be-
come outdated and caused the compilation error. Predictive
support can also be interpreted in terms of providing the
code completion proposals that developers are most likely to
select. Mooty et al. introduced Calcite [26] which extends
the existing code completion in Eclipse with crowdsourcing
to support completion of object instantiation (i.e., constructor
completion). While Calcite helps developers learn from the
crowdsourced information, such information may not pertain
to every developer’s code. For example, the most commonly
used instantiation method found on the web may not conform
to their coding standard or style. In contrast, the source of
temporal code completion’s proposals is the history of the code
itself.

Code navigation is also an active research topic. Ko et
al. [27] reported that developers engaged in software mainte-
nance tasks spent up to 35% of their time navigating through
the code, learning how the code works and how to modify
it to complete their tasks. It is not difficult to conjecture
that the time spent in navigating the code will only increase
if developers have to switch between revisions. Other re-
searchers have examined ways to minimize context switch
between programming and navigation. For example, Janzen
and De Volder introduced JQuery [28], an Eclipse plug-in
browser tool based on logic query language. JQuery allows



users to form specialized browsers in which to navigate code
and to perform queries, providing an explicit and unbroken
representation of the exploration paths. Similarly, Storey et
al. combined the notion of waypoints and social tagging
in their Eclipse-plugin called TagSEA [29]. TagSEA allows
developers to add Javadoc style tags in their code that are
shared with other developers, which they can use to search,
group, manage and filter related code. Their approach allows
developers to implicitly create a simple navigational structure.
DeLine et al. introduced an overview features to a development
environment called Code Thumbnails that allows developers
to form and use a spatial memory of source code, both within
a file and between multiple files [30]. We believe Tempura
achieves similar benefits by removing the time delimitation
when programming.

B. Software Evolution

LaToza et al. [5] reported that 50% of developers find
understanding the history of a piece of code to be a difficult
problem. As such, many researchers have extended code
completion and navigation tools with varying interpretations
of historical information.

Robbes and Lanza [31], [32] used change-based infor-
mation to improve code completion, comparing all the code
completion proposals that were suggested and the one that
was selected at every step in the development history. They
collected historical information such as the last modified or
added date of a class/method, and used it to rank proposals
in their tool. The modifications they consider, however, only
pertain to the body of methods or classes, so deleted elements,
moved, or renamed methods or classes are disregarded. Bruch
et al. [33] introduced an intelligent code completion system
that calculates each proposal’s relevance in a given context,
by using examples found in existing code repositories, and
uses the information to filter and rank the proposals. While
the system helps developers to focus only on relevant API
elements, it disregards deleted elements that can no longer be
relevant in the current revision and therefore hides parts of
code evolution information.

Similarly, for navigation, Singer et al. [34] introduced
NavTracks, a tool that monitors and analyzes the navigation
history of software developers as they perform their tasks,
forming associations between related files. These associations
are used to recommend potentially related files when, for
example, a developer opens a file that she knows is relevant to
a bug fix. Mäder and Egyed [35] implemented and evaluated a
program editor tool with code navigation feature augmented
with requirements traceability, which allows developers to
quickly identify where a requirement is implemented. While
improving the speed and accuracy of development tasks, these
tools still only work on one revision of the code at a time.

Other researchers have considered different and novel ways
of promoting integration of VCSs into IDEs [36], [37], [38],
[39]. For example, researchers found that merge conflicts are
frequent and persistent, and introduced tools that continuously
perform speculative merges in order to detect conflicts as soon
as possible. While such approaches and tools achieve a tighter
integration of IDEs and VCSs, they focus on merge conflict
resolution which is strictly a VCS operation. In contrast,

Tempura aims for even tighter integration where code evolution
information stored in VCS becomes a part of the IDEs and thus
a part of everyday development process.

There also have been research efforts focusing on IDEs
instead of VCSs as the source of code evolution informa-
tion [13], [40], [41], [42]. Researchers developed change mon-
itoring and tracking tool for IDEs that capture code changes
and programming operations at a finer granularity. These
research projects focus on change-level software evolution,
where changes are treated as the first-class object. Tempura,
in contrast, treats history as the first-class object. Our goal
is to provide developers with code evolution information that
they can use immediately, and the commit-level information
can provide more succinct information.

Some empirical research provides a good motivation for
our approach of extending code completion and navigation
with the temporal dimension. Code completion support in IDEs
only shows public (or otherwise accessible) identifiers in other
classes. Dig and Johnson found that 80% of changes that break
client applications are caused by API-level refactorings [43].
Kim et al. also found that there is an increase in number
of bug fixes after API level refactorings, often caused by
mistakes in applying refactorings and behavior modifying edits
together [44].

VIII. CONCLUSIONS

We introduced a novel approach of adding a temporal
dimension to IDEs, by seamlessly extending IDEs’ common
programming support such as code completion and navigation
with information from code history. Tempura, our prototype
Eclipse plugin, realizes this vision by extracting API informa-
tion from a Java project’s Git repository and presenting the
information through code completion and navigation, even for
classes, methods, or fields that no longer exist in the current
revision. We evaluated Tempura in two ways. First, in order to
determine scalability of Tempura with large projects, we used
Tempura to compute historical information from three Eclipse
projects, each with more than 75,000 files and about 20,000
revisions. Tempura completed one-time-only indexing for the
projects in 5∼12 minutes. In addition, Tempura showed fast
response time, for example, less than three seconds even for
types with more than 600 revisions. Second, we conducted a
between-group controlled user study that compared Tempura
and EGit. Participants not only learned about code history
more quickly and efficiently with Tempura, but also 36% more
accurately, although some of these improvements were not
statistically significant due to small sample size.
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