
LDTA 2006 Preliminary Version

Analyzing the Uses of a Software Modeling
Tool

Xiaoming Li1, Daryl Shannon2, Jabari Walker1

Sarfraz Khurshid2, Darko Marinov1

1 Dept. of Computer Science, University of Illinois, Urbana-Champaign, USA
2 Dept. of Electrical & Computer Engineering, University of Texas, Austin, USA

xli15@cs.uiuc.edu, dshannon@ece.utexas.edu, jlwalkr1@yahoo.com

khurshid@ece.utexas.edu, marinov@cs.uiuc.edu

Abstract

While a lot of progress has been made in improving analyses and tools that aid
software development, less effort has been spent on studying how such tools are
commonly used in practice. A study into a tool’s usage is important not only
because it can help improve the tool’s usability but also because it can help improve
the tool’s underlying analysis technology in a common usage scenario. This paper
presents a study that explores how (beginner) users work with the Alloy Analyzer,
a tool for automatic analysis of software models written in Alloy, a first-order,
declarative language. Alloy has been successfully used in research and teaching for
several years, but there has been no study of how users interact with the analyzer.
We have modified the analyzer to log (some of) its interactions with the user. Using
this modified analyzer, 11 students in two graduate classes formulated their Alloy
models to solve a problem set (involving two problems, each with one model). Our
analysis of the resulting logs (total of 68 analyzer sessions) shows several interesting
observations; based on them, we propose how to improve the analyzer, both the
performance of analyses and the user interaction. Specifically, we show that: (i)
users often perform consecutive analyses with slightly different models, and thus
incremental analysis can speed up the interaction; (ii) users’ interaction with the
analyzer is sometimes predictable, and akin to continuous compilation, the analyzer
can precompute the result of a future action while the user is editing the model; and
(iii) (beginner) users can naturally develop semantically equivalent models that have
significantly different analysis time, so it is useful to study manual and automatic
model transformations that can improve performance.

1 Introduction

Alloy [4] is a first-order, declarative language suitable for expressing models of
software systems. Alloy models are amenable to fully automatic analysis, using

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Li et al.

the Alloy Analyzer [6]. The analyzer translates Alloy formulas to propositional
formulas using a given scope, i.e., a bound on the universe of discourse, and
uses off-the-shelf SAT solvers to find concrete instances or counterexamples
for Alloy formulas. Alloy has been successfully used in research and teaching
for several years and has assisted in finding and correcting design flaws in
various systems [5,7]. So far, however, there has been no study into how users
interact with the analyzer. It is important to study such interactions for at
least the following reasons: (1) to improve the underlying analysis technology;
(2) to point out how to make the tool more usable; and (3) to develop idioms
for building Alloy models that enable more efficient analyses.

Two aspects of Alloy make such an investigation particularly worthwhile:
the declarative nature of the language and the bounded-exhaustive checking
performed by the analyzer. Declarative logic paradigms, in general, and Alloy,
in particular, tend to elicit a pervasive use of conjunction. An Alloy model
is often built by first defining sets and relations that represent the model and
then defining formulas that constrain the representation appropriately, start-
ing from a minimal representation and incrementally strengthening it until a
sufficient level of detail is attained. The use of the analyzer in an interactive
fashion assists the users in making the incremental changes and checking their
validity. These incremental changes tend to be small, so the analyzer may
exploit the differences introduced between consecutive executions 1 to provide
a faster execution using the result of the previous execution.

The nature of Alloy’s bounded-exhaustive checking implies that its results
are valid with respect to the given scope only, i.e., if the analyzer fails to
find an instance that satisfies an Alloy formula within a given scope (bound),
an instance may still exist in a larger scope. For Alloy users, it is natural
to increase their level of confidence in a model by increasing the scope and
re-checking the model for which the analyzer previously failed to generate a
desired instance in a smaller scope. Notice that in such a scenario, the only
change in the model between two consecutive executions of the analyzer is
the scope—once again, a situation arises where the analyzer may be able to
provide a faster checking using the result of the previous execution.

This paper presents a study into how (beginner) users work with the Alloy
Analyzer. We have modified the analyzer to log (some of) its interactions with
the user. The modified analyzer saves a copy of the Alloy model every time
the user compiles the model. To investigate the analyzer’s usage, we asked
students in two of our (graduate) classes to solve a problem set that required
them to develop Alloy models using the logging-enabled analyzer. Our analysis
of the resulting 68 logs from 11 students shows three key observations:

(i) Users often perform consecutive executions with models that differ only

1 We use the term “execution” to refer to one checking of an Alloy model. The commonly
used term for checking is “analysis”, but in this paper, we use that term to refer to our
study of Alloy executions.

2

Li et al.

slightly, which is as expected based on the two afore-mentioned aspects
of Alloy;

(ii) User’s interaction with the analyzer is sometimes predictable, e.g., that
the user will compile and execute the model or that the user will ask for
additional solutions to the model;

(iii) Users can naturally develop semantically equivalent models that have
significantly different solving time.

Observation (i) points out that incremental constraint-solving techniques
could improve the analyzer’s performance. Alloy’s use of SAT technology
and recent advances in incremental SAT solvers [13] provide a natural way
to start an exploration into optimizing the Alloy Analyzer. Observation (ii)
points out that, similar to continuous compilation and continuous testing [10],
the analyzer can continuously precompute the result of a future action while
the user is editing the model or visually inspecting a solution. The first two
observations shed light on how the Alloy tool-set may be improved. Observa-
tion (iii) shows that it would be worthwhile to study manual and automatic
transformations of Alloy models that could result in improved execution time.

The rest of the paper is organized as follows. Section 2 presents an example
interaction with the Alloy Analyzer. Section 3 presents how we collected and
analyzed data from the students’ interactions with the analyzer. Section 4
shows some preliminary results on improving the analyzer’s performance using
incremental solving and continuous execution. Section 5 concludes the paper.

2 Example

We next illustrate how users interact with the Alloy Analyzer to interactively
develop a model. Through this example, we also introduce some key constructs
of Alloy. More details of Alloy are available elsewhere [5]. As our running
example, we use an interaction that a student had with the analyzer while
solving a problem from the problem set. This problem considers modeling the
abstract mathematical structure tree, i.e., a connected, acyclic, undirected
graph. There are various (equivalent) definitions of a tree; we consider five
definitions from a standard text-book [2]. Consider that we want to model
them in Alloy to check their equivalence using the analyzer. In a typical
scenario, the user of the analyzer starts from an empty model and develops
it in the analyzer. To help the students, however, we provided a part of the
model and asked them to provide the rest.

Let G = (V, E) be an undirected graph, where V is a finite set (of vertices)
and E is a binary relation on V . The following five statements are equivalent:

(i) G is a tree;

(ii) G is connected, but if any edge is removed from E, the resulting graph
is disconnected;

3

Li et al.

(iii) G is connected, and |E| = |V | − 1;

(iv) G is acyclic, and |E| = |V | − 1;

(v) G is acyclic, but if any edge is added to E, the resulting graph has a
cycle.

An Alloy model consists of signature declarations that introduce basic sets
and relations, and of formulas that put constraints on these sets and relations.
To model trees, we declare a sig (i.e., a set) of vertices and a binary relation
on this set to represent the edges:

sig V { // V is a set of vertices
E: set V } // binary relation E: V <-> V for undirected edges

The cardinality operator set states that E is an arbitrary relation. (Operators
one and lone respectively declare total and partial functions.) We represent
an undirected edge from a vertex u to a vertex v as a pair of directed edges
(u, v) and (v, u). Thus, E is a symmetric relation, which can be expressed
using the transpose operator ‘~’:

fact UndirectedGraph { E = ~E } // E is symmetric

fact NonEmpty { some V } // consider non-empty graphs

A fact introduces a constraint that must be satisfied by any instance of the
model, i.e., any satisfying assignment of values to sets and relations. The fact
NonEmpty requires the instances to have at least one vertex 2 . The formula
some e evaluates to true if the expression e evaluates to a non-empty set.
(Similarly, no e evaluates to true when e evaluates to the empty set.)

We express Statement 1 using a predicate, i.e., a parameterized formula
that can be invoked elsewhere:

pred Statement1() { Connected() && Acyclic() }

pred Connected() { all disj v1, v2: V | v1 in v2.^E }

pred Acyclic() { all v: V | not InCycle(v, E) }

pred InCycle(v: V, c: V -> V) { v in v.c ||
some v’: v.c | let c’ = c - (v -> v’) - (v’ -> v) | v’ in v.*c’ }

Alloy provides the usual logical operators: ‘&&’ (and), ‘||’ (or), not, ‘=>’ (im-
plication), and ‘<=>’ (bi-implication). The keyword disj requires v1 and v2

to be different (more precisely, disjoint singleton sets); all and some respec-
tively represent universal and existential quantification; in represents subset
(each expression is semantically a set [5], and thus in does not represent set
membership); ‘^’ denotes transitive closure, and ‘*’ denotes reflexive transitive
closure. The expression v2.^E thus denotes the set of all vertices reachable

2 This condition is required for equivalence of Statements 1–5.

4

Li et al.

from v2 following one or more traversals along the edges in E, and Connected

states that there is a path between any two distinct vertices. The predicate
InCycle states that a vertex v is a part of a cycle according to an edge rela-
tion c iff there is a self-loop at v or v has some neighbor v’ such that even if
we remove the edge(s) connecting v and v’, these two vertices are still con-
nected. The operators ‘->’ and ‘-’ represent pairing (more generally, Cartesian
product) and set difference, respectively.

Our problem set asked the students to extend the above Alloy model to
represent each of statements 2–5. 3 The students also had to express the equiv-
alence of the five statements in Alloy and to check them using the Alloy An-
alyzer. We next present the interaction that a student had with the analyzer
to solve the above problem. We chose this particular interaction as a rep-
resentative for the steps that the users typically perform while working with
the Alloy Analyzer, going through a cycle of modifying the Alloy model and
executing it.

The user first checked that the provided model is consistent:

assert Test { !Statement1() }

check Test for 3

An Alloy assertion introduces a formula that should be checked, in this case
that Statement1 does not hold. The command check instructs the analyzer
to find a counterexample to the given assertion using the specified scope,
specifically 3. The analyzer proceeds by looking for satisfying assignments
to the negation of the formula. 4 Each such assignment effectively gives a
valuation to the set V and the relation E to satisfy the negation of Test (and
implicitly all fact formulas).

When the analyzer finds a satisfying assignment, it can visually present
it (as a user-customizable graph, where nodes represent specific objects and
relations are represented with edges). The user can also choose to generate
more satisfying assignments for the given formula. (This option in the analyzer
exploits solution enumeration in SAT solvers such as mChaff [8] and relsat [1].)

The user further formulated Statement 3 and checked its equivalence with
Statement 1:

pred Statement3() { Connected() && #E = #V - 1 }

assert Test { Statement1() <=> Statement3() }

check Test for 3

3 More precisely, the problem also asked the students to write the predicate Connected.
4 Besides check, the Alloy Analyzer also provides a command run that directly finds
satisfying assignments for a given formula; run Statement1 for 3 is equivalent to the
above and would avoid the double negation, but the student likely forgot about the command
run.

5

Li et al.

Statement3 uses the set cardinality operator ‘#’ to (incorrectly) represent the
constraint |E| = |V |−1 from the definitions. The Alloy Analyzer finds a coun-
terexample for the above formula. The issue is that our Alloy model represents
each undirected edge using two directed edges. Note that the counterexample
would not have been found in the scope of one, which would allow only one
element in the set V. Users typically start checking with the scope of three or
four: smaller values can miss many counterexamples, and larger values lead
to large execution time.

The user quickly realized the mistake and corrected the formula:

pred Statement3() { Connected() && #E = #V + #V - 2 }

This simple step illustrates the power of the analyzer: the users can automat-
ically check the correctness of their models (within the given scope). Quick
gaining of feedback helps users to correct their models while developing them.
Indeed, it is the full automation of the execution that encourages the users to
interactively develop the models in small steps and with frequent executions.

The user next used check Test for 10 to check the model within the scope
of ten. Although Statement1 and (corrected) Statement3 are equivalent for
all graphs with up to three nodes, on the evidence so far, they may be non-
equivalent for larger graphs. This increase in the bound from three to ten is
somewhat unusual; users typically increase the value for one or two.

The user then added Statement 4:

pred EV1() { # E = #V + #V - 2 }

pred Statement3() { Connected() && EV1() }

pred Statement4() { Acyclic() && EV1() }

assert Test { Statement1() => Statement3()
Statement3() => Statement4()
Statement4() => Statement1() }

check Test for 4

Note that the user realized that the equivalence of several statements can
be expressed using a circular implication. 5 (The lines without ‘&&’ or any
other connective are implicitly conjoined, so the three implications in Test are
conjoined.) This check revealed no counterexample, so the user increased the
scope from 4 to 5.

The user then proceeded by adding statements 2 and 5 and after a few
more checks arrived at the following:

// connected but removing an edge makes it disconnected
pred Statement2() {

5 That is also how the equivalence is proved in text-books.

6

Li et al.

Connected()
no E or
all v1, v2: V | (v1 -> v2) in E =>
let E’ = E - (v1 -> v2) - (v2 -> v1) |
some disj v3, v4: V | not v3 in v4.^E’ }

pred Statement5() { // acyclic but if any edge is added, cyclic
Acyclic()
all v1, v2: V | not (v1 -> v2) in E implies
let E’ = E + (v1 -> v2) + (v2 -> v1) |
some v: V | InCycle(v, E’) }

assert Test { Statement1() => Statement2()
Statement2() => Statement3()
Statement3() => Statement4()
Statement4() => Statement5()
Statement5() => Statement1() }

The final model includes also the latest definition of the above formulas.

Using the Berkmin SAT solver [3], the Alloy Analyzer checks the final
assertion for all graphs with up to 4 vertices and reports no counterexamples.
The SAT solver completes its search in 4.1 seconds on a Pentium M 1.8GHz
processor.

3 Study

This section presents the study that we performed to analyze how (beginner)
users interact with the Alloy Analyzer. We first describe our experimental
setup. We then present how we modified the analyzer to log its interaction. We
next discuss an analysis of the resulting logs. We finally show that equivalent
Alloy models can require significantly different solving times.

3.1 Experimental Setup

We collected the logs from the graduate students working on problem sets in
two graduate seminars at the University of Texas at Austin and the University
of Illinois at Urbana-Champaign. The students had no experience with Alloy
prior to the classes but were given about two and a half lectures on Alloy.
The problem set consisted of two problems. One problem was our running
example on modeling tree definitions and checking their equivalence. The
other problem was to model and solve a puzzle [14], given in English, to
assign eight different jobs to four people subject to a list of constraints.

We told the students how to enable the analyzer to collect the logs of their
model developments. We also told them that we may use the (anonymized)
models that they develop as case studies in an investigation of how users work
with the analyzer and how to develop incremental techniques to provide faster

7

Li et al.

solving. We did not tell the students the specific experiments that we wanted
to perform. Submission of logs was voluntary and did not affect the student’s
grade, either positively or negatively. Their solutions were graded only based
on the final models that they sent.

3.2 Logging

We design our logging facility to provide the Alloy developers with usage data
that may help further improve the Alloy tool-set. The current logging facility
logs compilation, execution, and user-interface events. All the information
required to replay an event is stored, together with the time stamps that record
when the event begins and ends. Besides the time stamps, the information
stored includes the configuration of the Alloy Analyzer and the SAT solver,
the source file being compiled (and any source files referenced), and the string
representation of the command. This paper focuses on two types of events:
(1) compile, which record how users compile a model, and (2) execute, which
record how users executes commands after a successful compilation.

Although this paper only uses two types of events, our logging facility
records other usage data that might improve further understanding of the
usage pattern of the Alloy Analyzer. For example, the user interface events
may help to streamline the workflow of the analyzer.

3.3 Analysis

We next present our analysis of the logs collected in our two classes. In total,
we collected logs from 11 students. (Many students either worked offline or
used logging incorrectly and thus didn’t provide us with useful logs.) There
were a total of 68 UI sessions and 2308 compilations in these logs. Of these
compilations, 391 (or 16.9%) failed with compile errors and 452 (or 19.5%)
were successful compilations but without any execution. Unfortunately, our
logging did not record the models of failed compilations as we had not expected
them to be useful for improving the Alloy Analyzer. However, their relatively
large percentage suggests that the beginner users may have problems learning
some constructs of Alloy. We plan to record failed models in the future; it
would be interesting to analyze them to identify potential improvements in the
language or its documentation to avoid common mistakes. Apparently, the
users quickly learned how to deal with the compile errors: the users started
compiling models more frequently to catch errors early in the recently changed
parts of the models.

We next analyze the 1465 logged successful compilations and executions
to detect what changes the users made to the models between the consecutive
executions. We call a change an event. We first introduce the types of events
that our analysis detects. We then describe how our analysis detects these
events using a level of syntactic and semantic comparisons. (These are not full
syntactic and semantic comparisons, as explained later.) We finally present

8

Li et al.

the analysis results.

3.3.1 Events

Recall that Alloy models consist of signatures (which correspond to data in
programs), formulas (which correspond to code in programs), and commands
(which correspond to the inputs in program runs). An important part of the
command is specifying the scope, i.e., the bounds for the basic sets in the
model. We define the following events to track the changes in the parts of the
model:

• For signatures: SN (sig new) adding a new sig; SD (sig delete) deleting a
sig; SM (sig mod) modifying an existing sig.

• For formulas: FN (formula new) adding a new formula; FD (formula delete)
deleting a formula; FM (formula mod) modifying an existing formula.

• For commands: CN (command new) adding a new command; CD (com-
mand delete) deleting a command; CM (command mod) modifying an ex-
isting command.

• For scope: OS (only scope) the only change in the model is changing the
scope in the command; ND (non decrementing) the scope was increased
only; OO (one one) only one bound was increased for exactly one.

• Summary events: SS (single sig) only one sig was changed in the model; SF
(single formula) only one formula was changed in the model; CR (consecu-
tive repeat) two consecutive executions have the same signatures, formulas,
command, and scope; ER (execution repeat) an execution is repeated but
not necessarily consecutively.

We have written a program that traverses a given log (or a set of logs)
and counts the number of events. The program proceeds as follows. It first
removes from the model semantically unnecessary syntactic elements such as
comments and white spaces. It then parses parts of the model and uses two
types of comparisons: syntactic comparison (for SN, SD, SM, FN, FD, FM,
CN, CD, CM, SS, and SF events) and semantic comparison (for OS, ND, OO,
CR, and ER events).

3.3.2 Syntactic Comparison

The syntactic comparison in our program uses the concept of text similarity.
The program splits each semantic unit—signature, formula, command—into
two parts, the declaration of the unit and the content of the unit. The program
compares these units separately. For example, the following sig definition:

one sig V extends W {
E: set V }

is represented as a 3-element tuple (V, E: set V, one, extends W), where one

and extends are Alloy keywords that specify singleton sets and subsets, re-
spectively. The similarity of two signatures is then a weighted sum of the

9

Li et al.

similarities of the three components; our current implementation uses equal
weights for these three components.

Our program uses the edit distance [9,12] as the metric for similarity be-
tween two component strings. The edit distance between two strings is the
number of keystrokes required to change one string to the other string. We
use the edit distance as our goal is to find what the user changed between
consecutive executions. The edit distance is normalized to the lengths of the
two strings. When the edit distance is 0, it means the two strings are identi-
cal. When the edit distance is 1, it means the two strings are totally different.
The values between 0 and 1 represent the similarity of the two strings. The
lower the edit distance, the higher the similarity. For example, when the edit
distance is 0.5, we need to change about 50% of the one string to get the other
string.

An advantage of syntactic comparison is that it traces certain changes
more closely than the semantic comparison. For example, if the user changes
the definition from sig V to one sig V, the internal Alloy representations for
the two versions are quite different, while syntactic comparison can easily find
that the user just changed a single sig definition. However, the limitation
of syntactic comparison is that it requires further parsing when difference in
smaller granularity is desired, for example to detect if only scopes are changed
in the commands.

We can define two semantic units to be equal, modified, or different based
on the similarity between their components. Two semantic units are equal if
the edit distance between them is 0. Our program uses an empirically selected
threshold of 25% to determine if two units are modified versions or simply
different. (We determined the threshold by a detailed manual inspection of
comparisons for several randomly selected examples.) If the edit distance is
below the threshold, the units are treated as modified versions. Otherwise,
they are different. Our threshold is pretty high such that the confidence of
counting two versions as modified is high, i.e., the two versions have only minor
differences. In other words, the data shown in Figure 1 slightly underestimates
the true number of modification cases and thus the potential that incremental
solving can bring to the Alloy Analyzer.

3.3.3 Semantic Comparison

The semantic comparison in our program parses the model and performs a level
of semantic analysis to detect the changes that the user made. Specifically, our
program detects, based on the scope, the bound for each basic signature. Our
running example with trees had only one signature, V, but in general there can
be several signatures in the model. The scope is then a vector of the bounds for
each of these signatures. The user can specify the scope in several ways in the
commands. The full details are elsewhere [5], and we provide here only a few
examples: check Eq for 5 specifies that the bounds for all signatures should
be five, check Eq for 4 V specifies that V should have bound four while other

10

Li et al.

ses. SN SD SM FN FD FM CN CD CM SS SF OS ND OO CR ER #C

1 0 0 0 19 7 50 20 18 23 0 47 17 12 5 3 14 92

2 0 0 0 2 2 21 8 9 14 0 23 13 9 4 4 16 50

3 0 0 0 1 1 34 14 11 3 0 25 5 4 1 1 8 48

4 0 0 0 0 0 18 7 7 5 0 18 4 4 2 1 5 35

5 0 0 0 0 0 19 10 13 11 0 19 8 6 5 1 6 43

6 0 0 1 0 0 34 0 0 0 1 34 6 6 0 6 9 41

7 0 0 0 1 0 23 2 2 20 0 18 4 4 1 0 4 36

8 0 0 0 2 0 35 8 2 12 0 19 5 4 0 2 4 39

9 7 8 3 25 17 35 5 4 16 3 38 10 6 2 1 3 60

10 0 0 0 0 0 48 6 6 10 0 42 9 5 0 0 0 57

11 0 0 0 2 1 42 6 6 18 0 36 18 12 5 1 1 63

12 0 0 0 1 0 35 9 9 20 0 28 18 13 6 2 3 57

13 0 0 0 0 1 21 9 9 6 0 20 4 2 1 1 1 34

14 0 0 0 3 2 25 4 2 3 0 28 4 2 0 1 6 34

15 0 0 0 0 0 29 1 0 17 0 25 12 10 6 0 0 43

16 8 13 0 32 22 29 14 9 12 0 32 5 5 0 3 7 52

17 0 0 0 1 0 38 0 0 3 0 26 8 7 0 2 4 37

18 2 8 2 11 2 58 5 5 15 2 57 9 6 0 2 20 76

19 19 11 8 31 15 17 7 7 4 4 27 6 6 0 0 0 42

sum 36 40 14 131 70 611 135 119 212 10 562 165 123 38 31 111 939

Fig. 1. Number of changing events the users performed while modifying the models
during 19 UI sessions.

signatures should have the default values (currently three), and check Eq for

5 but 3 V specifies that all signatures should have bound five except that V

should be three. Our program analyzes the command and the signatures to
build the entire scope vector. It then compares these scope vectors between
different executions of Alloy models.

3.3.4 Number of Events

Figure 1 shows the number of events that the users performed while changing
the Alloy models. For each of the 19 UI sessions with most compilations,
we tabulate the total number of events performed. In 59.9% (562/939) of
the cases, the modifications between two consecutive executions involve only
one formula, and 17.6% (165/939) of the consecutive executions differ only in
their scopes. These numbers highlight the importance of incremental solving
in the Alloy Analyzer. Moreover, 11.8% (111/939) of all model executions are
identical to some previous execution in the same UI session. (While similar
consecutive models are akin to spatial locality, repeated models are akin to
temporal locality.) This suggests that the analyzer could cache the results of
executions and compare each new model with the previously executed models.

3.4 Equivalent Models, Different Performance

We next show that semantically equivalent but syntactically different Alloy
models can require significantly different solving times. While it is clear that
in (almost) any reasoning system the solving time depends on the specific
formulation of the problem, our results show that beginner Alloy users natu-
rally create models that take different solving time. Our result thus provides

11

Li et al.

evidence against the claim made by Sullivan et al. [11][page 140]:

TestEra, because it employs the Alloy Analyzer’s translation to SAT, is
largely insensitive to the constraint’s logical structure.

While one could artificially construct equivalent Alloy models that have differ-
ent solving times, we consider the models that the students actually submitted
as solutions to the problem set. Specifically, we consider the solutions submit-
ted for the problem on tree equivalence, used as our running example.

Recall that the problem asked the students to model five definitions of
a tree and to express their equivalence. While the students came up with
several different formulas to express the definitions, they also came up with five
different formulas to express the equivalence. This was much to our surprise,
as we expected that the students may use only two or three formulas to express
equivalence. This diversity points out that the students likely did not copy the
solutions. More seriously, the diversity shows how beginning users can surprise
expert users (or even tool developers) by using the tools in a way that was
not anticipated. Finally, the diversity provides an additional motivation to
understand how users work with the Alloy Analyzer.

To present the students’ approaches to checking equivalence, we use Si to
stand for Statementi(), where 1 ≤ i ≤ 5. The students used four different
formulas for equivalence:

assert Eq1 { S1 => S2 && S2 => S3 && S3 => S4 && S4 => S5 &&
S5 => S1 }

assert Eq2 { S1 <=> S2 && S1 <=> S3 && S1 <=> S4 && S1 <=> S5 }
assert Eq3 { S1 <=> S2 && S2 <=> S3 && S3 <=> S4 && S4 <=> S5 &&

S5 <=> S1 }
assert Eq4 { S1 <=> S2 && S1 <=> S3 && S1 <=> S4 && S1 <=> S5 &&

S2 <=> S3 && S2 <=> S4 && S2 <=> S5 &&
S3 <=> S4 && S3 <=> S5 &&
S4 <=> S5 }

One student used a rather different approach for checking equivalence;
instead of representing the equivalence of all statements in one formula, the
student used four formulas:

//Uncomment one line at a time to check equivalence.
//assert Eq5 { S1 <=> S2 }
//assert Eq5 { S1 <=> S3 }
//assert Eq5 { S1 <=> S4 }
assert Eq5 { S1 <=> S5 }

We next compare the performance of the analyzer for checking the above
assertions of equivalence. Note also that all those assertions are equivalent
among themselves; as a matter of fact, they are all equivalent to true. Thus,
the negation of the assertions is unsatisfiable, and the analyzer cannot find
any solution for the negation (and a counterexample for the formula). We use
each assertion with the same model for expressing tree definitions and check

12

Li et al.

the assertion for the scope of four. For Eq5, we check all four assertions sepa-
rately and sum all four times. Checking for scope 4, the Alloy Analyzer takes
12.6 seconds for Eq1, 10.7 seconds for Eq2, 16.2 seconds for Eq3, 28.6 seconds
for Eq4, and 20.1 seconds for (all four) Eq5. Thus, the best formulation gives
a 2.67X speed-up in the solving time over the worst formulation. When we
check the same assertions for scope 5, the speed-up increases to 5.75X.

This result points out that the users should be made aware that different
models can result in greatly different solving time. Actually, expert Alloy
users gain this through experience and do rewrite their models in order to
speed up the execution. We leave it as a future work to study these rewrites
to generate a set of guidelines for (re)writing the models to obtain efficient
executions.

4 Potential Improvements

This section shows some preliminary results that illustrate potential for im-
proving the Alloy Analyzer’s performance. We present two types of improve-
ments: (i) improvements that can be obtained by using incremental SAT
solving to speed the execution of (similar) consecutive models, and (ii) im-
provements that can be obtained by computing some results while the user is
editing the model or visually inspecting a solution.

4.1 Incremental Solving

As shown earlier, Alloy users often execute similar models one after the other.
This leads us to consider the use of incremental SAT solvers to improve the
analyzer’s execution time. Incremental SAT solvers work as follows [13]. They
first take one SAT problem, as usual, and find whether it is satisfiable or not.
Additionally, they track how the inference steps that they perform depend on
the input clauses. After that, the next SAT problem can be presented to the
solver not from scratch, but as a delta from the previous SAT problem, which
describes what old clauses to remove and what new clauses to add. The solver
can then use this information to invalidate the inference steps that depended
on the removed clauses and to perform the search only for the new clauses.
Solving only the delta often results in a much improved SAT solving time,
compared to the SAT solving time of the new problem from scratch.

We present results that exploit incremental SAT solving in two steps per-
formed with the Alloy Analyzer: (i) adding only one fact to the model and
(ii) increasing the scope by exactly one. These are only preliminary results
for evaluating the potential of incremental execution. To obtain the exact
results, we would need to modify the entire analyzer to perform incremental
execution.

13

Li et al.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 2 4 6 8 10
Sp

ee
du

p
Cases

Speedup From Incremental Compiling

Fig. 2. Speed-up of incremental execution for consecutive models that differ only
in addition of one fact.

4.1.1 Adding a Fact

Alloy users can add constraints to their model by adding new facts. A user
may add a fact while building the model or while tuning the generation of
instances (or counterexamples). For example, recall the following assertion
from Section 2:

assert Test { !Statement1() }
check Test for 3

The analyzer’s execution generates a tree with one vertex and no edges. As-
sume that we instead want to see larger trees, say a tree with exactly two
vertices. We can add the following fact to express this requirement:

fact { #V = 2 }

Re-running the analyzer at present requires translating the modified Alloy
model in its entirety into a CNF formula and then solving the formula. Using
an incremental SAT solver instead, we can simply provide the solver the delta
using an incremental translation that produces only the boolean formula that
represents the new constraint. Doing so not only allows the solver to generate
a desired tree more efficiently but also eliminates the need to translate the
whole Alloy model into CNF.

In our experiments, we modified the Alloy compiler so that the compiler
can translate the delta fact into the delta boolean formula. By comparing two
consecutive models, we can find the new fact in the later model. Our modified
compiler renames this fact such that the original Alloy compiler generates the
CNF formula only for the new fact. Our modifier compiler also instructs the
SAT solver to reuse the solving trace of the previous model. The translation
between the previous model and the boolean variables is maintained when
generating the delta boolean formula, so that the user can visualize how the
new fact affects the original solution. Our modification ensures the correctness
of delta solutions, i.e., we improve the performance by reusing the previous
solution, but the new solution satisfies both the models with and without the
delta fact.

14

Li et al.

Figure 2 shows the performance gain of using our incremental compiling.
We present 10 cases from the logs where the user only adds one fact to a model
between two consecutive executions. These 10 cases have significant solving
time for the original model and thus the speed-up can be observed; if the
original model takes little solving time, we do not need incremental solving.
We measure the time to solve the original model (torig), the time to solve the
later model with the delta fact in its entirety (torig+delta), and the time to solve
the later model incrementally, i.e., to solve only the delta fact (tdelta). The
speed-up is given by

torig+delta+torig

tdelta+torig
. The speed-up of incremental compiling

ranges from 1.03X to 2.04X with an average of 1.56X. Note that we consider
the sum of times for two executions in both cases; the speed-up of just the
second execution is

torig+delta

tdelta
, which is even higher.

4.1.2 Increasing Scope

Incremental solving need not be performed only using incremental SAT solvers.
The analyzer’s result from a previous execution can be used instead to re-write
the current model so that it induces faster execution even when the whole
model is re-compiled and the SAT solver is executed from the beginning.

Consider checking an assertion with the analyzer. If it fails to find a coun-
terexample, Alloy users are likely to increase their level of confidence in their
model by increasing the scope and re-executing the analyzer, as illustrated by
following consecutive executions from a student log:

(i) check Test for 4

(ii) check Test for 5

Since Alloy’s execution is scope monotonic (i.e., if the analyzer fails to find a
counterexample using scope i, no counterexample exists for scope j ≤ i), when
the user executes the check for scope i after executing the same check for scope
i− 1, we can use the fact that no counterexample was found during the first
execution to direct the analyzer to check for exactly i vertices. To illustrate,
the time to check the equivalence formulation in Section 2 for scope 5 reduces
from 8 min 43 sec to 8 min 24 sec. Although in this case the improvement is
only 3.5%, we believe that a better technique could yield higher speed-ups.

The logs show that 17.6% (165/939) of all executions only increase the
scopes compared with the previous execution. Of those, 23.0% (38/165) com-
mands increase the scope only by one on exactly one signature. The data
indicates that users frequently increase scopes, usually with small step. Thus,
incremental solving for increasing scope might improve the performance of the
Alloy Analyzer.

4.2 Continuous Execution

Continuous compilation is a method for reducing the latency time in Inte-
grated Development Environments: while the programmer is editing the pro-

15

Li et al.

gram, the machine is compiling it in the background, and thus when the
programmer wants to execute the program, it is already compiled. A similar
technique has been recently proposed for testing. Continuous testing [10] runs
the unit tests in the background as the programmer is editing the program; if
a test fails, the programmer is warned that his recent change may be breaking
some regression tests.

We propose to use a similar approach in the Alloy Analyzer: it can con-
tinuously execute the model to prepare the results that the user will (likely)
ask for next. One situation in which this naturally applies is while the user
is editing a model. The analyzer can then be translating the model into SAT
and running it on the underlying SAT solver. After asking for a solution, the
user would then be presented with it faster. Another, somewhat surprising,
situation where continuous solving applies is while the user is visually inspect-
ing one solution for a model: the analyzer can then be instructing the SAT
solver to generate the next solution in the background. Our results show that
(beginner) users are not very likely to check for the next solution, but if they
do check the next solution, they tend to repeat this operation a few times
in a row. Repeatedly looking at the next solution is something that we have
anecdotally observed in expert Alloy users as well.

We next present results that estimate the decrease in the latency for getting
next solution with and without continuous execution. We cannot obtain the
precise result, because our logs do not record the entire user’s interaction with
the Alloy Analyzer and thus we do not know the precise time when the users
performed all actions. Our logs record when a user begins checking for the
next solution and when the SAT solver returns the result. We use begini to
denote the beginning time of the ith checking and endi for the time when the
results are returned to the user. Thus, begini+1 − endi is the period when
the user inspects the ith solution, which is also the potential decrease in the
latency for getting the i + 1th solution if we can overlap the computation for
the i + 1th solution and the user inspection.

We examined 84 cases in which the users checked for the next solution
in the logs. On average, the users spent 8 seconds examining the returned
solution and waited less than 1 second for the SAT solver to return the next
solution. In all 84 cases, the time that the users spent on visual inspection
was longer than the time that the SAT solver took to generate the next solu-
tion. If the analyzer instructs the SAT solver to search for the next solution
immediately after the previous solution is returned, the user can get the next
solution instantaneously when the next solution is desired.

5 Conclusions and Future Work

We have presented an analysis of the use of the Alloy Analyzer, a tool for
automatic checking of software models written in Alloy, a first-order, declar-
ative language. Although there has been a lot of prior work on Alloy, there

16

Li et al.

has been no study of how users interact with the analyzer. We analyzed the
interactions that 11 graduate students had with the tool while developing two
models for a problem set. Our results show that: (i) users often perform
consecutive executions with slightly different models, and thus incremental
checking could speed up the interaction; (ii) users’ interaction with the ana-
lyzer are sometimes predictable, and the analyzer can precompute the result
of a future action while the user is editing the model; and (iii) (beginner) users
can naturally develop semantically equivalent models that have significantly
different execution time, and it is worthwhile to study model transformations
that can improve execution time.

Our results provide an encouraging starting point for the further analysis
of the Alloy Analyzer. We are planning to collect more logs and analyze them
to detect potential further improvements for the analyzer. Implementing full
incremental execution and continuous execution in the analyzer would be an
important step in realizing the potential improvements. More generally, the
Alloy Analyzer is only one example tool used in software development. We
believe that studies of tool usage are important, and we are planning to explore
usage of other tools in the future.

Acknowledgments

We would like to thank the 11 students from our classes for submitting the
logs of their interactions with the Alloy Analyzer. We would also like to thank
anonymous reviewers for their comments on a previous version of this paper.
We are thankful to Derek Rayside and Greg Dennis for their help with Alloy
logging.

References

[1] Bayardo Jr., R. J. and R. C. Schrag, Using CSP look-back techniques to solve real
world SAT instances, in: Proceedings of the National Conference on Artificial
Intelligence, 1997, pp. 203–208.

[2] Cormen, T. H., C. E. Leiserson and R. L. Rivest, “Introduction to Algorithms,”
The MIT Press, Cambridge, MA, 1990.

[3] Goldberg, E. and Y. Novikov, BerkMin: A fast and robust SAT-solver, in:
Proceedings of the Design, Automation, and Test in Europe (DATE), 2002,
pp. 142–149.

[4] Jackson, D., Micromodels of software: Modelling and analysis with Alloy (2001),
http://sdg.lcs.mit.edu/alloy/book.pdf.

[5] Jackson, D., “Software Abstractions: Logic, Language, and Analysis,” The MIT
Press, Cambridge, MA, 2006.

17

http://sdg.lcs.mit.edu/alloy/book.pdf

Li et al.

[6] Jackson, D., I. Schechter and I. Shlyakhter, ALCOA: The Alloy constraint
analyzer, in: Proceedings of the 22nd International Conference on Software
Engineering (ICSE), Limerick, Ireland, 2000, pp. 730–733.

[7] Khurshid, S. and D. Jackson, Exploring the design of an intentional naming
scheme with an automatic constraint analyzer, in: Proceedings of the 15th IEEE
International Conference on Automated Software Engineering (ASE), Grenoble,
France, 2000, pp. 13–22.

[8] Moskewicz, M. W., C. F. Madigan, Y. Zhao, L. Zhang and S. Malik, Chaff:
Engineering an efficient SAT solver, in: Proceedings of the 39th Design
Automation Conference (DAC), 2001, pp. 530–535.

[9] Myers, E. W., An O(ND) difference algorithm and its variations, Algorithmica
1 (1986), pp. 251–266.

[10] Saff, D. and M. D. Ernst, An experimental evaluation of continuous testing
during development, in: Proceedings of the International Symposium on Software
Testing and Analysis (ISSTA), Boston, MA, 2004, pp. 76–85.

[11] Sullivan, K., J. Yang, D. Coppit, S. Khurshid and D. Jackson, Software
assurance by bounded exhaustive testing, in: Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA), Boston, MA, 2004, pp.
133–142.

[12] Ukkonen, E., Algorithms for approximate string matching, Information and
Control 64 (1985), pp. 100–118.

[13] Whittemore, J., J. Kim and K. Sakallah, SATIRE: A new incremental
satisfiability engine, in: Proceedings of the 38th Conference on Design
Automation (DAC), Las Vegas, NV, 2001, pp. 542–545.

[14] Wos, L., R. Overbeek, E. Lusk and J. Boyle, “Automated Reasoning (2nd ed.):
Introduction and Applications,” McGraw-Hill, Inc., New York, NY, USA, 1992.

18

	Introduction
	Example
	Study
	Experimental Setup
	Logging
	Analysis
	Equivalent Models, Different Performance

	Potential Improvements
	Incremental Solving
	Continuous Execution

	Conclusions and Future Work
	References

