
Evolution-Aware Monitoring-Oriented Programming

Owolabi Legunsen, Darko Marinov, and Grigore Roşu

University of Illinois at Urbana-Champaign

{legunse2, marinov, grosu}@illinois.edu

Abstract—Monitoring-Oriented Programming (MOP) helps
develop more reliable software by means of monitoring against
formal specifications. While MOP showed promising results,
all prior research has focused on checking a single version
of software. We propose to extend MOP to support multiple
software versions and thus be more relevant in the context of
rapid software evolution. Our approach, called eMOP, is inspired
by regression test selection—a well studied, evolution-centered
technique. The key idea in eMOP is to monitor only the parts
of code that changed between versions. We illustrate eMOP by
means of a running example, and show the results of preliminary
experiments. eMOP opens up a new line of research on MOP—it
can significantly improve usability and performance when applied
across multiple versions of software and is complementary to
algorithmic MOP advances on a single version.

I. INTRODUCTION

In Monitoring-Oriented Programming (MOP) [5], a poten-

tially unreliable software is monitored against one or more

correctness/safety properties formally specified as in the ex-

ample in Fig. 1. There, lines 2-5 define two events that are

of interest at runtime and when the events should be fired

(after hasNext() returns true, and before calling next()),

line 6 defines the formal property using linear temporal logic

(each call to next() must be preceded by a successful call

to hasNext()), and line 7 allows the user to give code to be

executed when the property is violated at runtime. A tool, such

as JavaMOP [10], automatically adds instrumentation code

in the software where the events take place, which executes

monitoring code generated from the formal properties. MOP

can thus be used as a lightweight formal method for early

bug detection during software development, by providing

additional properties/oracles to complement software tests.

Significant advances have been made to improve the practi-

cality of software runtime monitoring and of MOP [1]–[4],

[11], [14], [15], targeted at solving two major hindrances:

(i) high runtime and/or memory monitoring overhead, and

(ii) scarcity of formal properties to monitor. Also, MOP and

associated techniques, like property mining, have been useful

for finding bugs in well-tested and well-used software [6],

[8], [14], [19]–[21]. All these advances considered only one

software version and did not address the important fact that

software continuously evolves. Yet, as shown with other soft-

ware analysis and testing techniques [12], [23], the accumu-

lated benefits along multiple versions of evolving software can

make such techniques more practical.

We propose Evolution-Aware Monitoring-Oriented Pro-

gramming (eMOP), the first approach for MOP in evolving

systems. eMOP is inspired by Regression Test Selection (RTS),

1 Iterator_HasNext(Iterator i) {
2 event hasnexttrue after(Iterator i) returning(boolean b):
3 call(*Iterator+.hasNext()) && target(i)&&condition(b){}
4 event next before(Iterator i):
5 call(*Iterator+.next()) && target(i){}
6 ltl: [](next => (*) hasnexttrue)
7 @violation {...} }

Fig. 1: The HasNext property in JavaMOP

which aims to improve the efficiency of regression testing

by selecting to re-run only a subset of tests that may be

affected [22] by code changes between two versions. The idea

of eMOP is to make MOP evolution-aware and improve both

its efficiency and usability by monitoring only the parts of code

that changed between versions. The goal is to reduce runtime

overhead and show developers only the violations they care

about, corresponding to the software changes.

The need for eMOP was shaped during a formative study

in which we evaluated JavaMOP on 40 open-source projects

to monitor their test execution against 181 MOP proper-

ties [14]. Test-running time per project increased from 16.4sec

to 232.7sec with 18,810 violations generated, on average,

when JavaMOP was used to monitor one version of each

project. The overhead and number of violations are similar

across multiple versions. It would be beneficial if the runtime

overhead, and the violations generated, on a subsequent ver-

sion of each project are due only to the differences between the

two versions. This paper makes the following contributions:

⋆ MOP for evolving software. This is the first proposal for

MOP in the context of software evolution, as far as we know.

⋆ Synergy. We are the first to combine MOP and RTS, and

show synergy between them.

⋆ Experiments. We conducted the largest scalability study

of MOP on several versions of open-source projects.

⋆ Techniques. We propose three new techniques for improv-

ing the efficiency and usability of MOP as software evolves.

II. BACKGROUND AND EXAMPLE

Consider the buggy code snippet in Fig. 2, which mimics

actual bugs discovered in production AspectJ code (bug IDs

#218167 and #218171), caused by a typo on Line 5—it

should be iter2.hasNext(). This causes a failure if files

has more elements than dirs has. JavaMOP can catch this bug

by monitoring the HasNext property shown in Fig. 1, as long

as findFiles() is called with files having at least two

elements. We use JavaMOP for pragmatic reasons—the ideas

in this paper are general and implementable in any comparable



1 public boolean findFiles(List files, List dirs){

2 File file, dir; int count = 0;

3 for(Iterator iter = files.iterator(); iter.hasNext();){

4 file = (File) iter.next();

5 for(Iterator iter2=dirs.iterator(); iter.hasNext();){

6 dir = (File) iter2.next();

7 if (new File(dir, file.getName()).exists()){

8 count++; break;} //file is in dir

9 }} return count == files.size(); }

Fig. 2: Java code demonstrating subtle bug

1 Specification Iterator_HasNext has been violated on line
net.sf.jsqlparser.statement.Statements.findFiles(
Statements.java:55). Documentation for this property
can be found at http://runtimeverification.com/
monitor/annotated-java/Iterator_HasNext.html

2 Iterator.hasNext() was not called before calling next().

Fig. 3: Sample JavaMOP violation message

MOP tool. The violation handler on line 7 in Fig. 1 can be

any user-provided code; JavaMOP’s default is to generate a

violation containing the property name, the line number of

the target program where the violation occurred, a URL of the

formal property definition, and an explanation of the violation.

Fig. 3 shows a sample violation of the HasNext property.

This example illustrates one benefit of, and one problem

with, MOP. The benefit is that, as long as testing executes

findFiles() (with files having at least two elements),

JavaMOP will generate a violation due to the HasNext

property, which can help discover the bug. Even if some

test executes findFiles() with two lists of equal length,

JavaMOP will generate the violation. In contrast, the checks

that the standard Java library has for next() would not

throw an exception unless findFiles() is called with files

having more elements than dirs has.

The problem of monitoring the HasNext property is that it

can lead to a lot of false alarms, e.g., if the developer implicitly

or explicitly uses knowledge of a list’s size to fetch the next()

element without first calling hasNext(). In fact, violations of

the HasNext property during our own formative study were

dominated by false alarms because developers either explicitly

called size() on a list before calling next(), or called

next() n times, where n is the number of elements used

to initialize the list. In these cases, the generated violations

reduce developers’ confidence in JavaMOP, and make it harder

to inspect all violations (especially if there are a lot of them)

and to find subtle but serious bugs, like the one in Fig. 2.

While one could attempt to devise more precise properties

or employ some hybrid static and dynamic analyses to reduce

false alarms, recent work on static analysis [12] shows that

focusing on multiple software versions can bring additional

benefits. We expect that developers will find MOP tools like

JavaMOP more useful if all violations in one version are only

generated from parts affected by the code changes made to the

previous version. Specific proposals to achieve the envisioned

improvements of eMOP over MOP are discussed next.

III. APPROACH

We propose three techniques to make MOP evolution-aware.

Each proposed technique can reduce the monitoring overhead

and the number of violations generated between versions. The

first technique selects to “re-monitor” only properties that can

be violated due to changes in the code. The second technique

selects to generate monitors only for code that is affected by

the changes, i.e., it does not generate monitors for code that

is definitely not affected. The third technique combines MOP

with RTS, which selects to rerun a subset of the tests—if fewer

tests are re-run, we expect fewer properties to be re-monitored,

and fewer monitors to be regenerated, compared to rerunning

all the tests. These techniques are orthogonal to one another;

they can be combined to further reduce the costs of MOP. We

plan to implement these techniques as extensions to JavaMOP.

A. Regression Property Selection (RPS)

The goal of RPS is to re-monitor only properties that can be

affected by the code changes. For example, if no call sites of

any method in the Iterator interface are affected by code

changes, there is no need to monitor the HasNext property

(Fig. 1) in the new version. Luo et al. [14] recently proposed

an approach for efficiently monitoring many properties at once.

We plan to extend this approach to be aware of code changes.

The key idea is to map each property to all the parts of the

code from which events were sent to monitors initiated from

that property. When code is changed, only the corresponding

properties for the monitors that received events from the code

affected by the change need to be re-monitored.

We will need to account for the different kinds of changes

that can be made to code—modifications, additions, and dele-

tions. To compute these changes, we will consider two options.

First, if RPS is used alone, without RTS, we plan to use an

efficient change impact analysis technique that accounts for

object-oriented language features, like dynamic dispatch [16],

[18]. Second, when RPS is used with RTS, we will reuse the

changes that RTS already computes. Another concern is non-

determinism of paths covered during execution, which may

make some properties to be violated in some runs but not

in others, for the same code version. We plan to use recent

results in test non-determinism [13] to tackle non-determinism

during property selection. Similar to RTS [7], [9], [16], the

cost of analysis must be less than the cost of re-monitoring

all properties for property selection to be practical. We plan

to explore the different levels of granularity at which the

impact of code changes is tracked (i.e., at the statement, block,

method, or class level) to find a sweet spot in the trade-off

among coarseness of granularity levels, speed of analysis, and

precision of RPS.

B. Regression Monitor Selection (RMS)

RMS is another way to reduce the cost of re-monitoring.

It prevents monitors from being regenerated for code that

cannot be affected by the changes, even if the related property

is affected by the change, and thus, RPS cannot omit the

property for the entire code. For example, if two classes,

http://runtimeverification.com/monitor/annotated-java/Iterator_HasNext.html
http://runtimeverification.com/monitor/annotated-java/Iterator_HasNext.html


Foo and Bar, both use methods of the Iterator interface,

but Foo cannot be affected by a code change, then, with

RMS, monitors will not be initiated for call sites in Foo,

although HasNext will be re-monitored in Bar. Currently in

JavaMOP, monitors keep track of their context—one or more

line numbers in the code from which events are fired—in

order to generate meaningful violations, as shown in Fig. 3.

We plan to extend this by making each monitor also keep

track of the line of code on which it was initiated, and by

persisting all the contextual information for use in subsequent

runs. After a code change, when a monitor-initiation event

is fired, a check is first made to see if the same event was

fired from the same line on the old version. If this check

is affirmative, a second check is performed to see whether

the line on which the monitor-initiation event or the lines

from which the monitor’s associated events were fired in the

previous version have been affected by the change. If none

of these lines are affected by the change, then the monitor

will not be initiated. We expect RMS to remove the overhead

for initiating and running some monitors, and to suppress

violations that would otherwise have been regenerated. There

are known problems with using syntactic information, like line

numbers, to prevent violations in the old version from being

regenerated in the new version [12]. We expect these problems

to be ameliorated by matching on multiple lines instead of a

single line [17]. In addition, we plan to provide support for

developers to manually prevent monitors from being generated

for a given property or code fragment.

C. MOP plus Regression Test Selection

The techniques proposed in sections III-A and III-B, i.e.,

RPS and RMS, require knowledge of the changes between

two versions of software. RTS, by definition, already computes

changes. Thus, it is natural to use RTS together with RPS

and RMS, especially as our approach is already test-driven.

More so, running fewer tests is expected to incur less runtime

overhead and trigger fewer violations, relative to running all

the tests on every single version of the code. We started

evaluating the combination of an RTS tool with JavaMOP.

IV. PRELIMINARY EMPIRICAL STUDIES

So far, we have investigated (i) how well JavaMOP works on

open-source projects; (ii) the potential benefits of combining

MOP with RTS; and (iii) if property selection can lead to

performance and usability gains across multiple code versions.

Scalability: We evaluated JavaMOP on 852,021 lines of

code in 40 open-source projects. We monitored 181 properties,

formalized from the Java API [11] while running the existing

tests in the projects. As far as we know, this is the first

evaluation of MOP combined with large-scale unit testing.

The average size of the evaluated projects was 21,300 lines

of code—the smallest was 142 lines of code and the largest

186,796. The average number of tests across all 40 projects

was 910.7, and the average time to run the tests was 16.4sec.

This average time increased to 232.7sec after integrating

with JavaMOP. These experiments show that, while JavaMOP

scales to many open-source projects, the runtime overhead still

requires further improvement.

The average number of violations generated while monitor-

ing the tests across all 40 projects was 18,810. All violations

were generated from 24 projects. Of the 16 projects that had

no violations, 13 were large, mature, well-used and well-

tested projects from the Apache Software Foundation. Taken

together, these experiments motivated the idea behind eMOP—

too many violations make tools less usable for developers [12]

and, by being evolution-aware, MOP can become the approach

of choice for incrementally reducing the number of violations

in less mature software to zero.

0 5 10 15 20

Commits (smaller is older)

80

90

100

110

120

130

140

150

160

N
u

m
b

e
r

o
f

V
io

la
ti

o
n

s

full rts

(a) Violation counts for AsteriskJava

0 5 10 15 20

Commits (smaller is older)

8

10

12

14

16

18

20

T
im

e
(s

)

full rts

(b) Monitoring times for AsteriskJava

Fig. 4: Comparing performance with and without RTS

MOP + RTS: To assess MOP in the context of software

evolution, we investigate the combination of JavaMOP and

Ekstazi [7], [9], a recent, lightweight RTS tool. We perform the

following experiments on AsteriskJava: (i) run JavaMOP

with all the tests in 20 versions of AsteriskJava (full)

and (ii) run MOP while executing only the test classes selected

by Ekstazi in the same 20 versions (rts).

The number of violations and the monitoring overhead

were collected on each run and those for full and rts are

compared and plotted. Fig. 4 shows the result of comparing

JavaMOP on AsteriskJava for full and rts. Even with-

out RPS and RMS, combining MOP with RTS already yields



improvements across multiple versions. From the numbers

in Fig. 4 the average number of violations and time to run

all tests with JavaMOP on 20 versions of AsteriskJava

were 147.75 and 17.8sec, respectively. These numbers dropped

to 94.5 and 10.6sec, respectively, with RTS. We observed

some test-nondeterminism (discussed in III-A) during manual

inspection of anomalous commit 1 and commit 10 of Fig. 4.

The number of test classes for full and rts are the same

in commit 1 but the number of violations are different. In

commit 10, there are more violations in rts than in full,

even though rts involved one fewer test class.

Property Selection: We performed a simple experiment to

assess whether property selection benefits eMOP. The subject

used was JSQLParser. The results are shown in Table I,

where the second through fifth columns represent the total

number of violations, violations of the HasNext property,

unique number of properties violated, and the test run time,

respectively. Row 1 is the initial run before integrating with

JavaMOP. For row 2, JavaMOP is used to monitor the run of

the tests in JSQLParser. Prior to running with JavaMOP

again (row 3), we introduced the bug from Fig. 2 into a

randomly selected class and inserted a call to findFiles()

into a test in the corresponding test class. We then re-ran

JavaMOP again with all the tests, while monitoring the same

number of properties as in row 2. Finally, since only one

property, HasNext, is affected by the change between the two

versions, we manually forced JavaMOP to monitor only this

property while running the tests again (row 4). The results

show that RPS can save time, and show only violations that

the user is interested in, as code evolves.

Run Total HasNext Props Time(s)

No MOP v1 N/A N/A N/A 8.4

Full MOP v1 27,895 0 6 164.1

Full MOP v2 27,904 9 7 231.8

eMOP (HasNext) v2 9 9 1 8.8

TABLE I: Preliminary Investigation of RPS

V. RELATED WORK

While we are the first to propose techniques to make

MOP evolution-aware, our work is enabled by a long line of

research to make MOP more practical. Luo et al. [14] proposed

algorithmic techniques to significantly improve the efficiency

of MOP. These techniques were implemented in JavaMOP and

enabled our evaluation on open-source projects. The original

work on formalizing Java API properties [11] also enabled our

experiments. eMOP is orthogonal to these approaches, having

the aim of adapting MOP to software evolution.

Other techniques have been adapted to software evolution

to make them more practical. Zhang et al. [23] proposed

techniques for making mutation testing more practical by

incrementally calculating results for a new version based on

the results from the old version. Logozzo et al. [12] proposed

a semantically sound technique for suppressing violations

between two versions of code. eMOP is similar in spirit

to these approaches but different in the specific techniques

proposed and the application domain.

VI. CONCLUSION

We envision eMOP as an approach for making MOP

evolution-aware and more practical. eMOP can reduce the

runtime overhead for monitoring evolving software versions,

and moreover, can show developers only the property viola-

tions based on the most recent code changes. Our preliminary

experiments with JavaMOP showed that it is mature enough

for use on open-source projects and can be used as a basis for

eMOP. Other results are encouraging, and prove the concepts

for two of the three techniques proposed. We believe eMOP

opens up a new line of research towards more adoptable MOP.

ACKNOWLEDGMENTS

We thank Lamyaa Eloussi, Milos Gligoric, Alex Gyori,

Farah Hariri, Qingzhou Luo, Amarin Phaosawasdi, August

Shi, and Zhang Yi for feedback on this work. This material

is based upon work partially supported by NSF under Grant

Nos. CCF-1012759, CCF-1421575, and CCF-1439957.

REFERENCES

[1] P. Avgustinov, J. Tibble, and O. de Moor. Making trace monitors
feasible. In OOPSLA. 2007.

[2] H. Barringer, D. Rydeheard, and K. Havelund. Rule systems for run-time
monitoring: from Eagle to RuleR. In RV, 2007.

[3] E. Bodden, L. Hendren, and O. Lhoták. A staged static program analysis
to improve the performance of runtime monitoring. In ECOOP, 2007.

[4] E. Bodden, P. Lam, and L. Hendren. Finding programming errors earlier
by evaluating runtime monitors ahead-of-time. In FSE, 2008.

[5] F. Chen and G. Roşu. Towards monitoring-oriented programming: A
paradigm combining specification and implementation. In RV, 2003.

[6] R. Dyer, H. Rajan, H. A. Nguyen, and T. N. Nguyen. Mining billions of
AST nodes to study actual and potential usage of Java language features.
In ICSE, 2014.

[7] Ekstazi. http://ekstazi.org/.
[8] M. Gabel and Z. Su. Symbolic mining of temporal specifications. In

ICSE, 2008.

[9] M. Gligoric, L. Eloussi, and D. Marinov. Ekstazi: Lightweight test
selection. In ICSE Demo, 2015.

[10] JavaMOP4. http://fsl.cs.illinois.edu/index.php/JavaMOP4.

[11] C. Lee, D. Jin, P. O. Meredith, and G. Roşu. Towards cat-
egorizing and formalizing the JDK API. Technical Report
http://hdl.handle.net/2142/30006, Computer Science Dept., UIUC, 2012.

[12] F. Logozzo, S. K. Lahiri, M. Fähndrich, and S. Blackshear. Verification
modulo versions: Towards usable verification. In PLDI, 2014.

[13] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov. An empirical analysis of
flaky tests. In FSE, 2014.

[14] Q. Luo, Y. Zhang, C. Lee, D. Jin, P. O. Meredith, T. F. Şerbănuţă, and
G. Roşu. RV-Monitor: Efficient parametric runtime verification with
simultaneous properties. In RV, 2014.

[15] P. Meredith, D. Jin, F. Chen, and G. Rosu. Efficient monitoring of
parametric context-free patterns. In ASE, 2008.

[16] A. Orso, N. Shi, and M. J. Harrold. Scaling regression testing to large
software systems. In FSE, 2004.

[17] S. P. Reiss. Tracking source locations. In ICSE, 2008.

[18] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley. Chianti: A tool
for change impact analysis of Java programs. In OOPSLA. 2004.

[19] A. Wasylkowski and A. Zeller. Mining temporal specifications from
object usage. ASE, 2009.

[20] W. Weimer and G. C. Necula. Mining temporal specifications for error
detection. In TACAS, 2005.

[21] C. C. Williams and J. K. Hollingsworth. Automatic mining of source
code repositories to improve bug finding techniques. TSE, 31(6), 2005.

[22] S. Yoo and M. Harman. Regression testing minimization, selection and
prioritization: A survey. STVR, 22(2), 2012.

[23] L. Zhang, D. Marinov, L. Zhang, and S. Khurshid. Regression mutation
testing. In ISSTA, 2012.

http://ekstazi.org/
http://fsl.cs.illinois.edu/index.php/JavaMOP4

