
Automatic Testing of Software

with Structurally Complex Inputs

by

Darko Marinov

B.S., University of Belgrade, Yugoslavia (1997)
S.M., Massachusetts Institute of Technology (2000)

Submitted to the Department of Electrical Engineering and
Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2005

c© Massachusetts Institute of Technology 2005. All rights reserved.

Signature of Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Electrical Engineering and Computer Science

December 14, 2004

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Martin C. Rinard

Associate Professor, Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Arthur C. Smith

Chairman, Department Committee on Graduate Students



Automatic Testing of Software
with Structurally Complex Inputs

by
Darko Marinov

Submitted to the Department of Electrical Engineering and Computer Science
on December 14, 2004, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Modern software pervasively uses structurally complex data such as linked data struc-
tures. The standard approach to generating test suites for such software, manual
generation of the inputs in the suite, is tedious and error-prone. This dissertation
proposes a new approach for specifying properties of structurally complex test inputs;
presents a technique that automates generation of such inputs; describes the Korat
tool that implements this technique for Java; and evaluates the effectiveness of Korat
in testing a set of data-structure implementations.

Our approach allows the developer to describe the properties of valid test inputs
using a familiar implementation language such as Java. Specifically, the user provides
an imperative predicate—a piece of code that returns a truth value—that returns true
if the input satisfies the required property and false otherwise. Korat implements our
technique for solving imperative predicates: given a predicate and a bound on the
size of the predicate’s inputs, Korat automatically generates the bounded-exhaustive
test suite that consists of all inputs, within the given bound, that satisfy the property
identified by the predicate. To generate these inputs, Korat systematically searches
the bounded input space by executing the predicate on the candidate inputs. Korat
does this efficiently by pruning the search based on the predicate’s executions and by
generating only nonisomorphic inputs.

Bounded-exhaustive testing is a methodology for testing the code on all inputs
within the given small bound. Our experiments on a set of ten linked and array-
based data structures show that Korat can efficiently generate bounded-exhaustive
test suites from imperative predicates even for very large input spaces. Further, these
test suites can achieve high statement, branch, and mutation coverage. The use of
our technique for generating structurally complex test inputs also enabled testers in
industry to detect faults in real, production-quality applications.

Thesis Supervisor: Martin C. Rinard
Title: Associate Professor, Electrical Engineering and Computer Science

2



Acknowledgements

Numerous people have helped me, directly or indirectly, to complete this work. With
the previous sentence, I started the acknowledgements for my bachelor’s and master’s
theses. The list of people has grown even longer for this PhD thesis. I apologize in
advance to those who I will not explicitly mention here due to the lack of space or
the negative influence of PhD studies on my memory. You all have my gratitude for
your help.

First of all, I would like to thank my advisor, Martin Rinard, for providing me
the necessary support—personal, financial, and technical—throughout my graduate
studies. Martin’s care for the overall well-being of his students is truly great. I was
extremely fortunate to be able to rely on him in the many uncommon situations that
I faced as an MIT student. (Getting married and having a baby, for example, sound
common compared to having your home country bombed or being questioned by the
police and calling your advisor at home at 3 a.m.) I also appreciate the tremendous
freedom that he gave me in initiating and producing my research and publishing the
results. Although it meant that we did not work very closely, and I had to learn
some lessons indirectly, it still helped me to learn those lessons well. Finally, I thank
Martin for believing in me ever since he brought me to MIT. I hope that I fulfilled
his expectations and that I can continue to do so as he raises the expectation bar.

I would like to thank Michael Ernst and Daniel Jackson for all their help during
my graduate studies. They served on my thesis committee and helped me improve
the writing of this dissertation. They also helped me with their advice and discussions
on selecting research topics and doing research. I wish I had time to collaborate more
with them.

Sarfraz Khurshid helped the most with the work presented in this dissertation.
Sarfraz and I started working together on automated testing of software with struc-
turally complex inputs while we were roommates in the infamous apartment 001 in the
Edgerton dorm. Our initial, half-serious development of a testing tool called TestEra
grew into the whole MulSaw project that Sarfraz and I co-led for about three years,
working with a dozen people, producing research that resulted in eight publications,
and having a lot of fun. From the MulSaw project, Sarfraz and I also split our PhD
dissertations, his on the ideas behind TestEra and mine on the ideas behind Korat.
Sarfraz was not only an excellent collaborator but also an excellent friend throughout
my MIT studies, from the time we met at the prospective student visit weekend when
I first came to MIT through my PhD defense that he came from Texas to attend.
Without Sarfraz, my experience at MIT wouldn’t have been nearly as positive.

The PhD students in Martin’s group—C. Scott Ananian, Chandrasekhar Boya-
pati, Brian Demsky, Viktor Kuncak, Patrick Lam, Maria-Cristina Marinescu, Radu
Rugina, Alexandru Salcianu, and Karen Zee—made my life at MIT a pleasant experi-
ence and helped me in various ways during my graduate studies. Chandra helped most
directly with my thesis: his question during one of my presentations led to the idea
of Korat; the name Korat actually comes from Chandra’s native language and means
saw (the tool for cutting wood). Maria made my first office the most productive place
that I have worked at so far. Radu had enough patience to teach me several technical

3



topics at the beginning of my PhD studies. Viktor and Alex had the patience to
discuss research with me, either specific technical questions or meta-questions about
doing research, throughout our PhD studies. Brian and Patrick provided additional
technical insights, and Scott helped me make my working environment pleasant. Last
but not least, Karen provided guidance on proper behavior.

Several other MIT students helped me with technical discussions or general advice
about research and MIT. Alan Donovan, Carlos Pacheco, Derek Rayside, Robert
Seater, Ilya Shlyakhter, and Manu Sridharan provided useful feedback on my work.
Kostas Arkoudas helped me with discussions on theorem proving and mathematical
rigor. Eddie Kohler and Jonathan Babb were the two senior PhD students who
most influenced my decisions to come to MIT and to stay at MIT. Sam Larsen, Dim
Mitsouras, and Mark Stephenson started the PhD program with me, and I wish I
could have spent more time with them.

I was fortunate to work, during my graduate studies, with several undergraduate
and MEng students, including Omar Abdala, Daniel G. Adkins, Basel Al-Naffouri,
Alexander Andoni, Faisal Anwar, Suhabe Bugrara, Cristian Cadar, Dumitru Daniliuc,
Ang-Chih Kao, Ioan Tudor Leu, Jelani Nelson, and Lev Teytelman. This experience
taught me how (not) to supervise students. I would especially like to thank Alex
and Dumi for their help with the experiments on Korat. Alex developed most of our
mutation testing framework, and Dumi developed various scripts.

My two summer internships were very valuable and pleasant experiences because
of the people I worked with. At IBM Research, I worked with Rob O’Callahan in a
group managed by John Field. Rob is an amazing hacker, and I was fortunate to be
able to learn several hacks from him. At Microsoft Research, I worked with Wolfram
Schulte in a group managed by Yuri Gurevich. Wolfram turned the research ideas
behind Korat into a part of a practical tool used by real testers and enabled me to
learn how testing is done “in the trenches.” I also thank Wolfgang Grieskamp and
Nikolai Tillmann for discussions on Korat.

Toward the end of my graduate studies, I collaborated with Tao Xie and David
Notkin from the University of Washington. Tao made our collaboration as productive
and enjoyable as the best collaborations I had at MIT, although we worked together
mostly long-distance. David accepted me as a close collaborator and provided valuable
advice on several matters. I thank them for enriching my PhD experience beyond the
usual level.

Jovan Djordjevic, Davor Magdic, Aleksandar Milenkovic, Dragan Milicev, Veljko
Milutinovic, Jelica Protic, and Igor Tartalja provided me with important extracur-
ricular activities and initial research opportunities during my undergraduate studies.
Without them, I would have not been at MIT in the first place.

I thank Mihai Budiu for all the jokes and serious emails that he sent me in the
last few years. I am truly sorry that a joke about August never became reality.

Mary McDavitt helped me tremendously with organizing my thesis defense and
handling other administrative issues of my PhD. There are not enough words or
flowers to thank her.

I would like to thank many friends who helped me remain (in)sane during my
stay at MIT. Their support and friendship enabled me to put my work in perspective

4



with other life issues. The friends from the U.S.A. include Vladimir Bozin, Cindy
Chen, Ivan Crnilovic, Jure Derganc, Milenko Drinic, Ilse Evans, Jim Evans, Vladimir
Jakobac, Nikola Jevtic, Ivana Kalea, Aleksandar Kojic, Bozidar Kuljic, Gojko Lalic,
Marko Loncar, Tatjana Marvin, Jelena Mirkovic, Nebojsa Mirkovic, Mrdjan Mlad-
jan, Milos Popovic, Milica Radisic, Zoran Radisic, Rados Radoicic, Sasa Slijepcevic,
Adnan Sulejmanpasic, and Bosiljka Tasic. Of the friends who are not (yet) in the
U.S.A., I would like to mention Vladimir Baltic, Goran Maksimovic, Zoran Martic,
and Nenad Stamenkovic, who made it to my wedding, as well as Bosko Nikolic, who
could not make it.

Danica Galonic, Ting Hsiao, Vladimir Lukic, Nemanja Petrovic, and Scott Yih
helped my family while we were moving from Massachusetts to Illinois.

My research assistantships were funded in part by ITR grant #0086154 from the
National Science Foundation.

Last but not least, I would like to thank my sister, Marina, my mother, Ivanka,
and my father, Slobodan, for their enormous love, care, and support. I will strive to
give the same to my daughter, Lara, and my wife, Daniela; they deserve much more
for the patience and understanding they show for me and my work.

5



6



Contents

1 Introduction 13
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1.1 Imperative Predicates as Constraints . . . . . . . . . . . . . . 16
1.1.2 Korat: A Solver for Imperative Predicates . . . . . . . . . . . 17
1.1.3 Eliminating Equivalent Test Inputs . . . . . . . . . . . . . . . 18

1.2 Bounded-Exhaustive Testing . . . . . . . . . . . . . . . . . . . . . . . 19
1.2.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3 Thesis and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Examples 25
2.1 Binary Search Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.1 Preview of the Experimental Results . . . . . . . . . . . . . . 27
2.2 Heap Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Solving Imperative Predicates 33
3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.2 Formal Correctness Statement . . . . . . . . . . . . . . . . . . 36
3.1.3 Naive Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.4 Predicates with Multiple Inputs . . . . . . . . . . . . . . . . . 38

3.2 Korat: A Solver for Imperative Predicates . . . . . . . . . . . . . . . 39
3.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.2 Finitization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.3 State Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.4 Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.5 Nonisomorphism . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Correctness 53
4.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.4 Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7



4.5 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Direct Generation 61
5.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Comparison with Imperative Predicates . . . . . . . . . . . . . . . . . 63
5.3 Dedicated Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6 Testing Based on Imperative Predicates 67
6.1 Unit Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.1.1 Overview of Java Modeling Language . . . . . . . . . . . . . . 67
6.1.2 Black-Box Method Testing . . . . . . . . . . . . . . . . . . . . 69
6.1.3 White-Box Method Testing . . . . . . . . . . . . . . . . . . . 72
6.1.4 Sequences of Method Calls . . . . . . . . . . . . . . . . . . . . 72

6.2 System Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2.1 Differential Testing . . . . . . . . . . . . . . . . . . . . . . . . 74

7 Mutation Testing 77
7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.1.1 Output Comparison . . . . . . . . . . . . . . . . . . . . . . . 78
7.1.2 Existing Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.2 Ferastrau: A Mutation Tool for Java . . . . . . . . . . . . . . . . . . 79
7.2.1 Mutant Generation . . . . . . . . . . . . . . . . . . . . . . . . 79
7.2.2 Mutant Execution . . . . . . . . . . . . . . . . . . . . . . . . 80

8 Evaluation 83
8.1 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.2 Generation of Data Structures . . . . . . . . . . . . . . . . . . . . . . 85

8.2.1 Dedicated Generators . . . . . . . . . . . . . . . . . . . . . . . 87
8.3 Bounded-Exhaustive Testing . . . . . . . . . . . . . . . . . . . . . . . 88

8.3.1 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.3.2 Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.3.3 Feasibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.3.4 Randomness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

9 Comparison with Testing Based on Declarative Predicates 97
9.1 Overview of TestEra . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
9.2 Ease of Writing Predicates . . . . . . . . . . . . . . . . . . . . . . . . 98

9.2.1 Nonisomorphic Inputs . . . . . . . . . . . . . . . . . . . . . . 99
9.3 Efficiency of Generation and Checking . . . . . . . . . . . . . . . . . 101
9.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

10 Related Work 105
10.1 Automated Test-Input Generation . . . . . . . . . . . . . . . . . . . . 105
10.2 Static Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
10.3 Software Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . 108

8



11 Conclusions 111
11.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

11.1.1 Language for Predicates . . . . . . . . . . . . . . . . . . . . . 111
11.1.2 Efficiency of Generation . . . . . . . . . . . . . . . . . . . . . 112
11.1.3 Bounded-Exhaustive Testing . . . . . . . . . . . . . . . . . . . 114

11.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
11.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

A Full Example Code and Experimental Results 119

9



10



List of Figures

2-1 Binary search tree example. . . . . . . . . . . . . . . . . . . . . . . . 26
2-2 Trees that Korat generates for scope three . . . . . . . . . . . . . . . 28
2-3 Variation of code coverage and mutating coverage with scope . . . . . 29
2-4 Heap array example. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2-5 Heaps that Korat generates for scope one. . . . . . . . . . . . . . . . 31

3-1 Example object graphs that are not binary search trees . . . . . . . . 34
3-2 Example (non)isomorphic object graphs . . . . . . . . . . . . . . . . 35
3-3 Algorithm for checking isomorphism of two object graphs. . . . . . . 37
3-4 Example of a predicate with multiple inputs . . . . . . . . . . . . . . 38
3-5 High-level overview of the Korat search algorithm . . . . . . . . . . . 39
3-6 Two finitizations for the repOk method. . . . . . . . . . . . . . . . . 40
3-7 Classes that Korat uses to represent state space. . . . . . . . . . . . . 41
3-8 State space for finSearchTree(3) . . . . . . . . . . . . . . . . . . . 42
3-9 Candidate that is a valid SearchTree . . . . . . . . . . . . . . . . . . 43
3-10 Candidate that is not a valid SearchTree . . . . . . . . . . . . . . . . 43
3-11 Pseudo-code of the Korat’s search algorithm. . . . . . . . . . . . . . . 46
3-12 Instrumentation for the SearchTree example. . . . . . . . . . . . . . 50

5-1 A noncontrollable generator for trees. . . . . . . . . . . . . . . . . . . 62
5-2 A controllable generator for binary search trees. . . . . . . . . . . . . 63

6-1 Example JML specification for the remove method. . . . . . . . . . . 68
6-2 Example JML specification for the extractMax method. . . . . . . . 69
6-3 Predicate for black-box testing of the remove method. . . . . . . . . 70
6-4 Finitizations for the precondition of the remove method. . . . . . . . 71
6-5 Comparison of several testing frameworks for Java . . . . . . . . . . . 72
6-6 Predicate for white-box testing of the remove method. . . . . . . . . 73
6-7 Methods corresponding to the example method sequences. . . . . . . 74
6-8 Differential testing of an XPath compiler. . . . . . . . . . . . . . . . . 75

8-1 Benchmarks and finitization parameters . . . . . . . . . . . . . . . . 84
8-2 Performance of Korat for generation of data structures . . . . . . . . 86
8-3 Target methods for testing data structures . . . . . . . . . . . . . . . 88
8-4 Testing target methods with bounded-exhaustive test suites . . . . . 90
8-5 Variation of code coverage and mutating killing with scope . . . . . . 91

11



8-6 Performance of Korat for generating test inputs . . . . . . . . . . . . 93
8-7 Comparison of bounded-exhaustive testing and random testing . . . . 94

9-1 Example declarative predicate in Alloy . . . . . . . . . . . . . . . . . 98
9-2 Manual symmetry-breaking predicate in Alloy . . . . . . . . . . . . . 100
9-3 Comparison of Korat and SAT . . . . . . . . . . . . . . . . . . . . . . 102

A-1 Full code for the example remove method. . . . . . . . . . . . . . . . 119
A-2 Full code for the example repOk method. . . . . . . . . . . . . . . . . 120
A-3 Korat’s performance for test generation and checking . . . . . . . . . 121

12



Chapter 1

Introduction

Testing is currently the dominant method for finding software errors. As such, testing
is critical to the production of high-quality code. Obtaining good test inputs is a key
requirement for successfully testing any software system. Manual generation of test
inputs is a labor-intensive task and typically produces inputs that exercise only a
subset of the functionality of the software. The alternative is to automate generation
of test inputs; such automation can significantly help the developers produce and
maintain reliable code.

We focus on software components that have structurally complex inputs: the
inputs are structural (e.g., represented with linked data structures) and must satisfy
complex properties that relate parts of the structure (e.g., invariants for linked data
structures). Our main contribution is a technique for the automatic generation of
structurally complex inputs from input properties provided by the developer. We
assume that the developer also provides a test oracle that can automatically check
partial correctness of the software for every input.

Modern software pervasively manipulates structurally complex data. For example,
Java programs manipulate a heap that consists of linked objects; each heap configu-
ration must satisfy the consistency properties of the data structures in the heap. As
another example, Web services manipulate XML documents [114]; each service oper-
ates only on documents that satisfy particular syntactic and semantic properties. We
next present two scenarios that illustrate the testing of code that takes structurally
complex inputs, and we discuss the need for generation of such inputs.

Consider the testing of an operation of a data structure that implements an ab-
stract data type, for example, a Java method that removes an element from a tree
that implements a set. Each such operation should preserve the invariant of the data
structure; in our example, the invariant is that the object graph that represents the
tree is indeed a tree and not an arbitrary graph with cycles. To test the remove
method, we need to execute it on several input object graphs. This method has an
implicit precondition: the input must be a tree. We thus do not want to test the
remove method for arbitrary object graphs—it may very well loop infinitely or return
an incorrect output; we need to generate object graphs that satisfy the tree invariant.

As another example, consider the testing of a program that processes XML doc-
uments of some specific kind. The input to the program is simply a sequence of

13



characters; if the sequence does not satisfy a syntactic or semantic property of the
XML documents that the program processes, the program only reports an error. It
is important to generate test inputs that check this error-reporting behavior. But we
also need to check the actual processing, which requires generating test inputs that
satisfy the properties of the kind of XML documents that the program processes.

One potential approach to the automatic generation of structurally complex in-
puts is random generation: automatically generate a set of inputs, then filter out
those inputs that do not satisfy the required property of the component under test.
However, this approach may be prohibitively expensive for components with complex
input properties—the density of inputs that satisfy the property in the search space
may be so low that the generator is unable to produce enough legal inputs within a
reasonable amount of time.

We propose a systematic approach for generating structurally complex inputs by
solving imperative predicates. An imperative predicate is a piece of code that takes
an input, which we call a structure, and evaluates to a boolean value. Solving an
imperative predicate amounts to finding structures for which the predicate evaluates
to true. An efficient solver for imperative predicates can form the basis of a prac-
tical tool for test-input generation. Specifically, the user represents test inputs with
structures and provides an imperative predicate that checks the desired property: the
predicate returns true if and only if the structure satisfies the property. The tool then
processes this predicate to efficiently produce a stream of structures that satisfy the
property identified by the predicate; each structure translates into a test input.

We have developed a technique for solving imperative predicates and implemented
it in a solver called Korat.1 In our technique, a solver takes as input an imperative
predicate and additionally a finitization that bounds the size of the structures that
are inputs to the predicate. The solver systematically searches the bounded structure
space and produces as output all structures, within the given bounds, for which the
predicate returns true. More precisely, the solver produces only nonisomorphic struc-
tures that translate into a special kind of nonequivalent test inputs (Section 1.1.3).

We have used bounded-exhaustive testing [56,72,104], which tests the code for all
inputs within the given small bound, to evaluate the effectiveness of our technique for
generating structurally complex test inputs by solving imperative predicates. More
precisely, we have used Korat to generate bounded-exhaustive test suites for ten data-
structure implementations, half of which we developed following standard textbook
algorithms [23] and half of which we took from other sources, including the Java
standard library [105]. The results show that Korat can efficiently generate test
suites that achieve high statement, branch, and mutation coverage (Section 1.2.1).

The rest of this chapter is organized as follows. Section 1.1 presents the use
of constraint solving for generation of test inputs and discusses imperative predi-
cates as a particular kind of constraint. Section 1.2 presents our approach to testing
based on solving imperative predicates and describes how we evaluated this approach.

1We initially [13] used the term Korat to refer to the solving technique itself, to a solver that
implements this technique for Java predicates, and to an application of this solver to black-box,
specification-based unit testing. In this dissertation, we use Korat to refer only to the solver.

14



Section 1.3 states the main thesis of this dissertation, and Section 1.4 lists the con-
tributions that the dissertation makes. Section 1.5 presents the organization of the
remainder of this dissertation.

1.1 Background

We next discuss the use of constraint solving for test-input generation. A constraint
is a formula that specifies some property of a set of variables. For example, the con-
straint x >= 1 && x <= 8 specifies that the value of the variable x be between one
and eight. Another familiar example constraint is from the “eight queens problem”; it
specifies that a chess board contain eight queens such that no queen attacks another.
Constraint solving amounts to finding solutions to constraints, i.e., assignments to the
variables that make the constraint formula true. For example, x = 3 is one solution
for the first example constraint. Constraint solvers often use sophisticated local and
global search techniques to find one, several, or all solutions to a given constraint.

Researchers have explored the use of constraint solving for test-input generation
since the 1970s [29, 39, 49, 50, 61, 63, 68, 73]. The main idea is to represent a property
of the desired test inputs as a constraint (potentially obtained automatically from the
code under test) such that a solution to the constraint translates into a test input.
For example, a function that draws a nonstandard chess board may take as input the
board size—an integer that is between one and eight. The first example constraint
represents this condition on the input; any solution to this constraint gives a value to
x that constitutes a legal input for this function.

Our approach allows the tester to provide the constraints for test inputs. Note
that these constraints characterize the “desired” inputs, which need not always be
the “legal” inputs to the code. For example, the tester may want to test the chess-
board-drawing function with a board size that is not between one and eight. Instead
of providing specific values for the board size, the tester provides only the constraint,
and a constraint solver then generates inputs. This is indeed the main advantage
of using constraint solvers: the tester needs to provide only the constraint, which
may be much easier to write than a set of test inputs, and a tool then automatically
generates a set of test inputs.

Three questions arise in using constraint solving for test-input generation:

1. Which language should we use to express constraints, and what type of con-
straints can we express in that language?

2. What constraint solver should we use to generate test inputs?

3. How can we eliminate equivalent test inputs?

Most previous approaches focused on constraints where variables are integers or
arrays of integers [29, 50, 61, 63]. These approaches did not consider generation of
structurally complex inputs. Although it is in principle possible to encode structural
inputs (e.g., an object graph on the Java heap) using integer arrays, expressing rele-
vant properties of these inputs (e.g., that a part of the object graph is acyclic) would

15



be very cumbersome. Furthermore, the previous studies did not optimize solvers for
efficient generation of all solutions for such constraints.

We first developed an approach [55, 73] for generating structurally complex test
inputs from constraints written in a declarative, relational language based on first-
order logic formulas [52]. (More details on this approach are in Chapter 9.) This
constraint language enables the succinct expression of relevant structural properties
such as acyclicity. We used the existing solver for this language [51] and developed a
methodology for eliminating equivalent test inputs [57]. Based on this approach, we
implemented a testing tool; the use of this tool detected faults in several real appli-
cations [56, 73, 104]. However, this approach requires the user to learn a constraint
language that is quite different from a typical programming language. We therefore
developed a new approach, which is the topic of this dissertation. Our new approach
allows the user to write properties of test inputs as imperative predicates in a familiar
programming language such as Java.

1.1.1 Imperative Predicates as Constraints

An imperative predicate is a piece of code that takes an input structure and determines
its validity. In Java, for example, an imperative predicate is a method that returns
a boolean. We use the term imperative predicates for two reasons: (1) to determine
whether the result is true or false for the given structure, a tool has to execute
an imperative predicate that typically manipulates state; and (2) it distinguishes
imperative predicates from the declarative predicates that we used in our previous
approach. Solving an imperative predicate amounts to finding structures for which
the predicate returns true; we call such structures valid structures.

Imperative predicates give the user an operational way of expressing declarative
constraints that identify the desired test inputs. The user provides an imperative
predicate, written in a standard programming language, that returns true if the input
structure satisfies the required property and false otherwise; every valid structure
translates into a test input.

Our approach involves an unusual design decision: the user expresses declarative
constraints with imperative predicates. We next briefly compare our approach with
two other approaches to generating all valid structures that represent structurally
complex test inputs with the desired property: (1) an approach where the user writes
constraints as declarative predicates, as in our previous approach, and (2) an ap-
proach where the user writes programs, called generators, that directly generate valid
structures instead of checking their validity. Our comparisons consider the three main
features of an approach to generating structures:

1. How easy is it for the user to develop machine-readable descriptions (constraints
or generators) from which a tool can generate desired structures?

2. How efficient is the generation of such structures?

3. For which testing tasks are the descriptions useful?

16



Chapter 9 presents a detailed comparison of our approach, which is based on
imperative predicates, with an approach based on declarative predicates. We do not
have experimental results that compare the ease of development of these predicates,
but our anecdotal experience shows that using the programming language in which
the code was written to write predicates for test inputs has several advantages:

• Users are familiar with the syntax and semantics of the language, so there is no
new language to learn.

• Users are familiar with the development tools, such as integrated development
environments and debuggers, and can use them effectively to develop imperative
predicates.

• Some imperative predicates may already be present in the code, typically in
assertions for automatic checking of correctness.

Furthermore, the experimental results for our benchmarks show that generating struc-
tures from imperative predicates is faster than generating them from declarative
predicates. However, declarative predicates tend to be more succinct than imper-
ative predicates, and users familiar with a declarative language may find it easier to
develop declarative predicates. Additionally, for test inputs that are not structurally
complex, declarative predicates are typically easier to write and faster to solve than
imperative predicates. Both imperative and declarative predicates are useful (with
the support of appropriate tools) for the same testing tasks, including automatic
test-input generation and use as automatic test oracles.

Chapter 5 presents a comparison of our approach with generators that directly
generate valid structures. Our anecdotal experience shows that for simple properties
it may be as easy to write generators (especially in languages that have built-in
backtracking) as predicates, but for more complex properties it can be often easier to
write predicates. Using optimized generators to generate structures is always faster
than solving imperative predicates. However, optimized generators are harder to
change for similar properties than predicates are. Moreover, predicates can serve as
test oracles, whereas generators cannot.

In summary, our design decision seems to be the “sweet spot” for bounded-
exhaustive generation of structures that represent structurally complex test inputs.
But for a different type of generation or a different set of properties for test inputs,
it is likely that other approaches are more appropriate.

1.1.2 Korat: A Solver for Imperative Predicates

The main contribution of this dissertation is a technique for solving imperative pred-
icates and its implementation in Korat, a solver for Java predicates. Korat takes as
input a Java predicate and a finitization that bounds the size of the input structures.
Korat produces as output all valid nonisomorphic structures within the given bounds.
We discuss isomorphism in the next section.

In Java, each structure is an object graph that consists of linked objects whose
fields point to other objects or have values of primitive type. Each finitization specifies

17



bounds for the number of objects in the structure and possible values for the fields
of these objects. Each finitization thus defines a finite structure space—a set of all
those object graphs that consist of up to the specified number of objects and whose
fields have one of the specified values. We call the numeric bound that limits the size
of the structures the scope. Whereas finitization describes the whole structure space,
usually parameterized over size, the scope provides the actual numeric value for the
bound on the size parameter.

Korat generates all valid structures by systematically searching the structure space
defined by the finitization. A naive systematic search would enumerate every structure
within the finitization and then check whether the predicate returns true or false for
that structure. Korat uses an optimization that prunes the search. Specifically,
Korat builds candidate structures and executes the predicate to check whether these
structures are valid;2 Korat monitors the execution of the predicate to determine the
fields of the structure that the predicate accesses before returning the value. The
values of the fields that the predicate does not access do not affect the result, so
Korat eliminates from consideration all additional structures that differ only in the
values of those fields. Note that this heuristic optimizes the efficiency of the search
but does not compromise its completeness. Chapter 3 presents Korat in detail.

It is necessary to empirically evaluate how well Korat’s pruning works. The ef-
ficiency of the pruning depends not only on the set of valid structures but also on
the way the imperative predicate is written. For two predicates with the same set of
valid structures, Korat can take a greatly different amount of time to generate the
structures. More precisely, the efficiency depends on the order in which the predicate
accesses the fields. In theory, an ill-written predicate might always read all the fields
of the structure before returning a value, thereby forcing Korat to explore almost
the entire structure space, like the naive systematic search. (Korat can still avoid
exploration of isomorphic structures.) In practice, however, our experience indicates
that naturally written predicates, which return false as soon as they detect a vio-
lation, induce very effective pruning. Section 11.1.2 presents several guidelines for
writing predicates that make Korat’s pruning effective and also discusses properties
for which Korat is inefficient. The results in Chapter 8 show that Korat’s perfor-
mance is a significant improvement over that of the naive search; Korat can explore
very large structure spaces in just a few seconds.

1.1.3 Eliminating Equivalent Test Inputs

We next discuss equivalent and isomorphic test inputs. Assume that we are testing
a program by running it on several inputs and checking one correctness property
for each output. Two test inputs are equivalent if they have the same behavior
with respect to the correctness property—they either both make it succeed or both
make it fail. In other words, either both test inputs detect a fault or neither of them
detects a fault. The equivalence classes of such inputs form revealing subdomains [48,

2This search technique is known as generate and test [92], but we avoid this term because we use
the terms generate and test for other purposes.

18



112]. In theory, if we could precisely partition the program’s inputs into revealing
subdomains, it would suffice to test the program with one representative from each
revealing subdomain. In practice, however, it is hard to determine the revealing
subdomains for a given program and a given correctness property.

Our generation focuses on isomorphic inputs, a special kind of equivalent inputs.
Two test inputs are isomorphic for a set of programs and correctness properties if
they have the same behavior for all programs and all properties from the set. The
equivalence classes of isomorphic inputs thus form the finest revealing subdomains:
it is not necessary to test any program from the set with two isomorphic inputs.
Given a specific program under test and a specific property, we can merge several
classes of nonisomorphic inputs into larger revealing subdomains, but without a priori
knowledge of the program or the property, we cannot tell whether two nonisomorphic
inputs will have the same behavior or not.

Isomorphism between inputs is the consequence of the semantics of a chosen set
of programs and properties. Consider, for example, the set of all Java programs and
properties that do not use the System.identityHashCode method, which returns a
hash code based on the identity of an object. The behavior of any such program and
property cannot depend on the actual identity of the objects. In Java, therefore, we
define isomorphism with respect to object identity; each input structure is an object
graph, and two inputs are isomorphic if they represent the same graph modulo a
permutation of the objects.

Korat generates only nonisomorphic valid structures, namely, only nonisomorphic
object graphs. When the valid structures that Korat generates constitute test inputs,
the elimination of isomorphic structures significantly reduces the number of generated
inputs without reducing the quality of the generated test suite. Sections 3.1.2 and
3.2.5 discuss isomorphism in detail.

1.2 Bounded-Exhaustive Testing

Bounded-exhaustive testing is a technique for testing the code on all inputs up to a
given bound [56,72,104]. We call the numeric bound the scope, just like the numeric
bound for Korat’s solving. Korat can form the basis of a tool that performs either
black-box or white-box bounded-exhaustive testing. In the black-box setting, the tool
uses Korat to solve an imperative predicate that identifies the desired test inputs.
Korat thus generates all test inputs, within a given scope, that satisfy the given
properties; although Korat monitors the code of the predicate to generate the test
inputs, it does not monitor the code under test in this setting. The tool then runs
the code under test on each input and uses an oracle to check the correctness of
each output. In the white-box setting, Korat additionally monitors the execution of
the code under test, and it can establish the correctness for a set of inputs without
necessarily running the code for all of them.

Bounded-exhaustive testing has detected faults in several real applications. We
used a tool based on declarative predicates to detect faults in a naming architecture for
dynamic networks and a constraint solver for first-order logic formulas [73]. Sullivan

19



et al. [104] used the same tool to detect faults in a fault-tree analyzer; we recently used
Korat for the same study and found an error in the declarative predicates that Sullivan
et al. wrote. The Foundations of Software Engineering group at Microsoft Research
implemented a solver for imperative predicates in the AsmL Test Tool (AsmLT) [33].
The use of AsmLT at Microsoft revealed faults in several systems, including web-
service protocols and XML-processing tools [102].

1.2.1 Evaluation

Evaluations of techniques for test-input generation center around the quality of the
generated test suites. But it is also important to consider the overall performance
of testing, including generation of test inputs as well as checking of the output. In
theory, bounded-exhaustive testing could detect any fault that exhaustive testing
could detect: increasing the scope for the input size in the limit leads to exhaustive
testing for all possible inputs. In practice, however, time constraints make it possible
to test only up to certain scope, raising the possibility that the resulting nonexhaustive
test suite may fail to detect a fault.

To evaluate the effectiveness of bounded-exhaustive testing, we used it to test a
benchmark set of ten data-structure implementations. We developed five of these
benchmarks following standard textbook algorithms [23], took four from the Java
Collections Framework [105], and took one from the Intentional Naming System (INS)
project [1]. Our experiments start from a correct version for each data structure.
The original implementation of INS had faults [73], but we use a corrected version.
During the development of the five benchmarks, the use of Korat helped us detect
and correct several faults, adding anecdotal evidence of the usefulness of bounded-
exhaustive testing.

The direct measure of the quality of a test suite is the number of detected faults.
Thus, one approach to evaluating a technique for test-input generation is to apply it to
several programs with known faults and measure how many faults the generated test
suites detect. The problem with this approach is finding real programs with real faults
that a technique can detect. Bounded-exhaustive evaluation has detected several
faults in real programs, but our evaluation starts with corrected benchmarks. We
thus must use another approach to evaluate our technique for test-input generation,
namely, indirect metrics of the quality of test suites. In particular, we use (structural)
code coverage and mutation coverage.

Code coverage is a common metric for comparing test suites [10]. Measuring code
coverage requires executing the program on the inputs from a suite and recording the
executed parts of the program. Statement coverage, for example, is the ratio of the
number of executed statements to the total number of statements in the program; a
similar ratio is defined for other parts, such as branches, conditions, or paths [10].
Our experiments use statement coverage and branch coverage, which we refer to as
code coverage. Some parts may be infeasible—that is, impossible to execute for any
input—so the denominator sometimes includes only feasible parts. Complete coverage
is a ratio of 100%; in general it is undecidable whether a part is feasible or not, so we
say that a test suite is adequate if it achieves a prespecified percentage. Code coverage

20



is usually correlated with the ability of a test suite to detect faults: the higher the
coverage that a test suite achieves, the better it is. According to this metric, a test
suite that achieves complete code coverage is not worse than any other test suite.

Mutation coverage is another metric for comparing test suites [28, 44]. It deter-
mines how many seeded errors a test suite detects. A tool for measuring mutation
coverage proceeds in two steps. The tool first produces a set of new, potentially
faulty versions of a program, called mutants, by automatically performing syntactic
modifications on the program, e.g., replacing a variable with another variable, say
n.left with n.right . These modifications model typical errors committed by pro-
grammers. The tool then measures how many mutants a test suite detects: the tool
runs the original program and each mutant on each input, and if a mutant generates
an output different from the original program, the test input detects the error, and
we say that it kills the mutant. Mutation coverage is the ratio of the number of killed
mutants to the total number of mutants. The ideal ratio is again 100%, but some
mutants may be semantically equivalent to the original program, so there is no input
that can kill these mutants; we say that a test suite is mutation-adequate if it achieves
a prespecified percentage. A test suite that detects a high percentage of seeded faults
is likely to detect real faults [86]. Chapter 7 presents the mutation tool that we use
in our experiments.

Chapter 8 presents the hypotheses that we evaluate and the details of the exper-
iments for our set of benchmarks. The results show that bounded-exhaustive test
suites can achieve high statement, branch, and mutation coverage for relatively small
scopes. The results further show that Korat can generate inputs for these scopes
in just a few minutes, often in a few seconds; additionally, checking the correctness
of the code for all those inputs takes just a few minutes, often a few seconds. In
summary, the results show that Korat is efficient enough for practical use in testing
complex data structures.

We point out that it is not necessary to use code coverage and mutation coverage
in conjunction with Korat. We used these two metrics to evaluate test suites that
Korat generates. But users of Korat can instead use any other metric or simply use
the scope itself and the time: generate test inputs and increase the scope until the
testing becomes too slow. This approach is common in bounded checking of software
artifacts [12, 51,107].

1.3 Thesis and Challenges

Our thesis is that solving imperative predicates is a practical technique for testing
software with structurally complex inputs: (1) it is feasible to generate, within small
scopes, all valid nonisomorphic test inputs from imperative predicates that charac-
terize structurally complex inputs, and (2) such test inputs are effective in software
testing. This dissertation presents the evidence that supports our thesis.

We faced several challenges when we started this work:

• It might have been too difficult to write imperative predicates in practice. Our
anecdotal experience shows that this is not the case. For example, two MIT

21



undergraduate students wrote the Java predicates that check invariants for our
data-structure benchmarks [72]. As another example, professional testers at
Microsoft wrote predicates for testing several XML-processing tools, including
an XPath compiler [102]. Both undergraduate students and professional testers
were able to easily write imperative predicates in the languages they are familiar
with.

• It might have been too difficult to write imperative predicates that can be effi-
ciently solved. The efficiency of Korat’s generation depends not only on the set
of valid structuresbut also on the way the imperative predicate is written. Our
experience shows that naturally written predicates induce good generation. The
experimental results in Chapter 8 show the Korat’s performance for predicates
that we did not optimize for solving.

• It might have been too difficult to generate valid structures for imperative pred-
icates that arise in practice. Developing a solver for imperative predicates was
indeed our main challenge. Our previous experience [73] showed that it is
feasible to generate some structurally complex test inputs using a specialized
constraint language, but it was unclear whether we could do the same using a
standard programming language. Moreover, the feasibility of generating com-
plex data structures was questioned in the literature. The community was aware
of the potential utility of generating structures that satisfy sophisticated invari-
ants [5] but considered the problem to be too difficult to attempt to solve using
random generation:

Trying to generate a random heap state, with a rats’ nest of references,
and then select those that represent queues, would be both difficult
and hopeless in practice. [20, page 68]

We agree that generating complex structures by generating random graphs and
filtering out those that do not satisfy the properties of interest is hopeless, albeit
easy to implement. Our results show, however, that it is feasible to efficiently
generate structures using bounded-exhaustive solving of imperative predicates.
This is feasible for structures that satisfy not only the queue property but many
other data-structure invariants as specified by arbitrary pieces of code written
in a standard programming language.

• The generation might have been too slow to be practical, or the generated
test suites might have been of low quality. (As discussed in Section 1.2.1, it
is necessary to consider the performance of the generation and the quality of
the test suites jointly in bounded-exhaustive testing.) Our results in Chapter 8
again show that this is not the case: the generation is practical, and the test
suites achieve high coverage according to two metrics. Together with other
studies that used bounded-exhaustive testing to detect faults in real applica-
tions [56, 73, 102, 104], these results suggest that systematic generation within
a small scope [13, 33, 108] is a practical way to obtain test suites for code that
manipulates complex data structures.

22



1.4 Contributions

This dissertation makes the following contributions:

• Imperative predicates as constraints: We propose imperative predicates
as a practical means of specifying properties of the desired test inputs. Whereas
previous research used special-purpose languages for specifying constraints on
test inputs, we allow the use of standard programming languages such as Java.
We formalize the problem of solving imperative predicates as finding, within
given bounds, all nonisomorphic inputs, called structures, for which the predi-
cate returns true.

• Solver for imperative predicates: We present a technique for solving im-
perative predicates and a solver for Java predicates, Korat. Given a predicate
and a finitization that bounds the structures that are inputs to the predicate,
Korat systematically searches the structure space to generate all valid, noniso-
morphic structures. Korat dynamically monitors the executions of the predicate
to determine the relevant fields of the structure, i.e., the fields that affect the
result of predicate’s computation. Korat then eliminates from consideration all
additional structures with identical values for relevant fields.

• Correctness of the solver: We formalize the Korat algorithm and present
a proof of its correctness. The correctness of Korat is important for evaluat-
ing Korat accurately. The correctness is also important in practice—if Korat
mistakenly produces a structure that does not satisfy the desired property, the
developer may waste valuable time attempting to track down a nonexistent er-
ror in the implementation. If, on the other hand, Korat incorrectly causes a set
of structures to be systematically omitted, the generated test inputs will not
detect any fault that is triggered only by those omitted inputs.

• Extension to the solver: We present dedicated generators, extensions to Ko-
rat that show how to exploit the presence of common input properties to further
prune the search during generation. Dedicated generators increase Korat’s ef-
fectiveness in bounded-exhaustive testing. They optimize the generation for
common properties that often appear within test inputs, without eliminating
any valid structures. Moreover, dedicated generators provide a library of imper-
ative predicates that can be reused when developing new imperative predicates.

• Implementation of a testing tool set: We describe the design and imple-
mentation of three tools. First, we present details of our Korat implementation
for Java and discuss some possible alternative implementations. Second, we
present our testing tool built on top of Korat. Third, we present a tool for
mutation testing of Java programs, which we developed to evaluate bounded-
exhaustive testing.

• Applications in testing: We describe how to apply the solving of imperative
predicates in testing. Our initial application was in black-box, specification-
based unit testing. Given a formal specification for a method, a testing tool

23



synthesizes an imperative predicate from the method precondition. It then uses
a solver to generate all nonisomorphic test inputs within a scope, executes the
method on each test input, and uses the method postcondition as a test oracle
to check the correctness of each output. We additionally present how to apply
the solving of imperative predicates in white-box testing, testing sequences of
method calls, and system testing.

• Evaluation: We present experimental results that show the feasibility of test-
ing data structures using solvers for imperative predicates, Korat in particu-
lar. Specifically, our results show that (1) bounded-exhaustive testing within
small scopes can generate test suites that are mutation-adequate; (2) bounded-
exhaustive test suites can achieve complete code coverage for even smaller
scopes, but such suites do not detect all mutants; (3) it is practical to use Korat
to generate inputs and check correctness for these scopes; and (4) bounded-
exhaustive testing within a scope is often more effective than testing with the
same number of randomly selected inputs from a larger scope.

1.5 Organization

The remainder of this dissertation is organized as follows. Chapter 2 illustrates with
two examples how programmers can use Korat to generate inputs and then test their
programs. Chapter 3 formalizes the problem of solving imperative predicates. This
chapter also presents details of Korat. Chapter 4 shows a proof of correctness for
Korat. Chapter 5 discusses dedicated generators, an extension to Korat. Chapter 6
then presents applications of Korat in testing, with emphasis on bounded-exhaustive
testing. Chapter 7 presents the design and implementation of our tool for mutation
testing of Java programs. Chapter 8 presents an evaluation of Korat and bounded-
exhaustive testing. Chapter 9 compares testing based on imperative predicates and
Korat with our previous approach for testing based on declarative predicates. Chap-
ter 10 discusses other related work. Chapter 11 discusses the strengths and limitations
of Korat and concludes this dissertation.

24



Chapter 2

Examples

This chapter presents two examples that illustrate how programmers can use Korat to
test their programs. The first example uses a binary tree data structure to illustrate
testing a method that manipulates a linked data structure. The second example uses
a heap data structure to illustrate testing a method that manipulates an array-based
data structure. The term heap here refers to the data structure, also known as priority
queues, and not to the dynamically-allocated memory. We use the term object graph
to refer to the latter.

2.1 Binary Search Tree

We use a method that removes an element from a binary tree to illustrate generation
and testing of linked data structures. Although removal is conceptually simple, the
implementation involves intricate details to restore a tree after removing an inner
node. Figure 2-1 shows a part of Java code for a binary search tree implementation
of a set of integers. Each object of the class SearchTree represents a binary search
tree. The value of the size field is the number of nodes in the tree. Objects of the
inner class Node represent nodes of the trees. The tree stores the elements of the set in
the info fields. The remove method removes an element from a tree. (Appendix A
shows the full code for an example remove method.)

Figure 2-1 also shows the informal specification for remove : this method removes
the element if it was in the tree, and returns true iff it removes the element. Each
input to the remove method conceptually consists of a tree and an element to remove.
More precisely, the input consists of a SearchTree pointer, which is the value of the
implicit argument this , and an element to remove, which is the value of the argument
info . The pointer this is the root of an object graph that represents the state of
the tree right before the execution of remove , i.e., in the pre-state. The execution
can modify this object graph. Each output thus consists of a potentially modified
tree and a boolean that indicates whether the execution has removed the element;
the pointer this is the root of a modified object graph that represents the state of
the tree right after the execution of remove , i.e., in the post-state.

To test the remove method, the programmer needs to (1) generate several inputs

25



class SearchTree {
int size; // number of nodes in the tree
Node root; // root node
static class Node {

Node left; // left child
Node right; // right child
int info; // data

}

/** Removes an element from the tree.
Requires that "this" be a binary search tree.
Ensures that "info" is removed, if it was in the tree.
Returns "true" if the element was removed, "false" otherwise. */

boolean remove( int info) {
... // for method body see Appendix A

}

boolean repOk() { // for helper methods see Appendix A
// checks that empty tree has size zero
if (root == null ) return size == 0;
// checks that the object graph is a tree
if (!isTree()) return false ;
// checks that size is consistent
if (numNodes(root) != size) return false ;
// checks that data is ordered
if (!isOrdered(root)) return false ;
return true ;

}
}

Figure 2-1: Binary search tree example.

for remove , (2) execute remove for each input, and (3) check the correctness of each
output. We focus here on automating test-input generation using Korat; we show
later how to automate execution and checking (Section 6.1.2). To use Korat, the pro-
grammer needs to provide an imperative predicate that checks the validity of inputs.
Following Liskov [70], we call such predicates repOk ; they typically check the rep-
resentation invariant (or class invariant) of the corresponding data structure. Good
programming practice suggests that implementations of abstract data types always
provide such predicates, because they are useful for checking partial correctness1 of
the implementations [70]. When programmers follow this practice, the predicate is
already present, and Korat can generate test inputs almost for free.

For remove , a valid input should be an object graph that is actually a bi-
nary search tree, not an arbitrary graph. Figure 2-1 shows the repOk method for
SearchTree ; repOk is a Java predicate that checks that the input is indeed a valid

1A repOk predicate can check whether a method preserves the class invariant. To check a stronger
property for a specific method, the programmer needs to provide, in addition to repOk , a predicate
that checks this stronger property.

26



binary search tree with the correct size . First, repOk checks if the tree is empty. If
not, repOk checks that there are no undirected cycles in the object graph reachable
from the root field along the left and right fields. It then checks that the number
of nodes reachable from root is the same as the value of the field size . It finally
checks that all elements in the left/right subtree of a node are smaller/larger than the
element in that node. (Appendix A shows the full code for repOk and the methods
it invokes.)

It is worth pointing out that the same repOk predicate also checks partial correct-
ness for all other methods in SearchTree , e.g., add . Manually developing a test suite
that achieve high code coverage for all methods in a data structure can often be much
harder than writing a repOk invariant from which Korat automatically generates test
inputs that can achieve high code coverage. As a simple illustration, a test suite that
would achieve complete branch coverage for remove and add would have more lines
of code than the repOk predicate.

The programmer can use Korat to generate valid test inputs for the remove

method by generating valid structures for the repOk predicate. Each input is a
pair of a tree and an element, where the tree satisfies repOk , and the element is
unconstrained. To limit the number of inputs, the programmer provides Korat with
a finitization (Section 3.2.2) that specifies bounds on the number of objects in the data
structures and on the values in the fields of these objects. For trees, the finitization
specifies the maximum number of nodes and the possible elements; a tree is in a scope
s if it has at most s nodes and s elements. We can use the integers from 1 to s for
the tree elements and for the info argument.

Given a finitization and a value for scope, Korat automatically generates all valid
structures for the predicate and thus test inputs for the method. More precisely,
Korat generates only the structures that are nonisomorphic. In our running example,
two binary search trees are isomorphic if they have the same underlying graph and
elements, irrespective of the identity of the actual nodes in the trees. Section 3.1.2
gives a precise definition of isomorphism; it suffices to say that nonisomorphism can
significantly reduce the number of test inputs without reducing the quality of the test
suite. For example, in scope three, Korat generates 45 nonisomorphic test inputs.
Figure 2-2 shows the 15 nonisomorphic trees of size up to three; each input is a pair
consisting of one of these 15 trees and one of the three values for info .

2.1.1 Preview of the Experimental Results

We present here a sample of experimental results for SearchTree ; Chapter 3 de-
scribes how Korat generates valid structures, and Chapter 8 presents a detailed eval-
uation of Korat and its use in testing. We discuss the efficiency of generating test
inputs for SearchTree , the efficiency of checking correctness for those inputs, and
the quality of those inputs. The experiments evaluate Korat for both remove and
add methods for SearchTree . The inputs for these methods are the same, although
their behavior differs.

In scope three, for example, Korat generates 90 test inputs for both remove and
add methods (45 inputs each) in less than a second. As another example, in scope

27



0S0 :

root

1

1

3

root

1

2

root

1

N0 :

S0 :

N0 :

S0 :

N0 :

S0 :

root root root root root

right right left left left

1 2

3 3 1 1 2

2 3 3

root

2

right

1

2 2 2 2 2 2

N0 :

N1 :

N0 :

N1 :

N0 :

N1 :

N0 :

N1 :

N0 :

N1 :N1 :

N0 :

S0 : S0 : S0 : S0 : S0 : S0 :

root

right

2

root

right

1

3

root

left

3

root

left

2

3

right rightleft left

3 2 2 1

root

2

1 3

left right

1

1

3 3 3 3 3

N0 :

N1 : N1 :

N0 :

N1 :

N0 :

N1 :

N2 : N2 : N2 : N2 :

N2 :

N0 :

N1 :

N0 :

S0 : S0 : S0 : S0 : S0 :

Figure 2-2: Trees that Korat generates for scope three. Each tree consists of one
SearchTree object (S0) and several Node objects (N0, N1, and N2). For each object,
we show the identity and the value of the primitive field (size for S0 and info for
the Node objects). Edges represent values of reference fields with no edge for null .

seven, Korat generates 41,300 inputs for remove and add in less than ten seconds.
With dedicated generators (Section 5.3), the time that Korat takes to generate these
41,300 inputs further reduces to less than three seconds. We discuss below that the
test suite that Korat generates for scope seven is both code-coverage adequate and
mutation adequate, which means that the test suite has a high quality according to
these two metrics. Yet it takes Korat only a few seconds to generate this test suite.

We can check the code under test for the inputs that Korat generates using an or-
acle that automatically determines whether the code behaves correctly for each given
input. Chapter 6 describes how to obtain such oracles by translating specifications,
such as those written in the Java Modeling Language [17,67], into run-time assertions.
After generating the inputs with Korat, our testing tool invokes the method under
test on each input and reports a counterexample if the method violates an assertion.

28



0

20

40

60

80

100

0 1 2 3 4 5 6 7

SearchTree

Figure 2-3: Variation of code coverage and mutating coverage with scope. Thick line
shows the statement code coverage and thin line the mutation coverage.

This process checks the correctness of the method for the given scope. In scope three,
for example, it takes less than a second to check both remove and add for all 90
inputs, and in scope seven, it takes less two seconds to check remove and add for all
41,300 inputs.

Korat efficiently generates inputs that enable testing of remove and add methods
for small scopes such as three and seven, but the question is how good are these in-
puts? Our implementation of SearchTree is correct, so Korat cannot detect a fault;
instead, we use indirect metrics to estimate the quality of the test suites, in partic-
ular code coverage and mutation coverage. Figure 2-3 shows how code coverage and
mutation coverage vary with the scope for SearchTree . We can see that scope five
is sufficient to achieve complete coverage for this benchmark. Hence, the test inputs
that Korat generates for scope five are adequate (“good enough”) according to a test-
ing criterion based on code coverage [10]. However, we can see (from Figure A-3) that
killing all nonequivalent mutants requires inputs from scope six. Mutation criterion
is a stronger test criterion than code-coverage criterion: in this example, Korat needs
a larger scope to generate inputs that are mutation adequate [28]. But with respect
to both of these criteria, Korat has excellent performance. For both scopes five and
six, generating inputs and checking correctness takes less than 15 seconds. It is thus
practical to use Korat to generate test inputs for SearchTree methods.

2.2 Heap Array

We use a method that removes the largest element from a heap data structure [23] to
illustrate generation and testing of array-based data structures. The (binary) heap
data structure can be viewed as a complete binary tree—the tree is completely filled
on all levels except possibly the lowest, which is filled from the left up to some point.
Heaps also satisfy the heap property—for every node n other than the root, the value
of n’s parent is greater than or equal to the value of n.

29



class HeapArray {
int size; // number of elements in the heap
Comparable [] array; // heap elements

/** Removes the largest element from the heap.
If the heap is nonempty, returns the largest element.
If the heap is empty, throws an exception. */

Comparable extractMax() {
// ... method body

}

boolean repOk() {
// checks that array is non-null
if (array == null ) return false ;
// checks that size is within array bounds
if (size < 0 || size > array.length)

return false ;
for ( int i = 0; i < size; i++) {

// checks that elements are non-null
if (array[i] == null ) return false ;
// checks that array is heapified
if (i > 0 && array[i].compareTo(array[(i-1)/2]) > 0)

return false ;
}
// checks that non-heap elements are null; no leaks
for ( int i = size; i < array.length; i++)

if (array[i] != null ) return false ;
return true ;

}
}

Figure 2-4: Heap array example.

Figure 2-4 shows Java code that declares an array-based heap and defines the cor-
responding repOk predicate that checks whether the input is a valid HeapArray . The
array contains the elements of the heap, which implement the interface Comparable

that provides the method compareTo for comparisons. The repOk predicate first
checks for the special case when array is null . If it is not, repOk checks that the
size of the heap is within the bounds of the array . Then, repOk checks that the
array elements that belong to the heap are not null and satisfy the heap property.
Finally, repOk checks that the array elements that do not belong to the heap are
null .

Figure 2-4 also shows the declaration of extractMax method that removes and
returns the largest element from the heap. This method has two different behaviors
with actual preconditions: the precondition for the normal behavior requires the input
to be nonempty, and the precondition for the exceptional behavior requires the input
to be empty. To use Korat to generate inputs that test only the normal behavior,
the programmer needs to provide an imperative predicate that checks whether the
implicit this argument for extractMax satisfies this.repOk() && this.size >

30



size = 0, array = []
size = 0, array = [ null ]
size = 1, array = [ Integer (0)]
size = 1, array = [ Integer (1)]

Figure 2-5: Heaps that Korat generates for scope one.

0; similarly, for the exceptional behavior, the predicate should be this.repOk() &&

this.size == 0 . To generate inputs for both behaviors, the predicate should be
the disjunction of the predicates for the two behaviors. Section 6.1.2 shows how to
automatically generate such predicates from imperative preconditions.

Korat generates heaps for a given finitization that specifies a bound for the heap
size , a bound for the length of the array , and the values for the array elements.
The elements need to implement the interface Comparable , and they need to be
concrete objects that Korat can create. For example, the elements may be from a set
of objects of the class Integer , and the finitization specifies that each array element
either points to one of those objects or is null . A heap is in a scope s if the size,
array length, and array elements range from 0 to s.

Given a finitization and a value for scope, Korat automatically generates all heaps.
For example, Figure 2-5 shows the four heaps that Korat generates for scope one.
These heaps are for testing both behaviors of extractMax : the top two heaps are
empty and test the exceptional behavior, whereas the bottom two heaps are nonempty
and test the normal behavior. Note that both empty heaps have the value of the size

zero but differ in the array length. Korat generates both of these heaps because they
are not isomorphic, and extractMax could have different behavior for them; for a
correct extractMax , these two heaps are equivalent, and extractMax has the same
behavior for both—throws an exception. As another example, in less than one second,
Korat generates 1,919 heaps for scope five.

Our experiments use Korat to generate inputs for and test methods extractMax

and insert (which inserts an element in the heap). It takes less than three seconds to
generate 118,251 inputs and check both methods for scope six that achieves complete
code coverage. It takes less than 25 seconds to generate 1,175,620 inputs and check
both methods for scope seven that kills all nonequivalent mutants. These results show
that it is practical to use Korat to thoroughly test HeapArray methods. In under
half a minute, it is possible to test these methods for all inputs in scope seven, and
these inputs are coverage adequate and mutation adequate, i.e., have a high quality
according to those two criteria.

31



32



Chapter 3

Solving Imperative Predicates

This chapter formally presents imperative predicates, solving imperative predicates
in general, and Korat, our solver for imperative predicates. An imperative pred-
icate is a piece of code that takes an input, which we call structure, and returns
a boolean; solving an imperative predicate amounts to finding those structures for
which the predicate returns true. This chapter presents in detail how Korat solves
imperative predicates and gives a pseudo-code algorithm of Korat; Chapter 4 proves
the correctness of this algorithm.

3.1 Problem Statement

We start by defining imperative predicates and their inputs. This allows us to pre-
cisely state the problem of solving imperative predicates and its correctness require-
ment. We then compare solving imperative predicates with the satisfiability problem
in logic. We next present a naive algorithm for solving imperative predicates and dis-
cuss why it is impractical. We finally present how to reduce a predicate with several
inputs to a predicate with one input.

3.1.1 Definitions

We first define imperative predicates. We then define input structures and validity
and isomorphism of structures.

Definition 1 (Imperative Predicate). An imperative predicate is a piece of im-
perative code that takes an input structure and returns a boolean.

For example, Java programs represent the state with an object graph, and a Java
predicate is a method that takes a pointer, which is a root of an object graph, and
returns a boolean. In the narrow sense, an input to a predicate is just a pointer, but
in the broad sense, an input is the whole object graph reachable from that pointer.
Recall from Section 2.1 the repOk predicate that checks whether its input satisfies
the invariant for a binary search tree. The input to repOk is effectively the whole
object graph reachable from the SearchTree pointer that is the value of the implicit

33



root

1 3

left

root

2

1 3

left right

root

left rightright

3

1 2

2

323

N2 :N1 : N2 :

N0 :

N1 : N2 :

N0 :

N1 :

N0 :

S0 :S0 :S0 :

Figure 3-1: Example object graphs that are not binary search trees. The leftmost
graph is not a tree, the middle graph has an incorrect number of nodes, and the
rightmost graph does not have values in a binary search arrangement.

this argument. If root is not null , this object graph contains at least one Node

object.
There is some natural space of input structures for each predicate. For Java predi-

cates, the space consists of all object graphs that are well-typed according to the Java
type rules [38]. Since Java is a type-safe language, we do not need to consider object
graphs that are not well-typed, e.g., where pointers would have arbitrary (integer)
values. Instead, pointers point to actual objects of the appropriate types; for instance,
SearchTree pointers point to SearchTree objects, and Node pointers point to Node

objects. In languages, such as C or C++, that are not type-safe, pointers can have
arbitrary values, but we still consider only the structures that satisfy Java-like type
rules.

We define structures as rooted (object) graphs, where nodes represent objects and
edges represent fields. Let O be a set of objects whose fields form a set F . Each object
has a field that represents its class. Each array object has fields that are labeled with
array indexes and point to array elements. Let P be the set consisting of null and
all values of primitive types, such as int .

Definition 2 (Structure). A structure is a rooted, edge-labeled graph 〈O, r, E〉,
where r ∈ O is an object called root, and E ⊆ O × F × O ∪ P such that for every
object o ∈ O and every field f ∈ fields(o), there is exactly one 〈o, f, o′〉 ∈ E (where o′

has the appropriate type according to the type of f).

We write reachable(〈O, r, E〉) for a set of objects reachable from the root r. For-
mally, reachable(〈O, r, E〉) = O′ ⊆ O is the smallest set O′ that satisfies these two
equations: r ∈ O′ and o ∈ O′ ⇒ {o′ ∈ O|∃f. 〈o, f, o′〉 ∈ E} ⊆ O′.

We next consider validity of input structures. Our example repOk predicate
returns true or false for each well-typed structure (with a SearchTree root).
Figure 2-2 (Section 2.1) shows some structures for which repOk returns true . There
are (many more) other structures for which repOk returns false . Figure 3-1 shows
some examples of such structures: the first structure has an underlying graph that
is not a tree as there is sharing between nodes; the second structure has an incorrect

34



root

2

1 3

right left

3

root

2

left right

0 3

3

root

1 3

left right

root

2

1 3

left right

2

33

N2 :

N0 :

N1 :

S0 :

N2 :

N0 :

N1 :

S0 :

N1 :N0 : N2 :

N0 :

N1 :

N2 :

S0 :S0 :

Figure 3-2: Example (non)isomorphic object graphs. The graph in the middle is
isomorphic to the graph on the left (only the identity of the nodes differ) but not
isomorphic to any of the graphs on the right (the edges or primitive values differ).

size as there are three, not two, nodes reachable from root ; and the third structure
has elements that do not satisfy the binary search property as the element two is in
the right subtree of the element three.

Most practical predicates are deterministic, i.e., given the same input structure,
any two executions of the predicate are intuitively the same and produce identical
result. In general, however, predicates may be nondeterministic either only in the
execution (i.e., given the same structure, two executions may differ but produce iden-
tical result) or even in the result (i.e., given the same structure, two executions may
produce different results). Each execution of a predicate produces a specific result
(true or false ), but for nondeterministic predicates some executions may produce
true , and some executions may produce false , for the same structure.

Definition 3 (Validity). Let γ be a structure for a predicate π, and let π(γ) be the
set of results that executions of π can produce for structure γ. We say that γ is valid
iff π(γ)= {true }, and γ is invalid iff π(γ)= {false }. We also say that a valid
structure satisfies the predicate.

Note that a structure may be neither valid nor invalid; more precisely, a structure
γ is neither valid nor invalid when π(γ)= {false ,true }.

We define isomorphism between input structures based on object identity; two
structures are isomorphic iff the object graphs reachable from the root are isomorphic.
Figure 3-2 shows some example (non)isomorphic structures.

35



Definition 4 (Isomorphism). Let O1, . . . , On be some sets of objects from n classes.
Let O = O1∪ . . .∪On, and suppose that structures consist only of objects from O and
primitive values from P . Two structures, 〈O, r, E〉 and 〈O, r′, E ′〉, are isomorphic iff
there exists a permutation p on O ∪ P that is identity on P and that maps objects
from Oi to objects from Oi for all 1 ≤ i ≤ n, such that p(r) = r′ and

∀o ∈ reachable(〈O, r, E〉). ∀f ∈ fields(o). ∀v ∈ O ∪ P .
〈o, f, v〉 ∈ E ⇔ 〈p(o), f, p(v)〉 ∈ E ′.

The definition corresponds to so-called unlabeled graphs in combinatorics [101].
Note that it allows only the identity of the objects to permute between isomorphic
structures; the edge labels (fields and array indexes) and primitive values cannot
permute. Note also that this definition relies on there be exactly one 〈o, f, v〉 for
each field f of an object o. This is indeed the case for object graphs and structures
(Definition 2), but not for general graphs. We discuss this further in Section 9.2.1.

3.1.2 Formal Correctness Statement

We next precisely state the correctness requirement for solving imperative predicates.
It requires a solver for imperative predicate to find valid structures for a given pred-
icate. For our example repOk predicate, as well as in most practical situations, the
space of all input structures (and the number of valid structures) are infinite. Specif-
ically, the type for Node is recursive, and it is thus possible to build object graphs of
arbitrary size; also, the value of the field size is unbounded in theory1. We consider
only a finite portion of the structure space: the user provides bounds that limit the
size of the structure and the values that primitive fields can take.

We require a solver for imperative predicates to generate all nonisomorphic valid
structures within specified bounds. Isomorphism between structures partitions the
structure space into isomorphism partitions, and we require the solver to generate one
representative from each isomorphism partition of valid structures. More precisely,
given a predicate, the solver generates a set of structures with these properties:

• Soundness: The solver generates no invalid structure, i.e., no set contains a
structure for which the predicate always returns false .

• Completeness: The solver generates at least one valid structure from each
isomorphism partition of valid structures, i.e., every set contains at least one
representative from each isomorphism partition of structures for which the pred-
icate always returns true .

• Isomorph-Freeness: The solver generates at most one structure from each
isomorphism partition, i.e., no set contains two isomorphic structures.

From the last two properties, we conclude that the solver should generate exactly one
valid structure from each isomorphism partition that contains valid structures. Note

1In Java, the semantics specifies that primitive values of type int have exactly 32 bits.

36



boolean areIsomorphic( Object o1, Object o2) {
return areIsomorphic(o1, o2,

new Map<Object , Object >(), new Map<Object , Object >());
}
boolean areIsomorphic( Object o1, Object o2, Map m12, Map m21) {

if ((o1 == null ) || (o2 == null )) return (o1 == o2);
if (m12.containsKey(o1)) return (m12.get(o1) == o2);
if (m21.containsKey(o2)) return (m21.get(o2) == o1);
if (o1.getClass() != o2.getClass()) return false ;
m12.put(o1, o2);
m21.put(o2, o1);
foreach ( Field f in o1.getFields()) {

if (f.isPrimitiveType()) {
if (o1.f != o2.f) return false ;

} else {
if (!areIsomorphic(o1.f, o2.f, m12, m21)) return false ;

}
}
return true ;

}

Figure 3-3: Algorithm for checking isomorphism of two object graphs.

also that the solver should not generate any invalid structure, but it may or may not
generate structures that are neither valid nor invalid.

Since structures (and thus valid structures) are rooted and deterministically edge-
labeled graphs, it is easy to check isomorphism; Figure 3-3 shows an algorithm that
checks isomorphism of two (potentially cyclic) structures in O(n + e) steps, where n
is the number of objects in the structures, and e is the total number of fields. One
approach for generating only nonisomorphic valid structures would be to generate
all valid structures and then filter out the isomorphic ones. However, we show later
(Section 3.2.5) that our solver, Korat, does not require any such filtering.

3.1.3 Naive Algorithm

After the user limits the size of the structures, the structure space for the predicate
is finite. Suppose that we can enumerate all structures from the structure space,
regardless of their validity. (Section 3.2.3 presents how to do that.) We can consider
the following algorithm for generating valid structures:

1. Enumerate each structure from the structure space.

2. Execute the predicate for that structure.

3. If the predicate returns true , print the structure.

This algorithm clearly generates all valid structures. (To additionally generate only
nonisomorphic structures, the algorithm would need to have a post-processing step
that filters out isomorphic valid structures.)

37



class SearchTree {
boolean contains( int info) {

...
}

}

class TreeInfoPair {
SearchTree This;
int info;
boolean repOk() {

return This.contains(info);
}

}

Figure 3-4: Example of a predicate with multiple inputs. We can automatically
reduce the predicate to a predicate with one input.

The problem with this algorithm is that it enumerates the entire structure space
to find the valid structures. However, most structure spaces, including the structure
space for repOk for SearchTree , are sparse: although there is a very large number
of structures, only a tiny fraction of them are valid. Section 8.2 shows the results
that support this statement; for example, for SearchTree of size seven, there are 259

structures in the structure space, and only 7! · 429 of them are valid, i.e., only one in
1011 structures is valid. (Additionally, each valid structure belongs to an isomorphism
partition with 7! structures, so there are only 429 valid nonisomorphic structures.) In
the limit, as the size of the structures tends to infinity, the ratio of valid structures
and all structures typically tends to zero; as mentioned, however, we only consider
a finite portion of the structure space. To have a practical algorithm for solving
imperative predicates, we need to be able to better handle sparse structure spaces.

3.1.4 Predicates with Multiple Inputs

So far we have considered imperative predicates with only one input pointer, which
directly corresponds to structures with one root. We next show how to reduce a
predicate with multiple inputs, either pointers or primitive values, to a predicate
with one input pointer. In general we do this by: (1) introducing a class whose
objects represent tuples with multiple inputs and (2) replacing the multiple inputs
with one input of the new class. We next illustrate this on an example.

Figure 3-4 shows a predicate contains that takes a tree (implicit argument this )
and an element and checks whether the element is in the tree. This predicate concep-
tually has two inputs, so we introduce a new class, say TreeInfoPair , that represents
a pair of a tree and an element. We then translate the predicate contains to a pred-
icate on the objects of the new class; as usually, we call this new predicate repOk . We
can now use a solver to generate valid structures for repOk ; each structure represents
a pair of inputs for which contains returns true .

38



void koratSearch( Predicate pred, Finitization fin) {
initialize(fin);
while (hasNextCandidate()) {

Object candidate = nextCandidate();
try {

if (pred(candidate))
output(candidate);

} catch ( Throwable t) {}
backtrack();

}
}

Figure 3-5: High-level overview of the Korat search algorithm

3.2 Korat: A Solver for Imperative Predicates

We next describe our technique for solving imperative predicates and a tool, called
Korat, that implements this technique for Java predicates. Although our presentation
is in terms of Java, the technique generalizes to other languages. We first give a high-
level overview of the Korat algorithm. Korat uses two optimizations—pruning based
on accessed fields and elimination of isomorphic structures—to improve on the naive
search, without comprising the completeness. We then describe parts of the Korat
algorithm in detail. We use the repOk method from SearchTree as an example
predicate and illustrate how Korat generates valid binary-search trees. (Section 6.1.2
presents how Korat generates valid test inputs for the remove method.) We finally
present details of the implementation.

3.2.1 Overview

Given a Java predicate and a bound on its input structures, Korat automatically
generates all nonisomorphic structures that are valid, i.e., structures for which the
predicate always returns true . Korat uses a finitization (Section 3.2.2) to bound
the size of the input structures to the predicate. To enable efficient search for valid
structures, Korat encodes each structure with a state, and each finitization bounds the
state space (Section 3.2.3). Korat uses backtracking (Section 3.2.4) to systematically
search this state space to find all valid structures.

Figure 3-5 shows a high-level overview of the Korat search algorithm. Based on a
finitization for the input structures to the predicate, Korat first initializes the state
space of structures. Korat then builds candidate structures and executes the predi-
cate on them to check their validity. Korat monitors these executions to dynamically
determine which parts of the candidate the result of the predicate depends on. More
specifically, Korat monitors the fields of the candidate that the execution accesses.
If the predicate returns true , Korat outputs the candidate. Otherwise, if the pred-
icate returns false or throws an exception, Korat skips the candidate. Korat then
backtracks on the values of the accessed fields to generate the next candidate. Korat
terminates when it explores the entire state space.

39



Finitization finSearchTree( int numNode,
int minSize, int maxSize, int minInfo, int maxInfo) {

Finitization f = new Finitization ( SearchTree . class );
ObjSet nodes = f.createObjects("Node", numNode); // #Node = numNode
nodes.add( null );
f.set("root", nodes); // root in null + Node
// size in [minSize..maxSize]
f.set("size", new IntSet (minSize, maxSize));
f.set("Node.left", nodes); // Node.left in null + Node
f.set("Node.right", nodes); // Node.right in null + Node
// Node.info in [minInfo..maxInfo]
f.set("Node.info", new IntSet (minInfo, maxInfo));
return f;

}

Finitization finSearchTree( int scope) {
return finSearchTree(scope, 0, scope, 1, scope);

}

Figure 3-6: Two finitizations for the repOk method.

As mentioned, naive checking of all possible candidate structures would prohibit
searching sparse state spaces that arise in practice. Korat uses two optimizations.
First, Korat prunes the search based on the accesses that the executions of the pred-
icate make to the fields of the candidate structures. To monitor the accesses, Korat
instruments the predicate and all methods that the predicate transitively invokes (Sec-
tion 3.2.6). Intuitively, this pruning is correct because validity of the candidate must
be independent of the values of the fields that the predicate does not read before re-
turning the result. Second, Korat generates only nonisomorphic candidates and thus
only nonisomorphic valid structures (Section 3.2.5). These two optimizations speed
up the search without compromising the completeness. The results in Section 8.2
show that the number of candidates that Korat explores is only a tiny fraction of the
whole structure space. For example, for SearchTree of size seven, Korat explores
less than 350,000 candidates out of 259 possible structures in the structure space, i.e.,
less than one candidate in 1012 structures.

3.2.2 Finitization

Korat uses a finitization, i.e., a set of bounds that limits the size of the structures,
to generate a finite state space for predicate’s structures. Each finitization provides
(1) limits on the number of objects of each class and (2) the values for each field
of those objects. The structures can consist of objects from several classes, and the
finitization specifies the number of objects for each of those classes. A set of objects
from one class forms a class domain. The finitization also specifies a set of values for
each field; this set forms a field domain, which is a union of several class domains and
constants. The constants include null for pointers and all primitive values for fields
of primitive types.

40



class ClassDomain { // ordered class domain
Object [] objects;

}
class ClassDomainIndex {

ClassDomain domain;
int index; // index into ’domain.objects’ array

}
class ObjField { // field of an object from some domain

Object object;
Field field;

}

Figure 3-7: Classes that Korat uses to represent state space.

We need an explicit programming model for writing finitizations. In the spirit
of Extreme Programming [8] that uses the implementation language familiar to pro-
grammers for writing tests and partial specifications, Korat provides a library that
allows the user to write finitizations in Java. The initial version of Korat provided
a special-purpose language that allows writing finitizations more succinctly than in
Java. (This language is sketched in the comments in Figure 3-6.) However, adding a
new language would put additional burden on the user.

Figure 3-6 shows two methods that create finitizations for the example repOk ;
each finitization builds an object of the Finitization class from the Korat li-
brary. Invoking finSearchTree(scope) creates a finitization for scope scope . The
createObjects method specifies that the structure contains at most numNode ob-
jects from the class Node. The set method specifies a field domain for each field: the
fields root , left , and right can point to either null or a Node object; the size

field ranges between minSize and maxSize ; the info field ranges between minInfo

and maxInfo (specified using the utility class IntSet ). The Korat library provides
several additional classes for easy construction of class domains and field domains.

Korat automatically generates a skeleton for finitization methods from the type
declarations in the Java code. Actually, the first finitization method in Figure 3-6 is
generated by Korat. The automatic generation of skeletons does not always produce
a method to the user’s liking. The user can thus further specialize or generalize the
skeleton, as the second finitization method in Figure 3-6 shows. Note that program-
mers can use the full expressive power of the Java language for writing finitization
methods. The AsmLT tool [33] that implements a solver for predicates written in
the AsmL language additionally provides a graphical user interface for specifying
finitizations.

It is up to the user to choose the values for field domains in the finitizations. The
guideline for writing successful finitizations is to provide the necessary values such
that it is possible to generate the valid structures, and sufficient values, such that the
state space is not larger than necessary to generate valid structures. For example, it
is necessary to provide the value null for the fields left and right : each leaf in a
(nonempty) valid tree has this value. Also, it is necessary to provide for info at least

41



root size left inforight left right infoleft right info

null null nullnullnull null null 1
2
3

1
2
3

1
2
3

0
1
2
3

S0 N1 N2N0

N0

N1

N2

N0

N1

N2

N0

N1

N2

N0

N1

N2

N0

N1

N2

N0

N1

N2

N0

N1

N2

Figure 3-8: State space for finSearchTree(3) .

as many values as there are nodes: a valid tree has no repeated elements in the nodes.
However, to generate all tree structures, it is sufficient to provide for info at most
as many values as there are nodes. Also, it is sufficient to provide only non-negative
values for size : a valid tree cannot have a negative number of nodes. The user can
use Korat itself to “debug” the finitization: if Korat generates no valid structure, it
may be due to the finitization (or the predicate). Also, if Korat generates too many
valid structures, it may be possible to reduce the number by changing the finitization.

3.2.3 State Space

Korat constructs a state space of predicate structures based on a finitization. Korat
first allocates the objects that appear in the finitization and then generates a vector
of possible values for each field of those objects. Each state assigns a particular value
to each of the fields, and the whole state space consists of the Cartesian product of
possible values for each field.

For example, consider the finitization that finSearchTree(3) (from Figure 3-6)
produces. Korat first allocates one SearchTree object that forms the SearchTree

class domain and three Node objects that form the Node class domain. To systemat-
ically explore the state space, Korat orders the objects in these domains and during
search uses indexes into these domains. Figure 3-7 shows the classes that represent
the data for the state space and search.

Korat next assigns a field domain to each field. In this example, there are 11 fields:
the single SearchTree object has two fields (root and size ) and the three Node ob-
jects have three fields each (left , right , and info ). Each field domain is a sequence
of class domain indexes, such that all values that belong to the same class domain oc-
cur consecutively. For example, the field domain for root has four elements, null and
three Node objects, where null (as well as each primitive value) forms a class domain
by itself. Therefore, the field domain for root is [null,<nd,0>,<nd,1>,<nd,2>] ,
where nd is the class domain for Node objects.

Figure 3-8 shows the state space for this example. Each state is a mapping from
the object fields to the field domain indexes, and the whole state space consists of all
possible mappings. Since the domains for root , left , and right have four elements,

42



root size

3

left info

1nullnull

right left right info

3nullnull

left right info

2

root

31

left right

2

3

N0

S0 N1 N2N0

N2N1

N1 : N2 :

N0 :

S0 :

Figure 3-9: Candidate that is a valid SearchTree .

root size

3

left right info left info

1null

right

null

left right info

nullnull

root

rightleft

2 3

31

2

3

N0

S0 N0

N1N1

N1 N2

N1 : N2 :

N0 :

S0 :

Figure 3-10: Candidate that is not a valid SearchTree .

the domain for size has four elements, and the domain for info has three elements,
the state space has 4 · 4 · (4 · 4 · 3)3 = 1769472 > 220 states in this example. For
scope = n, the state space has (n + 1)2(n+1) · nn states.

Each state encodes a candidate structure. While a state maps fields to field domain
indexes (which are integers), a candidate is a structure that consists of the Java objects
from the finitization. Each field in the candidate is set according to the field domain
indexes in the state. Korat builds states for the systematic search of the state space,
and it builds candidates for actual inputs to the predicate. Because of the bijection
between states and candidates, we use terms state and candidate interchangeably.
We define two states to be isomorphic iff the corresponding candidates are isomorphic
(Definition 4).

Figure 3-9 shows an example candidate that is a valid binary search tree with three
nodes. Not all candidates represent valid binary search trees. Figure 3-10 shows
an example candidate that is not a tree; repOk returns false for this candidate.
Assume that the field domains are ordered as follows: for left and right the same
as for root (first null then Node objects), for size [0,1,2,3] , and for info

[1,2,3] . Then, the candidate in Figure 3-9 (Figure 3-10) corresponds to the state
[1,3,2,3,1,0,0,0,0,0,2] ([1,3,2,2,1,0,0,0,0,0,2] ).

43



Connected Structures

We next determine an approximate number of different connected substructures in
our example state space. This number gives a better measure than the size of the state
space (due to Korat’s encoding) for comparing Korat’s search with other plausible
searches. We call a structure connected if all objects are reachable from the root.
A random search, for instance, could generate structures as graphs reachable from
root, not by randomly choosing a state from the state space. Each structure 〈O, r, E〉
contains a connected substructure 〈Oc, r, Ec〉, where Oc = reachable(〈O, r, E〉) is the
set of all reachable objects, and Ec = {〈o, f, o′〉 ∈ E|o ∈ Oc}. For example, every state
that maps the root field of the SearchTree object to null contains the connected
substructure that has only the SearchTree object and no Node objects.

We have determined that our example state space has (n + 1)2(n+1) · nn states
for the scope n. Different states from the state space represent different structures,
but may have the same connected substructure (i.e., the same values for all fields of
all objects reachable from the root), and only differ in the values of some field of an
object unreachable from the root. For example, two structures that have the value
of root field null (and the same value for the size field) have the same connected
substructure, although they can differ in values for the fields of Node objects.

In our example, we compute the number of connected structures for the scope n,
denoted Cn, as the sum of the numbers of connected structures that have exactly i
objects, denoted Ci,n, where i ranges from 0 to n, i.e., Cn =

∑n
i=0 Ci,n. The state

space includes both valid and invalid structures; we want to compute the number of
connected structures (i.e., graphs) and not only the number of valid structures (i.e.,
trees). Let Gi be the number of nonisomorphic underlying graphs for the connected
structures with i objects such that Ci,n = Gi · i! ·

(
n
i

) · (n+1) ·ni: each graph can have
any permutation of i objects, chosen from a set of n objects; size can have one of
n + 1 values, and each info in the i nodes can have one of n values.

To determine an approximation for Cn, we determine an approximation for Gi,
the number of rooted, connected, directed, node-unlabeled graphs with i nodes and
two edge labels (left and right ). We can represent each such graph with a rooted
spanning tree and a set of back edges; we compute Gi by computing the number of
trees and the number of back edges that can be added to each tree. The number of
rooted trees with exactly i nodes, denoted Ti, obeys the recurrence Ti =

∑i−1
j=0 TjTi−1−j

with T0 = 1; to get a tree with i nodes, we choose one node for the root and split the
other i − 1 nodes in the left and right subtrees. This is a standard recurrence [101]
that gives rise to Catalan numbers: Ti = 1

i+1

(
2i
i

)
.

Each of Ti trees has i nodes and i− 1 edges, effectively setting the values for i− 1
out of 2i fields. Each graph can set the values for the remaining i + 1 fields to one
of i + 1 values, either to be null or to point to one of the i nodes. We have that
Gi ≤ (i+1)i+1Ti: setting the fields to all possible values for all trees creates the same
graph from different (spanning) trees. We also have that Gi ≥ 2·3·. . .·(i+1)·(i+1)Ti;
we can show that setting the fields according to the following procedure does not
create the same graph from different trees: (1) assign to each node a number between
1 and i based on the node’s order in a traversal such as depth-first traversal; (2) set

44



a field for node j to be either null or to point to node j′ ≤ j. With this procedure,
there is at least one field that has two possible values, one that has three etc.

We have not determined the exact formula for Gi. Using Korat, we have found
the exact values for Gi for several i, starting from 0: 1; 4; 45; 816; 20,225; 632,700;
23,836,540... This sequence does not appear in the Sloane’s On-Line Encyclopedia of
Integer Sequences [98], so it may have not arisen in combinatorics research previously.
We conjecture that the number of graphs is:

Gi = (i + 1)2
∑

〈a1,...,ai−1〉
i+1≥ai−1≥...≥a1∧∀1≤j≤i−1. aj≥j+1

i−1∏
j=1

aj.

In summary, we obtain the following lower bound for the number of connected
structures: Gi ≥ (i + 1) · (i + 1)! · 1

i+1

(
2i
i

)
= (i+1)(2i)!

i!
; Ci,n ≥ (i + 1)(2i)!

(
n
i

)
(n + 1)ni,

and Cn =
∑n

i=0 Ci,n. We use this lower bound to under-approximate the size of the
structure space for SearchTree in our evaluation of Korat’s search (Section 8.2). We
derive similar lower bounds for other benchmarks.

3.2.4 Search

Figure 3-11 shows a detailed pseudo-code of the Korat’s search algorithm. Based
on the finitization, Korat first creates the state space and gets the root object of all
candidates and structures. It then initializes result , the set of (valid) structures
found so far in the search, to the empty set. During the search, Korat maintains
a stack of fields that the executions of the predicate access; this stack is initially
empty.

The search starts with the state set to all zeros. For each state, Korat first creates
the corresponding candidate structure by setting the fields according to the indexing
of the state into the state space. Korat then executes the predicate to check the
validity of the candidate.

During the execution, Korat monitors the fields that the predicate accesses and
updates the stack in the following way: whenever the predicate accesses a field that
is not already on the stack, Korat pushes the field on the stack. This ensures that
the fields in the stack are ordered by the first time the predicate accesses them, i.e.,
the predicate has accessed (for the first time) the fields near the top of the stack
after it had accessed (for the first time) the fields near the bottom of the stack. The
predicate may access the same field several times, but the order is with respect to the
first access.

As an illustration, consider that the stack is empty and Korat invokes repOk

on the candidate shown in Figure 3-10.2 In this case, repOk accesses only the fields
[root ,N0.left ,N0.right ] (in that order) before detecting a cycle and returning false .
Thus, after this invocation, the stack would consist of only those three fields.

2This candidate is just an illustrative example for the search; the Korat search would actually
skip over this candidate without invoking repOk on it.

45



Set <Map<ObjField , int >> koratSearch( Predicate pred, Finitization fin) {
Map<ObjField , ClassDomainIndex []> space = fin.getSpace();
Object root = fin.getRootObject();
Set <Map<ObjField , int >> result = new Set ();
Stack <ObjField > stack = new Stack ();
Map<ObjField , int > state = new Map();
foreach ( ObjField f in fin.getObjFields()) state[f] = 0;
do {

// create a candidate
foreach ( ObjField f in fin.getObjFields()) {

ClassDomainIndex cdi = space[f][state[f]];
f.set(cdi.domain.objects[cdi.index]);

}
// execute "pred(root)" and update "stack"
boolean value = observeExecution(pred, root, stack);
// if state is valid, add it to the result
if (value) result.add(state);
// if *not* optimizing, add other fields to the stack
if (!PRUNING || result) {

// add all reachable fields not already in stack
foreach ( ObjField f in reachableObjFields(root))

if (!stack.contains(f)) stack.push(f);
}
// backtrack
while (!stack.isEmpty()) {

ObjField f = stack.top(); // field on the top of stack
if (ISOMORPHISM_BREAKING) {

int m = -1; // maximum index for the class domain of ’f’
ClassDomain d = space[f][state[f]].domain;
// a straightforward way to compute ’m’
foreach ( ObjField fp in stack.withoutTop())

if (space[fp][state[fp]].domain == d)
m = max(m, space[fp][state[fp]].index);

// if an isomorphic candidate would be next...
if (space[f][state[f]].index > m)

// ...skip to the end of the class domain
while ((state[f] < space[f].length - 1) &&

(space[f][state[f] + 1].domain == d))
state[f]++;

}
// check if the field index is at the end of the field domain
if (state[f] < space[f].length - 1) {

state[f]++; break ; // increment index and stop backtracking
} else {

state[f] = 0; stack.pop(); // reset index and keep backtracking
}

}
} while (!stack.isEmpty()); // end do
return result;

}

Figure 3-11: Pseudo-code of the Korat’s search algorithm.

46



If the predicate returns true , Korat adds the current state to the set of valid
structures. It also ensures that all reachable fields are on the stack, so that succes-
sive iterations generate all (nonisomorphic) states that have the same values for the
accessed fields as the current state.

Korat then uses backtracking to generate the next state based on the accessed
fields. We explain the isomorphism optimization in the next subsection; we focus here
on the code that checks for the end of the field domain. Korat first checks whether
it can increment the field domain index for the field on the top of the stack without
exceeding the field domain size. If it can, Korat increments this field domain index
and finishes the current iteration. If it cannot, Korat resets this field domain index
to zero and moves to the previous field on the stack, unless the stack is empty. (The
isomorphism optimization may additionally skip more values from a field domain.)

Continuing with our example, the next candidate gets the next value for N0.right ,
which is N2 by the above order, and the values of the other fields do not change. This
prunes from the search all 45 ·33 = 27648 states of the form [1, ,2,2, , , , , , , ]

that have the (partial) valuation: root =N0, N0.left =N1, N0.right =N1. Intuitively,
the pruning based on accessed fields does not rule out any valid structure because
repOk did not read the other fields, and it could have returned false irrespective of
the values of those fields.

Note that the execution of repOk on the next candidate starts with the content of
the stack that the execution on the previous candidate finishes with. More specifically,
the stack is not initialized to empty between iterations (but only once before the main
do loop). If repOk accesses fields in a deterministic order, it would be the same if
the stack were initialized to empty; since the backtracking does not change the values
of the first several fields on the stack, the execution of repOk on the next candidate
would build the same stack for those fields.

Continuing further with our example, the next candidate is the valid binary search
tree shown in Figure 3-9. When Korat executes repOk on this candidate, repOk

returns true and the stack contains all 11 fields. (In general, repOk may not access
all reachable fields before returning true .) The search then backtracks to the next
state.

Korat repeats the procedure with the next state: generate the corresponding
candidate, invoke the predicate on it, monitor the execution to update the stack, and
backtrack on the fields in the stack. The search finishes when the stack is empty after
backtracking, indicating that the whole state space has been explored. The result of
the search is the set result .

3.2.5 Nonisomorphism

Recall from Section 3.1.2 that isomorphism is defined with respect to node iden-
tities, and since structures, and thus candidates and valid structures, are rooted
and deterministically edge-labeled graphs, it is easy to check isomorphism. How-
ever, Korat does not explicitly check isomorphism to filter out isomorphic structures.
Instead, Korat avoids generating isomorphic structures by not even considering iso-
morphic candidates. The code that implements this is shown in Figure 3-11 in the

47



if (ISOMORPHISM BREAKING) part. This code depends on structures being the in-
puts to the predicate; if the inputs were general graphs, Korat could generate some
isomorphic inputs.

Recall that each state maps object fields to field domain indexes. Field domain
indexes have a natural order. Additionally, each stack imposes a partial order on the
fields: a field f 1 is “smaller” than a field f 2 iff either (1) f 1 is on the stack and f 2 is
not on the stack or (2) both f 1 and f 2 are on the stack and f 1 is farther from the top
of the stack than f 2; two fields that are both not on the stack are incomparable. For
example, the stack [root ,N0.left ,N0.right ] makes root “smaller” than any other
field, N0.left “smaller” than any field but root , N0.right “smaller” than all fields
that are not on the stack, and all those fields that are not on the stack incomparable.

The two orders, the order on field domain indexes and the partial order on fields,
together induce a partial lexicographic order on the states: this lexicographic order
first orders the fields in a sequence based on the order on fields and then compares the
field domain indexes within the sequence as usual for the lexicographic order. Korat
generates states in the increasing values of this lexicographical order. For example,
for the stack [root ,N0.left ,N0.right ], Korat generates the state(s) that have the
(partial) valuation root =N0, N0.left =N1, N0.right =N1 before the state(s) that have
the (partial) valuation root =N0, N0.left =N1, N0.right =N2.

With the isomorphism-breaking optimization, Korat avoids generating isomorphic
states. More precisely, Korat generates only the lexicographically smallest state from
each isomorphism partition from which Korat generates at least one state. (Due
to pruning, Korat may not generate any state from some isomorphism partitions;
those partitions, however, do not have any valid state.) Conceptually, Korat avoids
isomorphic states by incrementing some field domain indexes by more than one. (The
usual backtracking increments field domain indexes at most by one.)

For the field f on the top of the stack, Korat finds m, the maximum class domain
index of all fields fp that are “smaller” than f (farther from the top of the stack)
and have the same class domain as f . If there is no such fp , m has value -1 . (The
actual implementation caches the values of m and reuses them in next iterations,
because a part of the state remains the same between backtracking iterations.) For
example, for the state from Figure 3-10, and with the stack as discussed above, m=1

for f =N0.right .
While backtracking on f , Korat checks if the field domain index for f is greater

than m. If it is not, Korat does nothing special for f but only increments its field
domain index as usual in backtracking. This allows Korat to explore all possible
aliasing of the field f with “smaller” fields. However, if the field domain index is
greater than m, Korat increments this field domain index to the end of the current
class domain for f . This allows Korat to prune all but one states where f would point
to an object not pointed by any of the “smaller” fields. Intuitively, this pruning does
not rule out any valid structures, but only avoid isomorphic structures.

For example, Korat for finSearchTree(3) generates only the 14 trees shown in
Figure 2-2. Consider the five trees of size three. Each of them is a representative from
an isomorphism partition that has six distinct trees, one for each of 3! permutations
of nodes.

48



In general, if each valid structure for some repOk predicate has all n objects
from a class domain, Korat with the isomorphism optimization reduces the number
of structures generated by a factor of n!. This factor is smaller when valid structures
can have repeated objects and/or do not need to have all objects from some domain.
For example, suppose that Korat generates an object with three fields whose field
domains consist of only one class domain {o1, o2, o3, . . . , on} and repOk always
returns true . Out of n3 potential candidates, Korat generates only the following
five, one from each partition of nonisomorphic inputs: o1, o1, o1; o1, o1, o2; o1, o2,
o1; o1, o2, o2; o1, o2, o3.

To illustrate the importance of eliminating isomorphic candidates during gen-
eration, consider the alternative technique that first generates all valid structures
(irrespective of isomorphism) and then filters out isomorphic structures, keeping only
one structure from each isomorphism partition. Suppose that a finitization has only
one class domain with n objects and that there are V (n) valid nonisomorphic struc-
tures in each of which the n objects appear exactly once. The alternative tech-
nique would first generate n! more candidates and valid structures than Korat, i.e.,
n! · V (n) valid structures. If it then eliminates isomorphic structure by comparing
each structure with all others not already eliminated, it would additionally require
Σ

V (n)
i=1 (n!(V (n)− i + 1)− 1) = O(n! · V (n)) comparison steps between the structures.

3.2.6 Implementation

We next present some details of our Korat implementation. The implementation has
three major parts: (1) the search itself, (2) generation of finitization skeletons, and
(3) instrumentation for monitoring field accesses.

We implemented in Java the search for valid nonisomorphic structures, closely
following the algorithm from Figure 3-11. The main difference is that the implemen-
tation does not represent object fields using the ObjField class (a pair of an object
and a field); instead, it assigns a unique integer identifier to each field of the objects
in the finitization. This is a performance optimization that allows representing state
as an array that maps field identifiers into field domain indexes.

We modified the source code of the Sun’s javac compiler to provide automatic
generation of finitization skeletons. Given a set of Java source files, our implementa-
tion uses the compiler to parse them and build symbol tables; it then processes the
type information to generate skeletons as illustrated in Section 3.2.2. The modified
javac generates Java source of the skeletons.

Instrumentation

We also modified the javac compiler to provide instrumentation for monitoring field
accesses. Our implementation performs a source-to-source translation that instru-
ments all classes whose objects appear in finitizations. For each class, the instrumen-
tation adds a special constructor and a field for the observer (explained below). For
each field of these classes, the instrumentation adds an identifier field and special get

and set methods. Finally, in the code for repOk and all methods that repOk transi-

49



class SearchTree {
korat.Observer korat_observer; // observer for this object
// special constructor to initialize the observer and field ids
SearchTree ( korat.Observer observer, korat.Ids id) {

korat_observer = observer;
korat_id_root = id.getNextId();
korat_id_size = id.getNextId();

}
Node root; // root node
int korat_id_root; // identifier for the root field
// special get method for the root field
Node korat_get_root() {

korat_observer.notify_get(korat_id_root);
return root;

}
// special set method for the root field
void korat_set_root( Node value) {

korat_observer.notify_set(korat_id_root);
root = value;

}
int size; // number of nodes in the tree
int korat_id_size; // identifier for the size field
// special get method for the size field
int korat_get_size() {

korat_observer.notify_get(korat_id_size);
return size;

}
// special set method for the size field
void korat_set_size( int value) {

korat_observer.notify_set(korat_id_size);
size = value;

}

// in repOk (and isTree, numNodes, isOrdered and other transitively
// invoked methods) replace field accesses with get and set methods
boolean repOk() {

// checks that empty tree has size zero
if (_korat_get_root() == null ) return _korat_get_size() == 0;
// checks that the object graph is a tree
if (!isTree()) return false ;
// checks that size is consistent
if (numNodes(_korat_get_root()) != _korat_get_size())

return false ;
// checks that data is ordered
if (!isOrdered(_korat_get_root())) return false ;
return true ;

}
}

Figure 3-12: Instrumentation for the SearchTree example.

50



tively invokes, the instrumentation replaces each field read/write with an invocation
of the corresponding get /set method. Our implementation similarly instruments
arrays, essentially treating each array element as a field.

Recall that Korat monitors executions of repOk (and transitively invoked meth-
ods) to build the stack of accessed fields. The instrumentation achieves this using
an approach similar to the observer pattern [35]. Figure 3-12 illustrates the instru-
mentation on the SearchTree class from Figure 2-1. (The instrumentation similarly
modifies the Node class.) The special constructor initializes the korat observer

field and the identifiers for all instance fields, in this case root and size . The fini-
tization uses the special constructors to initialize all objects with an observer and to
initialize each identifier field to a unique integer. Besides the identifier, each of the
fields has korat get and korat set methods. During executions, these methods
first notify the observer that a field, with a given field identifier, is being accessed
and then perform the actual access, i.e., return the field’s value for get or assign the
value to the field for set . Finally, the instrumentation of the code for repOk replaces
field reads with invocations of these methods.

In the example repOk , there are no field writes. This is a common case: most
practical predicates are pure, i.e., they do not modify the candidate structure. (The
predicates can still create and modify other objects, e.g., isTree modifies the set
visited .) The Korat search algorithm does not require repOk to be pure. However,
we optimized our implementation for this common case: if the predicate does not
modify the candidate, then generating the next candidate from the next state requires
setting only the values of the field(s) that were backtracked on, not all fields.

51



52



Chapter 4

Correctness

This chapter presents a proof of correctness for the Korat search algorithm presented
in the previous chapter. Section 4.1 discusses some of the challenges in proving the
correctness of the search. Section 4.2 introduces the notation used in the proof.
The search takes as input a predicate and a finitization. Section 3.2.2 has already
described finitizations. Section 4.3 states the conditions about the predicates that
the search operates on. Section 4.4 then states the correctness requirements for
the search: it should be sound (generate only valid structures), complete (generate
all nonisomorphic valid structures), and isomorph-free (generate only nonisomorphic
structures). Section 4.5 finally proves that the Korat search indeed satisfies these
requirements for all predicates that satisfy the conditions. This proof provides a
strong guarantee that should increase the confidence of Korat users in the correctness
of a test-input generation tool based on Korat.

4.1 Challenges

There are several properties of the Korat search that complicate proving its cor-
rectness. Similar properties would be inherent in any search that uses pruning to
improve on the naive exploration of the entire state space (Section 3.1.3). The ad-
ditional features of Korat are that it applies isomorphism-breaking optimization and
handles nondeterministic predicates. We next describe the challenging properties of
the Korat search.

State encoding: For efficiency purposes, Korat encodes structures using states
that map to integers indexing into the finitization. This creates a level of indirection:
the search operates on states, whereas the correctness requirements involve validity
and isomorphism that are defined for structures (Section 3.1.2).

Field ordering: Korat searches the state space based on a dynamic order in
which the predicate executions access the fields. Our Korat implementation assigns
field identifiers to fields statically (i.e., independent of the predicate executions), but
the predicate can access these fields in any order.

Isomorphism optimization: Korat generates only nonisomorphic structures,
but does so without explicitly checking isomorphism of pairs of structures. Instead,

53



the isomorphism optimization prunes some structures from the search, and the proof
thus needs to show that the pruning does not eliminate any nonisomorphic valid
structure.

Nondeterministic predicates: Korat generates all structures for which the
predicate always returns true and no structure for which the predicate always returns
false; Korat may or may not generate the other structures. When predicates are
deterministic, then they always produce the same result for the same structure and
intuitively have the “same prefix” of the execution for the “same prefix” of the struc-
ture. For deterministic predicates, the search algorithm would not need to preserve
the stack across iterations, as discussed in Section 3.2.4.

4.2 Notation

We use the meta-variable π to range over predicates. We use γ and γ′ to range over
structures that are inputs to the predicate. We write π(γ) for the set of results that
executions of π can produce for structure γ. Recall that γ is valid iff π(γ)= {true },
and γ is invalid iff π(γ)= {false } (Definition 3).

We use σ to denote the value of the stack of fields that the predicate executions
access (Figure 3-11). We write len(σ) for the length of the stack σ and σ(i) for the
field at offset i, where 0 is the offset at the bottom of σ, and len(σ)− 1 is the offset
at the top of σ.

We use Σ and Σ′ to range over states. Each state maps fields to field domain
indexes. We use f to range over fields and φ to range over sets of fields. We write
Σ(f) for the field domain index of the field f in state Σ.

We define a partial order between states based on the lexicographic order of field
domain indexes of those fields that are on the stack. Let Σ and Σ′ be two states
and σ be a stack. We say that Σ is σ-smaller than Σ′, in notation Σ <σ Σ′, iff
∃i < len(σ). Σ′(σ(i)) < Σ(σ(i)) ∧ ∀i′ < i. Σ(σ(i′)) = Σ′(σ(i′)).

4.3 Conditions

We next precisely list the conditions that a predicate needs to satisfy to be an input
to the Korat search. If a predicate does not satisfy some of the conditions, then the
search may not generate all nonisomorphic valid structures for the predicate.

Let Π be the set of predicates such that all executions of each π ∈ Π satisfy the
following conditions:

C1. Each execution terminates, returning true or false .

C2. Each field that the execution accesses is either (1) a part of the input structure
or (2) a field of some object that the predicate locally allocates. In other words,
the execution does not access global data through static fields.

C3. No execution depends on the actual allocation address of objects. (This holds for
Java predicates if no execution invokes System.identityHashCode method.)

54



The user of Korat needs to write the predicate so that Condition C1 holds. It implies
that the predicate should terminate for all structures, be they valid or invalid. For
example, repOk for SearchTree checks that the input object graph is actually a
tree and terminates (returning false ) if there is a cycle in the graph. A static or
dynamic analysis can easily check the other two conditions, C2 and C3; we have found
all practical predicates to satisfy these two conditions, and Korat does not currently
check them.

The Korat search operates on Java predicates, so to prove that the search is cor-
rect, we need in principle to reason about the executions of Java predicates. However,
Java is a complex programming language, and researchers have formalized only parts
of its semantics [54]. We thus consider a simple model where Java predicates are
state machines [66]. Within this model, we sketch generic proofs for the following
two properties of executions:

1. The execution of a predicate does not depend on the fields that the predicate
does not access.

2. Given isomorphic structures, a predicate produces the same result.

In general, these two properties are assumptions on the executions, and we should
prove them for the language in which we write the predicates. We present our results
in the context of Java, but they generalize to other languages whose executions satisfy
these two properties.

We first show that the execution of a predicate does not depend on the fields that
the predicate does not access.

Lemma 1. Consider two candidates γ and γ′ that have identical values for all fields
from some set φ. If an execution of π with structure γ accesses only fields from φ
before returning a result, then there exists an execution of π with structure γ′ that
accesses the same fields and returns the same result.

Proof. Proceed by induction on the length of the execution of the predicate for γ. As
the witness execution for γ′, choose the execution that makes the same steps as the
execution for γ, i.e., the execution for γ′ makes the same nondeterministic choices as
the execution for γ. At each corresponding step of these two executions, the states
have identical values for all fields from φ, because no step accesses a field that is not
in φ.

The following is a simple corollary.

Corollary 1. If two candidates have identical values for more fields than in φ, these
two candidates have the same set of executions.

We next show that any predicate from Π returns the same result for isomorphic
input structures. This is a property of the programming language used for predicates;
we again sketch a generic proof that we need to instantiate with respect to semantics
of each specific language.

55



Lemma 2. For all isomorphic γ and γ′, π(γ) = π(γ′).

Proof. We need to show that for each execution of π with input γ, there exists an exe-
cution of π with input γ′ such that the two executions generate the same result. Proof
proceeds by induction on the length of execution for γ. As the witness execution for
γ′, choose the execution that makes the same steps as the execution for γ. By Condi-
tion C2, no execution of π accesses a field from the finitization that is not reachable
from the root object (the input to the predicate). Thus, at each corresponding step
of these two executions, the states have isomorphic values for all fields (1) reachable
from the root object or (2) belonging to the objects locally allocated. Further, by
Condition C3, no step depends on the object identity, so the states are isomorphic
for these fields and in the final state, the executions return the same result.

It follows that isomorphic inputs have the same (in)validity. This is important
because it allows Korat to consider only one candidate from each isomorphism parti-
tion: if this candidate is (in)valid, then all other candidates from the same partition
are also (in)valid.

4.4 Statement

Given a predicate and a finitization, the Korat search generates a set of structures.
More precisely, Korat generates all nonisomorphic valid structures, within the given
finitization. This set of structures depends on the results that the predicate returns
for the candidate structures. If the predicate is nondeterministic in result, Korat
can generate different sets of structures for the same predicate and finitization. We
prove that all these sets satisfy the soundness, completeness, and isomorph-freeness
properties required for a solver for imperative predicates (Section 3.1.2).

Theorem 1 (Korat Correctness). For every predicate π ∈ Π and for every set of
structures that the Korat search generates for π:

• Soundness: Korat is sound: the set contains no invalid structure.

• Completeness: Korat is complete: the set contains at least one structure from
each isomorphism partition of valid structures.

• Isomorph-Freeness: Korat is isomorph-free: the set contains at most one
structure from each isomorphism partition.

4.5 Proof

The proof consists of three lemmas that show the soundness, completeness, and
isomorph-freeness. These three lemmas directly imply the main theorem and thus
show that Korat is a correct solver for imperative predicates (from the set Π).

A search is sound if it generates no invalid structure.

56



Lemma 3 (Soundness). Korat does not generate an invalid structure for any pred-
icate (even if not from Π).

Proof. By contradiction; suppose that Korat generates an invalid structure γ for some
predicate π. It means that all executions of π for input γ return false . However,
the algorithm in Figure 3-11 generates γ (i.e., adds γ to the set result ) only if an
execution of π returns true . Contradiction!

A search is complete if it generates at least one valid structure from each isomor-
phism partition. To prove completeness of Korat, we first consider Korat∗, the Korat
search with the argument PRUNINGset to false .

Lemma 4. If Korat∗ is complete for some predicate from Π, then Korat is also
complete for that predicate.

Proof. Assume that Korat∗ is complete, i.e., it always generates at least one valid
structure from each isomorphism partition. Korat generates a structure if it is a can-
didate input for an execution that returns true . For a valid structure, all executions
return true , so Korat generates a valid structure if it is a candidate for any execution.
Since Korat∗ generates at least one valid structure from each isomorphism partition,
it also considers as a candidate at least one valid structure from each isomorphism
partition. Due to pruning, Korat considers less candidates than Korat∗. We will
show that Korat still considers as a candidate at least one valid structure from each
isomorphism partition. Thus, Korat generates at least one valid structure from each
isomorphism partition, i.e., Korat is complete.

By contradiction, suppose that Korat does not consider as a candidate any valid
structure from some isomorphism partition. Since Korat∗ considers such a structure,
it must be that Korat prunes this valid candidate structure γ. This pruning occurs
after the predicate executes some candidate structure γ′ and returns false . Let the
stack after the execution of γ′ be σ. Before returning false , this execution has
accessed only (some of the) fields from σ. Further, it is easy to show that Korat∗

prunes only candidate structures that have the same valuation for all fields in σ as
γ′, i.e., ∀f ∈ σ.γ(f) = γ′(f). By Corollary 1, since there exists an execution for γ′

that returns false , there also exists an execution for γ that returns false . This
contradicts the assumption that γ is valid, i.e., all executions for structure γ return
true .

Lemma 5. Korat∗ is complete for all predicates from Π.

Proof. (Sketch) We need to show that Korat∗ generates at least one valid structure
from each isomorphism partition. It is sufficient to show that Korat∗ considers as a
candidate at least one valid structure from each isomorphism partition.

The proof proceeds by induction on the number of considered candidates, i.e.,
the number of iterations of the main loop of Korat∗. Each iteration consists of a
predicate execution with potential adding of fields to the stack and backtracking with
isomorphism breaking. Let σ and Σ be the values of stack and state , respectively,
after backtracking. Let Γ be the set of candidates considered up to that iteration.

57



Recall the ordering between states Σ <σ Σ′. Let s be: (1) the set of all states σ-
greater than Σ ({Σ′|Σ <σ Σ′}) if σ is not empty and (2) the set of all states if σ
is empty. An easy induction can show that Γ contains at least one representative
from each isomorphism partition that has a representative in s. Since the search
terminates when the stack becomes empty, it follows that the search considers at
least one candidate structure from each isomorphism partition of candidates.

Lemma 6 (Completeness). Korat is complete for all predicates from Π.

Proof. Follows from Lemma 4 and Lemma 5.

We finally prove isomorph-freeness. Recall that we define structures as rooted,
deterministically edge-labeled graphs (Definition 2) and isomorphism with respect to
object identity (Definition 4). If the inputs to the predicate were arbitrary graphs,
Korat would not eliminate all isomorphic inputs.

Lemma 7 (Isomorph-Freeness). Korat is isomorph-free for all predicates from Π.

Proof. Let Γ be the set of candidate structures for which Korat executes the pred-
icate. Since the result of Korat is a subset of Γ, it suffices to show that the search
executes the predicate for at most one structure from each isomorphism partition. By
contradiction; suppose that there are two isomorphic distinct candidate structures,
γ and γ′. Let p be a permutation between these candidates. Consider the stacks, σ
and σ′, after the backtracking for candidates γ and γ′, respectively. Let σ0 be the
common prefix for these two stacks. There are two cases:

• For some field in σ0, the candidates have different values. Let i be the index
such that

γ(σ0(i)) 6= γ′(σ0(i)). (4.1)

and
∀i′ < i.γ(σ0(i)) = γ′(σ0(i)). (4.2)

Since γ and γ′ are isomorphic,

∀i ∈ len(σ).p(γ(σ0(i))) = γ′(σ0(i)). (4.3)

From 4.2 and 4.3, we have that p is identity for all i′ < i:

∀i′ < i.p(γ(σ0(i
′))) = γ(σ0(i

′)). (4.4)

We next consider two cases based on the value for the i-th field already appearing
before in the stack:

∃i′ < i.γ(σ0(i)) = γ(σ0(i
′)). (4.5)

– If 4.5 holds, let i′ be the previous index. We have p(γ(σ0(i))) = p(γ(σ0(i
′))).

From 4.4, we have that p(γ(σ0(i))) = γ(σ0(i
′)). Further, again from 4.5, we

have p(γ(σ0(i))) = γ(σ0(i)) and then from 4.3 γ′(σ0(i)) = γ(σ0(i)), which
contradicts 4.1.

58



– If 4.5 does not hold, then ∀i′ < i.γ(σ0(i)) 6= γ(σ0(i
′)). Let mIndex(γ, σ0, i)

be the unique value m that the search computes in m. For field σ0(i), the
search generates values up to m. Since γ(σ0(i)) is different than γ(σ0(i

′))
for all i′ < i, it means that γ(σ0(i)) = m, and this is the only such
candidate. Thus, γ′(σ0(i)) = m also, and again γ(σ0(i)) = γ′(σ0(i)); con-
tradiction!

• For all fields in σ0, the candidates have the same value. There are two cases:
either σ0 is a true prefix of σ and σ′ or σ0 is the same as σ or σ′.

– If σ0 is the same as one of the stacks, assume w.l.o.g. that σ0 = σ. Consider
the smallest index i such that γ(σ′(i)) 6= γ′(σ′(i)); there must be such a
field since γ 6= γ′. (More precisely, this value is not 0 in γ′; it is 0 in
γ, because it is not in the stack for γ.) Since the search generates γ′, it
means that the for all indexes i of σ′, the values of the fields γ′(σ′(i)) ≤
mIndex(γ′, σ′, i). Further, for all i′ ≤ i, fields γ′(i′) are reachable in both γ
and γ′. However, one of those fields, σ′(i), has different values in γ and γ′:
γ(σ′(i)) < γ′(σ′(i)) ≤ mIndex(γ′, σ′, i). Thus, γ and γ′ are not isomorphic;
contradiction!

– If σ0 is not the same as any of the stacks, then the two stacks have a
different field right after σ0. Assume w.l.o.g. that the search first generates
the stack σ. The only way to change the value of the field after σ0, say
f , is during backtracking if the search tries all possibilities for f and then
backtracks on the previous field, the last in σ0. This backtracking, however,
changes the value of this last field in σ0. Therefore, σ0 cannot be the
common prefix for σ and σ′, if the candidates have the same values for all
fields in σ0. Contradiction!

This cover all the cases, and in each of them gives a contradiction if we suppose
that the search considers two distinct, isomorphic candidate inputs. Hence, Korat is
isomorph-free.

59



60



Chapter 5

Direct Generation

This chapter discusses direct generation, an approach for obtaining structures that
satisfy properties of interest by writing programs that directly generate such struc-
tures. We call such programs generators. Section 5.1 presents an example generator.
Section 5.2 then compares generators and imperative predicates: whereas generators
directly generate structures of interest, imperative predicates only check the proper-
ties of interest, and to obtain the actual structures from imperative predicates, we
need to solve them, for example with Korat. We argue that for complex properties,
imperative predicates are easier to write than generators that generate all nonisomor-
phic valid structures within a given bound. Moreover, imperative predicates are useful
for more testing tasks than generators. However, generators can generate structures
much faster than solvers for imperative predicates. Section 5.3 thus presents dedi-
cated generators, an extension to Korat inspired by generators. Dedicated generators
enable faster solving and also make it easier to write imperative predicates.

5.1 Example

We use the binary search tree example from Section 2.1 to illustrate generators.
Recall the Java code from Figure 2-1. Each SearchTree object has a field size and
a pointer root . Each tree consists of several linked nodes. Each Node object has an
element info and pointers to children left and right . Recall further that a tree is
in a scope s if it has at most s nodes whose elements range between 1 and s. We next
proceed to develop a generator for all nonisomorphic binary search trees in scope s.

For the beginning, instead of generating all binary search trees, suppose that
we just want to randomly generate some object graphs that are trees (i.e., have no
sharing) regardless of the values in the nodes. This is seemingly easy: we just make
each pointer in the graph be null or point to a new node, thus ensuring that there
can be no sharing. However, this simple strategy does not work; it creates trees, but
we cannot easily control their size.

Figure 5-1 shows a generator adapted from an example for the QuickCheck tool [19]
for random testing of Haskell programs. The genSearchTree method attempts to
generate a random tree. It invokes genNode to generate a linked graph of nodes, and

61



SearchTree genSearchTree() {
SearchTree tree = new SearchTree ();
tree.root = genNode();
tree.size = tree.numNodes(tree.root);
return tree;

}

Node genNode() {
if (chooseBoolean()) {

return null ;
} else {

Node node = new Node();
node.left = genNode();
node.right = genNode();
return node;

}
}

Figure 5-1: A noncontrollable generator for trees.

then sets size to the number of generated nodes. Suppose that chooseBoolean

returns a value with uniform probability: true with some probability p, and false

with the probability 1 − p. If p < 0.5, a call to genNode has less than 50% chance
to terminate, because for genNode to terminate, both recursive calls must terminate.
If p > 2/3, the expected size of the generated trees is less than one. Only carefully
chosen values for 0.5 < p < 2/3 enable the generation to terminate with nontrivial
trees but can sometimes result in very large trees. To get a better control of the
generated trees, we need to use the number of nodes during the generation, instead
of computing it at the end.

Figure 5-2 shows a generator that passes the size to recursive calls. This generator
can generate a random binary search tree, not just a tree, in a given scope . The
genSearchTree method first chooses a value for the size . Suppose that the call
chooseInteger(lo, hi) returns a random number between lo and hi , inclusive, if
lo is not greater than hi ; otherwise, the call fails, for example, throws an exception.
The inputs to genNode are the size of the tree to generate and the bounds for the
elements in the tree. The method randomly splits the size to the left and right
subtrees, ensuring that the overall tree has the correct number of nodes.

The genNode method also chooses a value to put in the current node and appro-
priately adjusts the bounds for the subtrees. However, randomly choosing info to be
between min and max can make the generation fail later on; the range of values may
become smaller than the number of nodes in the tree, and eventually min becomes
greater than max for some nonempty tree. (Since the tree implements a set, all ele-
ments should be different.) We can make the generation always succeed by changing
the choice to: chooseInteger(min + split, max - (size - 1 - split)) .

This example illustrates that developing even a random generator for relatively
simple properties requires careful handling of intricate details. Developing further a

62



SearchTree genSearchTree( int scope) {
int size = chooseInteger(0, scope);
SearchTree tree = new SearchTree ();
tree.size = size;
tree.root = genNode(size, 1, scope);
return tree;

}

Node genNode( int size, int min, int max) {
if (size == 0) {

return null ;
} else {

int split = chooseInteger(0, size - 1);
int info = chooseInteger(min, max);
Node node = new Node();
node.info = info;
node.left = genNode(split, min, info - 1);
node.right = genNode(size - 1 - split, info + 1, max);
return node;

}
}

Figure 5-2: A controllable generator for binary search trees.

generator that can actually generate all structures within a scope requires more work.
In a standard programming language such as Java, we would need to implement some
iteration over the possible choices in chooseInteger . This in turn requires that
generators return collections of substructures, merge them into larger structures, and
potentially clone them before merging. Essentially, we would implement backtracking
over possible choices.

We could instead use a language that has a built-in support for backtracking, for
example, SETL [95], Icon [41], or AsmL [33]. In such language, we could use the same
generator from Figure 5-2 to generate all structures within a scope, by treating each
call to chooseInteger as a choice point for backtracking and appropriately changing
the top-level calls to genSearchTree . Successive calls to genSearchTree would
then systematically generate binary search trees. With backtracking, we may be even
sloppier about the choice of values, allowing the generation to fail, for example, by
choosing info as in Figure 5-2. Failures would only require backtracking to spend
additional time exploring some invalid choices before generating a valid structure.

5.2 Comparison with Imperative Predicates

We next discuss the tradeoff in using generators and imperative predicates in bounded-
exhaustive testing. We first compare the efficiency of generating all nonisomorphic
test inputs within a scope using generators versus solving imperative predicates. We
then compare the testing tasks for which we can use generators and imperative pred-
icates. We finally compare how easy it is to develop generators and imperative predi-

63



cates for the same property. Although generators generate test inputs faster, the other
criteria make imperative predicates more appealing for bounded-exhaustive testing.

Generators that do not fail during backtracking, i.e., generate a valid structure for
every invocation, can be much faster than solvers for imperative predicates. There are
two reasons for this. First, solvers such as Korat necessarily fail during backtracking,
i.e., explore some invalid candidate structures, and thus need to execute predicates
several times before generating a valid structure. Second, generators do not have
any execution overhead, whereas solvers such as Korat execute predicates with the
overhead for monitoring the accessed fields. On the other hand, generators that fail
during backtracking are not necessarily faster than solvers for imperative predicates.

Besides automatically generating test inputs, we also want to have automatic
oracles that check correctness of the code under test for these inputs. We cannot
practically use generators as partial oracles, but we can use imperative predicates.
Suppose, for example, that we want to check whether the remove method preserves
the binary search tree invariant checked with the repOk predicate. We can simply
run repOk on the output object graph to check if it is a binary search tree. We could
also hypothetically use a generator as an oracle: run the generator, increasing the
scope, and check if it generates a tree that is isomorphic to the output object graph.
It is clear, however, that this is very inefficient.

The main issue in comparing generators and predicates is how easy we can write
them. For simple properties, such as binary search trees, it may be equally easy to
write generators and predicates, but for more complex properties, it can be often
easier to write predicates. Generators are particularly hard to write for properties
that cannot be checked locally on a part of the structure. For example, a property
of red-black trees requires every path from the root of the tree to a leaf to have the
same number of black nodes [23]. Ball et al. [5] devoted a whole paper to the devel-
opment of an efficient, specialized generator for red-black trees and its use in testing.
In contrast, our experience shows that even undergraduate students can develop a
predicate for red-black trees within a day of work. Tools such as QuickCheck [19] pro-
vide a library for writing generators for random generation, and languages that have
backtracking can turn random generators into exhaustive generators, but the burden
of implementing a specialized generator for each property is still on the programmer.

There are at least three more reasons why imperative predicates are easier to write
than generators. First, generators are never present in the code, whereas some predi-
cates are, usually in assertions or imperative specifications. Second, the programmer
needs to ensure that generators avoid isomorphic structures—which is trivial for trees
that have no sharing, but not trivial for structures that do have sharing—whereas
solvers such as Korat automatically avoid isomorphic structures. Third, if we change
the property, making it more specific—for example, instead of arbitrary trees, gener-
ate nonempty trees or complete trees—the programmer needs to rewrite an existing
generator, while for an existing predicate, it is enough to add a new predicate that
checks the additional property. We believe that programmers should consider a spe-
cialized generator for some property only when solving a predicate for that property
is not efficient enough due to failures in backtracking.

64



5.3 Dedicated Generators

Dedicated generators are a Korat extension inspired by generators. We have found
certain properties to be common in imperative predicates that describe class invariants
(repOk predicates), for example, that a linked data structure is acyclic along some
fields or that an array has all elements different or ordered. Similar properties are
also present in combinatorial optimization problems and supported in libraries or
languages such as Comet [78].

We have extended Korat with a library of dedicated generators that make it easier
to write imperative predicates and also enable faster generation of valid structures.
The library provides generators for the common checks. Each generator looks like an
ordinary Java predicate and behaves like an ordinary Java predicate during regular
execution. Imperative predicates, or any other code, can invoke these generators to
check properties. However, during the generation of valid structures, Korat uses the
special knowledge about the generators to further optimize its search.

For example, recall the repOk method for SearchTree from Figure 2-1. This
method invokes isTree to check that the nodes reachable from the root field form
a tree along the left and right fields. Appendix A shows how the programmer can
write isTree in about 20 lines of Java code. Instead, the programmer could just use
the library generator korat.isTree(root, new String[]{"left", "right"}) .
The generator is parameterized over the root node and the names of the fields. Given
a root node, korat.isTree checks that the reachable nodes form a tree, i.e., no node
repeats in the traversal of the nodes reachable from the root. The implementation of
the generator takes into account this fact during the search.

When Korat generates a structure that satisfies korat.isTree along some fields,
it does not try all (nonisomorphic) possibilities for those fields. Instead, each field
is either null or points to a node that is not already in the tree. For the example
finitization finSearchTree(s) from Figure 3-6, this reduces the number of possible
values for a field from s+1 to 2. In the library, the implementation of korat.isTree

uses the basic dedicated generator korat.isIn(field, set) that, while searching,
assigns to the field only the values from the set , and while checking, checks that
the value of field is in the set .

The library includes the basic dedicated generators for checking the following
properties: (1) a value is in a set; (2) two values are equal; (3) a value is less/greater
than another value; and (4) a value is of a certain class (instanceof ). The library
also includes combinators that allow creating complex generators for checking: (1)
negation, (2) conjunction, and (3) disjunction. Finally, the library includes several
higher-level generators, implemented using basic generators and combinators, which
check structural constraints such as acyclicity or that elements of an array are sorted.

It is easy to add new dedicated generators to the Korat library; in theory, we
could even add for each data structure a special-purpose generator that generates all
valid structures without any failures in backtracking. However, we do not do that;
the library that we use in the experiments presented in Chapter 8 has only generators
that are applicable for several data structures. In practice, we do not expect Korat
users to extend the library, but instead to use Korat as a general-purpose search.

65



66



Chapter 6

Testing Based on Imperative
Predicates

This chapter presents how to apply solvers for imperative predicates in testing. The
presentation uses our solver, Korat, but the concepts generalize to any other solver.
Section 6.1 first presents specification-based, unit testing of Java methods, and specif-
ically how Korat focuses on testing one Java method at a time. It then presents how
to use Korat in testing sequences of method calls. Section 6.2 discusses that Korat is
not restricted to unit testing and presents an example use of Korat in system testing.

6.1 Unit Testing

Unit testing is the process of testing each basic component of a program, i.e., a unit,
to validate that it correctly implements its specification [120]. Unit testing is gaining
importance with the wider adoption of Extreme Programming [8]. In unit testing,
developers isolate the unit to run independently from its environment, which allows
writing small testing code that exercises the unit alone. For Java programs, the basic
testing unit can be either a method or a class.

We first give a brief overview of a widely used language for writing specifications
for Java methods and classes. We then focus on testing a method as a unit and de-
scribe how Korat can automate test-input generation and correctness checking in this
setting. We show how Korat can test whether methods implement their specifications
by constructing and solving appropriate imperative predicates. In black-box testing,
these predicates consist only of specifications, whereas in the white-box testing, the
predicates consist also of the code under test. We finally illustrate how to use Korat
in testing sequences of method calls.

6.1.1 Overview of Java Modeling Language

We next present some parts of the Java Modeling Language (JML) [67], a popular
language for writing specifications for Java code. We introduce only the parts of JML
that are relevant for testing based on Korat. More details are available elsewhere [67].

67



class SearchTree {
//@ invariant repOk(); // class invariant
...
/*@ normal behavior // nonexceptional specification

@ // precondition
@ requires true;
@ // postcondition
@ ensures !contains(info) && \result == \old (contains(info));
@*/

boolean remove( int info) {
... // method body

}
}

Figure 6-1: Example JML specification for the remove method.

Programmers can use JML to write specifications for methods and classes. Each
method specification has a precondition, which specifies the property that should
hold before the method invocation, and a postcondition, which specifies the property
that the invocation should establish. Each class has a class invariant, which specifies
the property that the methods should preserve: class invariant is implicitly both in
the precondition and in the postcondition for each method. (More precisely, class
invariants apply only to the public methods, but for simplicity our examples do not
contain any Java visibility modifiers, and we assume that all members are public.)

Each method precondition, method postcondition, or class invariant expresses a
property using a boolean expression. JML essentially uses Java syntax and seman-
tics for expressions, with some extensions such as quantifiers. The JML tool-set can
translate a large subset of JML into imperative Java predicates [17]; one of the most
common uses of JML specifications is indeed to translate them into Java run-time
assertions [14]. Programmers can thus use JML, and Korat based on JML specifi-
cations, without having to learn a specification language much different than Java.
Moreover, since JML specifications can call Java methods, programmers can use the
full expressiveness of the Java language to write specifications.

We next illustrate JML specifications using the examples from Chapter 2. Recall
the methods remove for SearchTree and extractMax for HeapArray and their
informal specifications from Figure 2-1 and Figure 2-4, respectively.

Figure 6-1 shows the JML annotations that specify partial correctness for the
remove method from the SearchTree class. The JML keyword normal behavior

specifies that the method execution must return without throwing an exception if the
precondition (specified with requires ) holds right before the execution; additionally,
the execution must satisfy the postcondition (specified with ensures ).

In this example, the method contains returns true iff the tree contains the given
element. The JML keyword \result denotes the return value of the method; remove

returns true iff it removes an element from the tree. The JML keyword \old denotes
that its expression should be evaluated in the pre-state, i.e., the state immediately
before the method’s invocation. The JML postcondition thus formally expresses the

68



class HeapArray {
//@ invariant repOk(); // class invariant
...
/*@ normal_behavior

@ requires size > 0;
@ ensures \result == \old (array[0]);
@ also exceptional_behavior
@ requires size == 0;
@ signals ( IllegalArgumentException e) true ;
@*/

Comparable extractMax() {
... // method body

}
}

Figure 6-2: Example JML specification for the extractMax method.

informal postcondition from Figure 2-1. The postcondition could also be stronger
(e.g., that remove does not remove any element but info ) or weaker (e.g., only
that the method does not throw an exception); as we explain in Section 6.1.2, the
postcondition does not affect the use of Korat for generating test inputs for remove .

We point out that the semantics of JML implicitly conjoins the class invariant
(specified with invariant ) with the precondition and postcondition. Thus, the full
precondition for remove is repOk() && true ; it requires that the input satisfy the
repOk predicate. Similarly, the full postcondition is repOk() && !contains(info)

&& \result == \old (contains(info)) ; it requires that the output satisfy the
repOk predicate and contain no info , and that the result has the appropriate value.

Figure 6-2 shows the JML annotations that specify partial correctness for the
example extractMax method from the HeapArray class. This example specifies
two behaviors. The normal behavior specifies that whenever the input heap is
valid and nonempty, the method returns the largest element from the original heap—
without throwing an exception—and the resulting heap after the method execution
is also valid. (The repOk predicate, implicitly conjoined to the preconditions and
postcondition, checks the validity.)

JML can also express exceptional behaviors in which the method throws an ex-
ception. The example exceptional behavior specifies that whenever the input
heap is valid and empty, the method throws an IllegalArgumentException . The
keyword signals specifies which exceptions the method throws and under which
conditions; in this example, the condition true specifies that the method always
throws an IllegalArgumentException . The rest of this section shows how to use
Korat to check both normal and exceptional behaviors.

6.1.2 Black-Box Method Testing

We next present how to use Korat for specification-based, black-box testing of meth-
ods. In black-box testing, generation of test inputs considers only the specification

69



class SearchTree_remove { // inputs to "remove"
SearchTree This; // implicit "this" argument
int info; // "info" argument

// for black-box testing of "remove"
boolean removePre() { // precondition for "remove"

return This.repOk();
}

}

Figure 6-3: Predicate for black-box testing of the remove method.

of the code under test, and not the code itself. Valid test inputs for a method must
satisfy its precondition. Based on Korat and the JML tool-set [17], we have built a
testing tool that generates valid test inputs for methods and checks their correctness.
The tool uses bounded-exhaustive testing: Korat generates all nonisomorphic struc-
tures (within a scope) that satisfy the precondition, and the tool executes the method
on each input and checks the output using the postcondition as a test oracle.

Generating Test Inputs

To generate test inputs for a method m, our tool first constructs a Java class that
corresponds to the method inputs. This class has one field for each method argument,
including the implicit this argument. The class also has a predicate that corresponds
to the method precondition. The tool then uses Korat, with an appropriate finiti-
zation, to generate all nonisomorphic valid structures for the new predicate; each of
these structures corresponds to a valid test input for the method m.

Figure 6-3 shows the class for the inputs to the example remove method. Each
input is a pair of a SearchTree object (the field This represents the implicit ar-
gument this ) and an integer (the field info represents the argument info ). The
predicate removePre checks the precondition for remove : it invokes repOk on the
implicit this argument and leaves info unconstrained. Figure 6-4 shows the fini-
tization skeleton that Korat creates for the new class, reusing the finitization for
SearchTree , and a specialized version of this skeleton for a given scope .

For the example extractMax method, the specification describes two behaviors.
We can choose to separately generate inputs that satisfy each of the preconditions,
or we can choose to generate all inputs at once: the predicate is then a disjunction
of the preconditions for different behaviors.

Checking Output Correctness

After generating all valid test inputs for a method, our testing tool invokes the method
on each input and checks each output with a test oracle. A simple test oracle could just
reuse the invariant: to check partial correctness of the method, invoke repOk in the
post-state to check if the method preserves its class invariant. If the result is false ,

70



Finitization finSearchTree_remove( int numNode,
int minSize, int maxSize, int minInfo1, int maxInfo1,
int minInfo2, int maxInfo2) {

Finitization f = new Finitization ( SearchTree_remove . class );
Finitization g = finSearchTree(numNode, minSize, maxSize,

minInfo1, maxInfo1);
f.includeFinitization(g);
f.set("This", g.getRootObject());
f.set("info", new IntSet (minInfo2, maxInfo2));
return f;

}

Finitization finSearchTree_remove( int scope) {
return finSearchTree_remove(scope, 0, scope, 1, scope, 1, scope);

}

Figure 6-4: Finitizations for the precondition of the remove method.

the method under test is incorrect, and the input provides a concrete counterexample.
Programmers can also manually develop more elaborate test oracles.

Our current implementation automatically generates test oracles from method
postconditions (and other assertions) using a slightly modified JML tool-set based on
the JMLunit framework [17]. The JML tool-set translates JML postconditions into
runtime Java assertions. If an execution of a method violates such an assertion, the
method throws an exception to indicate a violated postcondition. Test oracle catches
these exceptions and reports correctness violations. These exceptions are different
from the exceptions that the method specification allows, and our tool uses JML to
check both normal and exceptional behavior of methods. More details of the JML
tool-set and translation are available elsewhere [67]. We point out that the oracles
based on JML support assertions that can appear anywhere in the code, not only
postconditions that appear at the end of methods.

Our tool also uses JMLunit to combine JML test oracles with JUnit [9], a pop-
ular framework for unit testing of Java classes. JUnit automates test execution and
error reporting, but requires programmers to provide test inputs and test oracles.
JMLunit further automates both test execution and correctness checking. However,
JMLunit requires programmers to provide sets of possibilities for all method argu-
ments (some of which can be complex structures) and generates all valid inputs by
generating all tuples from the Cartesian product of the possibilities and filtering the
tuples using preconditions. Korat, on the other hand, constructs structures from a
simple description of the fields in the structures and additionally does not try all pos-
sible tuples but (1) prunes the search based on the accessed fields and (2) generates
only one representative from each isomorphism partition. The use of Korat thus au-
tomates generation of test inputs, automating the entire testing process. Figure 6-5
summarizes the comparison of these testing frameworks.

71



Testing framework
testing activity JUnit JMLunit Korat+JMLunit

generating test inputs
√

generating test oracle
√ √

running tests
√ √ √

Figure 6-5: Comparison of several testing frameworks for Java. The mark “
√

” indi-
cates the testing activities that the frameworks automate.

6.1.3 White-Box Method Testing

We next present how to use Korat for specification-based, white-box testing of meth-
ods. In white-box testing, the predicate that Korat solves includes both the speci-
fication and the code of the method under test. Korat then monitors the execution
of the code under test, which allows Korat to prune the search for inputs when the
code does not depend on a part of the input. To test a method, we first construct
a predicate that corresponds to the negation of the method’s correctness. If Korat
finds a valid input for this predicate, the method is incorrect, and the input provides
a counterexample.

Figure 6-6 shows the predicate removeFail for the example remove method.
This predicate first executes removePre : if it returns false , the input is not a valid
test input for remove and cannot be a counterexample; otherwise, the input is valid,
and the predicate executes remove , together with the JML-translated assertions. If
this execution throws a JML exception, remove failed to satisfy its specification.

Comparison with Black-Box Method Testing

The difference between predicates for white-box and black-box testing is in the invoca-
tion of the method under test; in our example, removeFail invokes remove , whereas
removePre does not. It means that to generate valid inputs for removeFail , Korat
instruments remove , among other methods, and monitors the accesses that remove

makes to the candidate. This by itself makes one execution of remove slower. How-
ever, it “opens” the body of remove for the optimizations that Korat performs to
prune the search. In situations where the method under test and its assertions do not
depend on the whole input, this can significantly reduce the time to test the method.
Our experiments in Chapter 8 use postconditions that traverse the whole reachable
object graph, and thus do not benefit from white-box testing.

6.1.4 Sequences of Method Calls

We have so far presented how to use Korat for testing one method at a time; we
next consider testing sequences of method calls. It is straightforward to translate the
problem of testing a fixed sequence to the problem of testing one method and then

72



class SearchTree_remove { // inputs to "remove"
SearchTree This; // implicit "this" argument
int info; // "info" argument

// for white-box testing of "remove"
boolean removeFail() { // failure for "remove"

if (!removePre()) return false ;
try { // invoke "remove" with JML assertions

This.remove(info);
} catch ( JMLAssertionException e) {

return true ; // assertion not satisfied
}
return false ;

}
}

Figure 6-6: Predicate for white-box testing of the remove method.

apply Korat either in black-box or white-box setting. We also discuss how to use
Korat to generate sequences of method calls.

Sequences often arise in the context of algebraic specifications [43], for example an
axiom specifying that an insertion of an element in a container followed immediately
by a deletion of the element leaves the container unchanged. This example illustrates a
fixed sequence specifying a property of remove : t.add(e).remove(e).equals(t) .
Sequences can also describe correctness properties at an abstract level, as in model-
based specifications [100] using abstraction functions [70]. For example, the following
sequence specifies a model-based property for remove :

JMLObjectSet sPre = t. abstract ();
t.remove(e);
JMLObjectSet sPost = t. abstract ();
return sPost.equals(sPre.delete(e));

The sequence abstracts each tree into a set; removing an element from a tree commutes
with removing the element from the set. (We can express this form of specification in
JML using model fields [67].) Figure 6-7 shows the methods axiom and implements

that correspond to the two example sequences. We can use Korat to test these
methods the same way as to test remove .

Korat not only enables testing fixed sequences of method calls but also enables
generating sequences of interest. The user needs to build a representation of desired
sequences and a predicate that defines their validity; solving the predicate then pro-
vides sequences with desired property. Korat can generate all such sequences up to
a given length. Each sequence corresponds to a test input that consists of method
calls; this contrasts the typical use of Korat to generate inputs as concrete structures.
Generation of sequences also allows Korat to discover a sequence that builds a given
structure such that Korat can output counterexamples, or other inputs of interest, as
sequences of method calls.

73



/*@ requires t.repOk();
@ ensures \result == true ; */

boolean axiom( SearchTree t, Comparable e) {
return t.add(e).remove(e).equals(t);

}

/*@ requires t.repOk();
@ ensures \result == true ; */

boolean implements ( SearchTree t, Comparable e) {
JMLObjectSet sPre = t. abstract ();
t.remove(e);
JMLObjectSet sPost = t. abstract ();
return sPost.equals(sPre.delete(e));

}

Figure 6-7: Methods corresponding to the example method sequences.

6.2 System Testing

Solvers for imperative predicates are not restricted to unit testing. We briefly present
a case study that used a solver for imperative predicates for system testing of a real-
world application. According to the traditional testing process [10], after unit testing,
which tests each unit in isolation, developers perform integration testing, which tests
interactions between several units, and system testing, which tests the whole sys-
tem. For software such as command-line programs or interactive applications, it is
easy to draw a boundary between units and systems: we can use a system, but not
units, stand-alone. However, for modern software that involves “middleware”, “com-
ponents”, “frameworks” etc., it is harder to draw a boundary: one user’s unit may
be another user’s system.

We consider a system to be a piece of software whose precondition is true , i.e.,
a system is able to deal with any input, e.g., a compiler should process a file with
any sequence of characters. This typically means that a system has a huge potential
number of inputs. Many of these inputs may be illegal in that the system only reports
an error for such inputs, e.g., most sequences of characters are not syntactically or
semantically well-formed programs. Thus, a main issue in system testing is to generate
test inputs that consider one aspect of the system. Our approach is to let the user
describe the properties of system test inputs of interest with an imperative predicate
and then use a solver to generate such inputs. Another issue is to provide an oracle
that checks the correctness of code for the automatically generated inputs. In this
setting, the predicate for test inputs cannot be an oracle. We next describe how
differential testing provides an automatic oracle.

6.2.1 Differential Testing

Differential testing, also known as n-version testing, is a testing technique that uses
one implementation of an algorithm as an oracle for checking another implementation

74



finitization

predicate

solver
pretty

printing

<library>

<book>

 ...

</library>

compiler
optimizing

compiler
base

<book>

</book>

<book>

</book>

=?

fail

pass

Figure 6-8: Differential testing of an XPath compiler.

of the same algorithm [76]: we run both, or in general n, implementations on the same
input, and if their outputs differ, the input potentially detects a fault. A common
use of differential testing is in regression testing; after modifying a program, the
developer establishes that the original version and the modified version generate the
same output for a range of inputs.

We next describe a realistic example that illustrates the use of solvers for impera-
tive predicates and differential testing in detecting faults in production-quality code.
The Foundations of Software Engineering group at Microsoft Research implemented
a solver for imperative predicates as a part of the AsmL Test Tool (AsmLT) [33]. We
present more details of the AsmLT in Chapter 10; suffice to say that the solver is for
predicates written in the AsmL language [42], not Java or C#. Testers at Microsoft
have used AsmLT to detect faults in several systems, including an optimizing XPath
compiler [102]. XPath is a language for querying XML documents [115]: we can view
an XPath compiler as taking an XPath query and an XML document and producing
another XML document. (More precisely, an XPath compiler takes an XPath query
and produces a program that processes XML documents.)

The goal was to test the optimizing version of the XPath compiler; there existed a
base version that processed the XPath queries but did not optimize them. The base
compiler was smaller and more mature, so the confidence in its correctness was high.
The testers used differential testing to check the optimizing compiler: they obtained
a set of test inputs, consisting of XML documents, then ran the inputs through both
compilers to compare the outputs. The testers generated the test suite manually and
augmented it with XML documents randomly generated from a grammar [75, 97].
Several faults were detected in the optimizations and corrected; the testers believed
that the optimizing compiler was relatively free of faults. It was well-tested, according
to the best testing practices, and it was about to be released. However, the testers
then used AsmLT to automatically generate more inputs with specific properties and
detected ten more faults in the optimizing compiler.

Figure 6-8 shows the use of a solver for imperative predicates and differential
testing in checking the optimizing XPath compiler:

1. The testers created a model of test inputs, namely, XML syntax trees. The
input to the compiler is essentially a sequence of characters, but it was easier to

75



express the semantic properties of the desired inputs at the level of the syntax
trees than directly as a sequence of characters. Also, the use of syntax trees
ensures that the test inputs are syntactically correct XML documents. Note
that the testers wanted to test particular compiler optimizations, not parsing
or error reporting.

2. The testers wrote a predicate that expressed the property of the desired test
inputs, namely, which XML elements should appear in the syntax tree and in
what relationships.

3. From a predicate and a finitization, the solver generates structures that satisfy
the predicate, as usual. These structures are XML syntax trees, so it was neces-
sary to pretty-print them to obtain the actual test inputs as XML documents.

4. A tool then runs each test input through both versions of the code and compares
the outputs. When they differ, it is necessary to find which version actually has
a fault. In this particular application, all faults were in the optimizing compiler.

In conclusion, the use of a solver for imperative predicates enabled testers to detect
unknown faults in already well-tested, production-quality code.

76



Chapter 7

Mutation Testing

This chapter presents Ferastrau, our tool for mutation testing of Java programs.
Section 7.1 gives a brief overview of mutation testing and its uses. Section 7.2 presents
the design and implementation of Ferastrau. We used Ferastrau to evaluate the test
suites that Korat generates for bounded-exhaustive testing; Chapter 8 presents the
evaluation.

7.1 Overview

Mutation testing [28,44,86] is a testing technique based on fault injection. The main
assumption underlying mutation testing is that a test suite that detects many injected
faults can also detect real faults. We first present how to perform mutation testing
and then discuss the strength of this technique.

A tool for mutation testing proceeds in two steps. In the first step, the tool gen-
erates a set of mutants by modifying the original program. The tool applies mutation
operators that perform small syntactic modifications on the original program. For
example, a modification can replace a variable with another variable (of a compatible
type), say n.left with n.right . Mutation operators model typical small software
errors that developers make. The literature contains operators for several program-
ming languages [2, 62, 87], including Java [59, 60, 71]. The operators for Java include
the traditional operators that modify statements and expressions, as well as object-
oriented operators that modify classes, for example, field or method declarations.

In the second step, the tool measures how many mutants a given test suite detects:
the tool executes each mutant and the original program on each test input from the
suite and compares the corresponding outputs. If a mutant generates an output
different from the original program, we say that the test input kills the mutant. The
mutation coverage is the ratio of the number of killed mutants to the total number of
mutants; the higher the coverage, the better the test suite is according to this metric.

Mutation criterion requires a test suite to kill all (nonequivalent) mutants. Some
of the mutants may be semantically equivalent to the original program, although
syntactically different, so there is no input that can kill them. Since determining
program equivalence is undecidable in general, the practical goal is to kill almost all

77



(nonequivalent) mutants. A test suite is mutation-adequate if it kills a prespecified
percentage of mutants. We can eliminate from the mutant pool all mutants which we
find, manually or automatically, to be equivalent to the original program.

As mentioned, the main assumption of mutation testing is that a mutation-
adequate test suite is very likely to detect the actual faults in the original program [86].
In other words, some test input that kills a mutant also makes the original program
generate an incorrect output. It is up to the user to establish that the output is
incorrect, either manually or using an oracle that automatically checks the (partial)
correctness. Numerous studies have used mutation testing for measuring the quality
of test suites; for a review see [86]. The experimental results showed that mutation
criterion was stronger than testing criteria based on code coverage [111] and data
flow [34]. Thus, evaluations of testing approaches often use mutation testing [16],
and we also chose mutation testing for evaluation of bounded-exhaustive testing.

7.1.1 Output Comparison

We have so far used “output comparison” with the intuitive meaning. We next
discuss how to compare outputs of Java methods in mutation testing. We use a
strong criterion for output comparison, which affects the whole design of Ferastrau,
a tool that we have developed for mutation testing of Java programs. Recall that an
output of a Java method consists of the return value and the objects in the post-state
(Section 2.1). Comparison of primitive values is straightforward; however, the objects
can represent complex structures, and it is not clear a priori how to compare them.

Traditional mutation testing compares the whole post-state with equality. For
Java states, however, comparison of the object graphs with equality is a weak criterion:
because of object identities, this comparison would find almost all states to differ and
thus kill almost all mutants. We need to compare Java states using at least the
isomorphism of object graphs. Ferastrau, however, uses an even stronger criterion.

Ferastrau allows the user to provide a binary predicate—a method that takes
two inputs and returns a boolean value—for comparison of complex structures. By
default, Ferastrau uses the equals methods, following the Java convention of using
equals for comparison of objects. This allows comparisons based on abstract values;
for example, two binary search trees that implement sets may be structurally different
at the concrete level of the implementation, but if they represent the same set, they are
equal according to the equals method. For most benchmarks, the existing equals

method suffices for comparing outputs, but the user may provide another method. For
example, the user could deem two trees to be “equal” if they have the same structure,
irrespective of the elements. The use of equals requires Ferastrau to generate mutant
classes that have the same name as the corresponding original classes.

7.1.2 Existing Tools

We next review the existing mutation-testing tools. Mothra [62] and Proteum [26] are
two most popular tools for mutation testing of Fortran and C programs, respectively.
Researchers have recently developed several tools for Java [15,18,81,85] in addition to

78



our tool, Ferastrau. All tools for Java, including Ferastrau, have conceptually similar
mutant generation, although the actual mutation operators used and the implemen-
tation approaches may differ. Where Ferastrau really differs from the other tools is
in output comparison and mutant execution.

Chevalley and Thévenod-Fosse [18] present a tool that generates mutant for Java
but provides no mutant execution. Jester [81] and MU [15] are two tools that both
generate mutants and provide execution through JUnit [9], a popular framework for
unit testing. These tools, however, do not compare the states; they only compare the
boolean results from the JUnit execution of a test, namely, pass or fail.

MuJava [71,85] is a mutation-testing tool for Java that requires the user to write
each test input such that it outputs a String object. MuJava then compares the
outputs by comparing these strings. This approach requires the user to provide a
specific comparison for each test input, whereas Ferastrau allows the user to provide
one method that can compare outputs for all test inputs. MuJava supports mutant
execution but does not handle nontermination and exceptions; Section 7.2.2 presents
how Ferastrau handles nontermination and exceptions.

7.2 Ferastrau: A Mutation Tool for Java

We next present the implementation of Ferastrau. We first present how Ferastrau
generates mutants. We then present how Ferastrau executes mutants and compares
outputs. Ferastrau handles all possible outcomes in the execution of Java mutants,
including nontermination and exceptions.

7.2.1 Mutant Generation

We implemented mutant generation in Ferastrau by changing the Sun’s javac com-
piler to perform a source-to-source translation: Ferastrau parses each class of the
original program into an abstract syntax tree, applies the mutation operators to the
trees, and outputs the source of the mutants. Ferastrau uses the following mutation
operators:

• Replace a Java operator with another operator (of the same type), e.g., ‘+’ to
‘- ’, ‘==’ to ‘!= ’, ‘<’ to ‘<=’ etc.

• Replace a variable with another variable (of a compatible type), e.g., a local
variable i to j or an instance variable n.left to n.right .

• Replace an invocation of a method with another method (of a compatible sig-
nature). Ferastrau does not replace some special methods, such as notify .

These operators modify only the code of methods, and not the classes. They cor-
respond to the traditional mutation operators for procedural languages [2, 62] and
can create subtle mutants that only nontrivial inputs can kill, as the results in Sec-
tion 8.3.2 show. It is easy to add new operators to Ferastrau such as the operators

79



proposed for class mutation [59,60,71], but these operators are not necessary for the
benchmarks that we use in Chapter 8.

Ferastrau allows the user to provide bounds for the number of generated mutants.
Ferastrau first computes the possible number of mutations (i.e., the number of appli-
cations of mutation operators) for each class in the original program. It next computes
the probabilities with which to apply each mutation to generate a number of mutants
between the bounds. It then randomly selects the mutations to apply to generate
each mutant. Traditionally, mutation-testing criterion requires that a tool generates
one mutant for each possible mutation, which usually results in a large number of
mutants and presents a big challenge for the performance of mutation-testing tools.
However, the results show that randomly selecting only a certain portion of mutants
still provides an effective mutant pool [113].

For each original class, Ferastrau generates mutants with the same class name.
For reasons explained below, Ferastrau provides two approaches: (1) for each mutant,
generate one class that has both the code for the original class and the mutant (and
additionally a flag that determines which code to execute) or (2) generate mutants
as separate classes. Suppose that the original code contains temp.right that is to
be mutated to left.right . The first approach uses metamutants [106]: it guards
the mutations by boolean variables that are appropriately set during the mutant exe-
cution; it generates one class with (MUTANT ? left : temp).right . The second
approach simply generates left.right in a separate class.

7.2.2 Mutant Execution

After generating the mutants, Ferastrau runs them on a set of test inputs, manually
or automatically generated. Ferastrau executes the original code and the mutants
for each input and compares their respective outputs. We had two requirements for
Ferastrau:

• Ferastrau had to handle a potentially huge number of relatively small inputs
to be practical for an evaluation of bounded-exhaustive test suites that Korat
generates (Chapter 8). The question then is whether Ferastrau should execute
the original code and the mutants in a single run or in separate runs?

• Ferastrau had to handle all outcomes of Java executions. We have discussed in
Section 7.1.1 how to compare nonexceptional Java outputs, but the question is
how to handle nontermination and exceptional termination of the original code
and the mutants?

We next describe how Ferastrau addresses these questions and the rationale behind
our decisions. We then list the conditions that Ferastrau uses to kill a mutant.

Ferastrau executes the original code and the mutants in a single run; otherwise,
it would need to serialize all the outputs, which could take a long time and produce
very large files for bounded-exhaustive test suites. Recall that Ferastrau can generate
metamutants or generate the original code and the mutants in different classes. If
Ferastrau uses metamutants, the guarding boolean variables slow down the execution.

80



We have found this approach to be faster for shorter executions and larger data.
If Ferastrau generates different classes, it needs to execute several classes with the
same name in a single Java Virtual Machine (JVM). Ferastrau then uses a different
ClassLoader [105] for the original class and each mutant, and uses serialization
through a buffer in memory to compare objects. We have found this approach to be
faster for longer executions and smaller data.

Ferastrau assumes that the original code terminates for all test inputs, either
normally or exceptionally.1 If the specification allows an exceptional termination, it
is not an error. Ferastrau handles nontermination of mutants by running them in a
separate thread with a time limit for execution. The limit is set to Tm = 10To +1sec,
where To is the time the original code runs for that input. We have found these
constants sufficient to account for fluctuations in the execution time of Java programs,
e.g., due to garbage collection. In all examples that we tried, a mutant that did not
finish in 10To, did not finish in 30To either. The minimum of 1sec is necessary, at
least for Sun’s Java 2 SDK1.3.x JVMs, because JVMs take some extra time for the
executions that raise exceptions.

The mutants can also terminate, either normally or exceptionally. Ferastrau
catches all exceptions (in Java, all Throwable objects) that the executions throw.
This allows Ferastrau to compare the outputs, even exceptional, as well as to catch all
errors in the mutants. The errors include the cases when the mutant runs out of stack
or heap memory and JVM raises StackOverflowError or OutOfMemoryError , re-
spectively. Although the JVM specification [69] does not precisely specify the be-
havior when OutOfMemoryError is raised, we found several Sun’s Java 2 SDK1.3.x
JVMs to be able to continue the execution after the garbage collection of the objects
allocated by the thread for the erroneous mutant.

Ferastrau uses the following conditions to kill a mutant for some test input:

• The mutant’s output does not satisfy some class invariant (repOk ), which is a
precondition for equals .

• The mutant’s output differs from the output of the original code; any of the
outputs can be normal or exceptional.

• The mutant’s execution exceeds the time limit.

• The mutant’s execution runs out of memory.

Note that the executions of mutants do not check the (JML) postconditions; indeed,
if all methods had complete functional specifications, we could simply check the post-
conditions to kill mutants and would not even need to compare outputs.

1The user can always put a time limit on the execution; if a test exceeds the limit, it potentially
detected a fault that leads to nontermination of the original code.

81



82



Chapter 8

Evaluation

This chapter presents an evaluation of Korat and bounded-exhaustive testing. Sec-
tion 8.1 discusses the benchmark suite that we use in the evaluation. The suite
consists of ten data-structure implementations. Section 8.2 presents the performance
of Korat in generating valid structures, with and without dedicated generators. Sec-
tion 8.3 presents our evaluation of bounded-exhaustive testing of data structures.

Recall that bounded-exhaustive test suites consist of all nonisomorphic test inputs
within a given scope. We evaluate the performance of generating bounded-exhaustive
test suites and the quality of these suites. As presented in Section 1.2.1, we use code
coverage and mutation coverage to assess the quality of test suites; we say that a scope
is adequate for some criterion if the bounded-exhaustive test suite for that scope is
adequate for that criterion. Specifically, we evaluate the following four hypotheses
for our benchmarks:

• Mutation: There is a certain small mutation-adequate scope, i.e., bounded-
exhaustive test suite for this scope can detect almost all nonequivalent mutants.

• Coverage: The mutation criterion is stronger than the code coverage criterion,
i.e., mutation-adequate scope is larger than code-coverage adequate scope.

• Feasibility: Korat can effectively generate bounded-exhaustive test suites for
the mutation-adequate scope, and it is practical to check correctness for these
test suites, despite the potentially large number of test inputs.

• Randomness: Bounded-exhaustive test suites for a mutation-adequate scope
can be more effective than random test suites with the same number of inputs
randomly selected from a larger scope.

We performed all experiments on a Linux machine with a 1.8 GHz Pentium 4
processor using Sun’s Java 2 SDK 1.3.1 JVM.

8.1 Benchmarks

Figure 8-1 lists the benchmarks that we use in experiments. The benchmarks include
our implementations of text-book data structures, some data structures from the

83



benchmark package finitization parameters

SearchTree korat.examples numNode, minSize, maxSize, minInfo, maxInfo
HeapArray korat.examples minSize, maxSize, maxLength, maxElem

BinHeap korat.examples minSize, maxSize
FibHeap korat.examples minSize, maxSize
DisjSet korat.examples minSize, maxSize

LinkedList java.util minSize, maxSize, numEntries, numElems
SortedList java.util minSize, maxSize, numEntries, numElems

TreeMap java.util minSize, numEntries, maxKey, maxValue
HashSet java.util maxCapacity, maxCount, maxHash, loadFactor
AVTree ins.namespace numAVPairs, maxChild, numStrings

Figure 8-1: Benchmarks and finitization parameters. Each benchmark is named after
the class for which data structures are generated; the structures also contain objects
from other classes.

Java Collections Framework that is a part of the standard Java libraries [105], and
intentional names from the Intentional Naming System [1]:

• SearchTree is our main running example, a binary search tree implementation.

• HeapArray is the other running example, an array-based implementation of
the heap data structure. This benchmark is representative for array-based data
structures such as stacks and queues, as well as java.util.Vector .

• BinHeap is a linked data structure that implements binomial heaps [23].

• FibHeap is a linked data structure that implements Fibonacci heaps, which
have different structural invariants and complexity for some operations than
binomial heaps [23].

• DisjSet is an array-based implementation of the fast union-find data struc-
ture [23]; this implementation uses both path compression and rank estimation
heuristics to improve efficiency of find operations.

• LinkedList is an implementation of linked lists from the Java Collections
Framework. This implementation uses doubly-linked, circular lists. This bench-
mark is also representative for linked data structures such as stacks and queues.
The elements in LinkedList are arbitrary objects.

• SortedList is structurally identical to LinkedList , but has sorted elements.

• TreeMap implements the Map interface using red-black trees [23]. The imple-
mentation uses binary trees whose nodes have a parent field, as well as a key

and a value . Testing TreeMap with all value fields set to null corresponds
to testing the set implementation in java.util.TreeSet .

84



• HashSet implements the Set interface, backed by a hash table [23]. This
implementation builds collision lists for buckets with the same hash code. The
loadFactor parameter determines when to increase the size of the hash table
and rehash the elements.

• AVTree implements the intentional name trees that describe services in the
Intentional Naming System (INS) [1], an network architecture for service lo-
cation. Each node in an intentional name has an attribute , a value , and
several children nodes. INS uses attributes and values to classify services. INS
represents these properties with arbitrary String objects except that "*" is
a wildcard that matches all other values. The finitization bounds the number
of AVPair (attribute-value pair) objects that implement nodes, the number of
children for each node, and the total number of String objects (including the
wildcard). The original implementation of INS had faults that we detected with
bounded-exhaustive testing [73] and corrected. We use the corrected version as
the original program in these experiments, but (most of) the mutants are faulty.

8.2 Generation of Data Structures

Figure 8-2 presents the results for generating valid structures for our benchmark
suite. For each benchmark, we set all finitization parameters such that Korat generate
structures of exactly the given size: we set minSize, maxSize, and other maximum
parameters to the value of size and the minimum parameters to 0 or 1, according to
the structure1. (For bounded-exhaustive testing, Korat generates all test inputs up
to the given bound.) For a range of size values, we tabulate the number of connected
structures in the state space (Section 3.2.3), the number of valid structures that Korat
generates, and the number of candidate structures that repOk checks and the time
that Korat takes to generate all nonisomorphic valid structures, without and with
dedicated generators.

We can see that the state spaces are very large for these sizes. Hence, the naive al-
gorithm that would try as candidates all structures from the state space (Section 3.1.3)
would not terminate in a reasonable time. Further, the ratio of the number of valid
structures and the size of state space shows that these state spaces are very sparse:
for each valid structure, there is a large number of invalid structures. For example, for
SearchTree of size seven, there are 259 connected structures in the state space, and
only 429 of them are valid nonisomorphic structures, i.e., about one in 1016 structures
is a valid nonisomorphic structure.

The results show that Korat can efficiently generate all valid nonisomorphic struc-
tures even for very large state spaces. The search pruning that Korat performs allows
Korat to explore only a tiny fraction of the state space. The ratio of the number of
candidate structures considered and the size of the state space shows that the key to

1The only exception is the loadFactor parameter for HashSet , which is set to 1.00 for com-
parison with TestEra (Chapter 9). We previously showed the results for loadFactor being set to
the default value of 0.75 [13].

85



without dedicated with dedicated
benchmark size state valid candidates time candidates time

space structures considered [sec] considered [sec]

7 259 429 340990 5.69 69355 1.48
SearchTree 8 271 1430 2606968 48.54 475042 7.65

9 284 4862 20086300 377.83 3312243 50.23
10 297 16796 155455872 3480.63 23379912 413.13
6 220 13139 64533 0.72 17766 0.65

HeapArray 7 225 117562 519968 2.03 150084 1.31
8 229 1005075 5231385 15.30 1295739 9.33
9 234 10391382 51460480 151.50 12964446 76.68
7 2103 107416 307106 4.54 187542 2.60

BinHeap 8 2125 603744 1428740 20.82 921464 11.19
9 2147 8746120 13512131 229.90 10525015 146.13
4 256 2310 8634 0.76 6775 0.74

FibHeap 5 278 52281 164365 2.53 134965 2.40
6 2101 1474186 4809294 61.29 3951101 61.05
4 226 914 7915 0.61 6677 0.60

DisjSet 5 237 41546 413855 2.03 354015 1.82
6 249 2967087 33436639 133.86 28864251 158.00
7 271 4140 4269 0.81 4186 0.66

LinkedList 8 284 21147 21306 0.94 21199 0.84
9 297 115975 116167 2.39 116033 2.03
10 2111 678570 678798 11.62 678634 9.21
11 2125 352716 3880154 58.99 705512 12.50

SortedList 12 2140 1352078 16225257 264.72 2704243 49.82
13 2155 5200300 67604267 1154.23 10400694 225.52
7 286 35 67259 2.35 31102 1.46

TreeMap 8 2104 64 306486 8.78 153883 4.63
9 2123 122 1447664 44.25 797294 22.17
10 2142 260 7264732 242.81 4309282 118.87
7 2104 1716 100861 2.33 99580 1.80

HashSet 8 2126 6435 441930 8.85 436932 5.65
9 2148 24310 1910842 38.99 1891402 24.69
10 2172 92378 8179746 177.47 8104173 109.51
3 230 84 336 0.57 307 0.56

AVTree 4 256 5923 16118 0.89 15933 0.80
5 291 598358 1330628 24.66 1329637 18.84

Figure 8-2: Performance of Korat for generation of data structures. All maximum
finitization parameters are set to the size value. State size is rounded to the nearest
smaller exponent of two. Time is the elapsed real time in seconds for the entire
generation.

86



effective pruning is backtracking based on fields accessed during predicate executions.
For example, for SearchTree of size seven, Korat explores 340,990 candidates out of
259 possible structures in the state space, i.e., less than one candidate in 1012 struc-
tures. Without backtracking, and even with isomorphism optimization, Korat would
generate infeasibly many candidates. Isomorphism optimization further reduces the
number of candidates, but it mainly reduces the number of valid structures. For ex-
ample, for SearchTree of size seven, isomorphism optimization reduces the number
of candidates and structures 7! > 5000 times. Without isomorphism optimization,
Korat would generate infeasibly many valid structures.

For SearchTree , LinkedList , SortedList , TreeMap , and HashSet (with the
parameter loadFactor set to 1.00), the numbers of nonisomorphic structures ap-
pear in the On-Line Encyclopedia of Integer Sequences [98]. For all sizes for these
benchmarks, Korat generates the correct number of structures. We have manually
inspected the structures generated for small sizes for other benchmarks. In all these
cases, Korat correctly generated all valid nonisomorphic structures. These results
increase our confidence in the correctness of the implementation of Korat; although
we have proved the Korat algorithm correct (Chapter 4), we might still have errors
in the implementation.

8.2.1 Dedicated Generators

Recall from Section 5.3 that Korat provides a library of dedicated generators for com-
mon properties. We evaluate the effectiveness of dedicated generators by comparing
the performance of Korat with and without them. The results in Figure 8-2 show
that the use of dedicated generators can speed up valid structure generation for up
to 88% or almost 8.5 times (for SearchTree and size ten).

Dedicated generators make the generation faster because they reduce the number
of candidates, pruning the search beyond the backtracking based on accessed fields.
However, dedicated generators make each execution of a candidate somewhat slower
because of (1) higher overhead for the execution of Korat library and (2) the time
dedicated generators take to produce the next candidate. We can see that the use
of dedicated generators may even slow down the generation (for DisjSet and size
six). The reason is that DisjSet uses only one dedicated generator that makes all
elements of an array different, which is simple in comparison to the rest of repOk ;
the benefit of this simple generator is thus outweighed by the increased run-time cost
for the rest of repOk . In such situations, the user does not need to use the dedicated
generator.

As mentioned in Section 5.3, Korat library does not aim to provide the most
efficient generators for our benchmarks. We could in principle add for each data
structure a special-purpose dedicated generator that would generate the structures
directly without any failures in search, making the number of candidates the same
as the number of valid structures and the generation even faster. However, the Ko-
rat library instead provides dedicated generators that are applicable for several data
structures. These dedicates predicates also make it easier to write the actual predi-
cates for all our benchmarks.

87



benchmark target methods some helper methods ncnb # #
lines br. mut.

SearchTree add , remove contains 85 20 272
HeapArray insert heapifyUp 51 9 274

extractMax heapifyDown

BinHeap insert , delete contains , decrease 182 33 292
extractMin , union merge , findMin

FibHeap insert , delete contains , decrease 171 31 297
extractMin , union cascadingCut , cut

consolidate

DisjSet union , find compressPath 29 8 243
LinkedList add , remove contains 102 16 244

reverse ListIterator.next

SortedList insert , remove contains 176 29 231
sort , merge

TreeMap put , remove get , containsKey 230 47 293
fixAfterInsertion

fixAfterDeletion

rotate{Left,Right}

HashSet add , remove contains 113 20 244
HashMap.containsKey

HashMap.put

HashMap.remove

AVTree lookup extract 199 26 205

Figure 8-3: Target methods for testing data structures. Korat generates inputs for
the target methods; testing target methods also tests helper methods. The numbers
of non-comment non-blank (ncnb) lines of source code, branches, and mutants are for
all those methods.

8.3 Bounded-Exhaustive Testing

We next present the experiments that evaluate bounded-exhaustive testing of data
structures. Figure 8-3 lists the methods that we test with bounded-exhaustive test
suites, i.e., with test suites that contain all nonisomorphic inputs within a given scope.
We use Korat to generate such inputs for the target methods. These methods imple-
ment the standard operations on their corresponding data structures [23]. Testing the
correctness of outputs for these methods also tests some helper methods that either
directly the target methods or their specifications invoke.

We first discuss the relative quality of generated test suites. We measure how
mutation coverage and code coverage vary with the scope. We then discuss the per-
formance of Korat for generating these test suites and the performance of checking
method correctness. It may seem unusual that we discuss the quality of test suites

88



before discussing their generation, but the quality actually determines the scope
for which we should evaluate generation by Korat. We finally compare bounded-
exhaustive testing with randomly selected test inputs. The experimental results sup-
port the four hypotheses listed at the beginning of this chapter.

8.3.1 Mutation

For mutation testing, we use Ferastrau (Chapter 7). We instruct Ferastrau to generate
between 200 and 300 mutants for each benchmark, mutating the target methods and
the helper methods that they directly invoke, but not the helper methods that only the
specifications invoke. Figure 8-3 shows the number of mutants for each benchmark.
Figure 8-4 shows mutation coverage for several scopes. (The numbers for smaller
scopes are in Appendix A.) For all benchmarks but FibHeap and TreeMap , inputs
in the largest scopes kill over 90% of the mutants.

We inspected a selection of the mutants that survive for these two benchmarks to
detect if they are syntactically different but still semantically equivalent to the original
program, and thus no input could kill them. Since we implemented FibHeap , we were
able to determine that all inspected mutants are indeed semantically equivalent. Due
to the complexity of TreeMap and our lack of familiarity with it, we were unable to
definitely establish the equivalence for all inspected mutants. However, we also tested
surviving mutants for inputs of scope eight and all mutants still survived, increasing
our confidence that they are indeed semantically equivalent.

We conclude that these results indeed support the Mutation Hypothesis: There is
a certain small mutation-adequate scope, i.e., bounded-exhaustive test suite for this
scope can detect almost all nonequivalent mutants. For our set of benchmarks, this
mutation-adequate scope turns out to be a number between three and seven.

8.3.2 Coverage

Figure 8-4 also shows the code coverage that bounded-exhaustive test suites achieve,
and Figure 8-5 shows graphs that relate scope with the statement code coverage and
mutation coverage. We measure code coverage for all target and helper methods,
since testing executes all these methods. For more than half of the benchmarks,
Korat generates test inputs that achieve 100% coverage, both for statements and
branches. For other benchmarks, the coverage is not 100%, primarily because no
input for target methods could trigger some exceptional behavior of helper methods.

For example, the target method reverse for lists creates a ListIterator and in-
vokes helper methods on it. In general, these helper methods could throw exceptions,
such as ConcurrentModificationException or NoSuchElementException , typ-
ically when used in an “incorrect” way. However, the target methods never in-
voke the helper methods in such a way. In terms of JML specifications, the target
methods invoke the helper methods in pre-states that satisfy the precondition for
normal behavior and not for exceptional behavior .

For all benchmarks, the minimum scope that is coverage-adequate is not mutation-
adequate, i.e., the test inputs for the scope are not sufficient to kill almost all mutants.

89



benchmark scope # time code coverage mutants
inputs [sec] st. [%] br. [%] killed [%]

5 1880 0.63 100.00 100.00 98.52
SearchTree 6 8772 0.85 100.00 100.00 99.26

7 41300 1.65 100.00 100.00 99.26
5 15352 0.76 96.55 94.44 89.78

HeapArray 6 118251 2.25 100.00 100.00 96.35
7 1175620 17.95 100.00 100.00 96.71
5 16848 1.08 100.00 100.00 94.86

BinHeap 6 159642 5.01 100.00 100.00 95.89
7 2577984 76.36 100.00 100.00 96.91
3 1632 0.65 95.70 98.39 75.08

FibHeap 4 34650 1.48 95.70 98.39 81.48
5 941058 23.77 100.00 100.00 88.88
3 456 0.47 100.00 100.00 88.47

DisjSet 4 18280 0.81 100.00 100.00 95.06
5 1246380 20.32 100.00 100.00 95.06
5 2584 0.66 90.57 84.38 99.59

LinkedList 6 11741 0.88 90.57 84.38 99.59
7 58175 1.94 90.57 84.38 99.59
5 7427 0.90 92.50 89.66 96.53

SortedList 6 73263 2.97 92.50 89.66 97.40
7 1047608 38.31 92.50 89.66 97.40
5 1150 0.68 100.00 91.49 87.37

TreeMap 6 3924 0.81 100.00 91.49 89.76
7 12754 1.16 100.00 91.49 89.76
5 3638 0.78 100.00 100.00 91.39

HashSet 6 12932 1.05 100.00 100.00 91.80
7 54844 2.09 100.00 100.00 92.21
3 1702 1.19 88.23 84.61 75.12

AVTree 4 27734 8.77 94.12 92.31 91.21
5 417878 134.92 94.12 92.31 93.65

Figure 8-4: Testing target methods with bounded-exhaustive test suites. For each
benchmark and scope, we tabulate the number of test inputs, the time for testing
the code for all these inputs, code coverage (statement and branch), and mutation
coverage.

90



0

20

40

60

80

100

0 1 2 3 4 5 6 7

HeapArray

0

20

40

60

80

100

0 1 2 3 4 5 6 7

BinomialHeap

0

20

40

60

80

100

0 1 2 3 4 5 6 7

FibonacciHeap

0

20

40

60

80

100

0 1 2 3 4 5 6 7

DisjSet

0

20

40

60

80

100

0 1 2 3 4 5 6 7

LinkedList

0

20

40

60

80

100

0 1 2 3 4 5 6 7

SortedList

0

20

40

60

80

100

0 1 2 3 4 5 6 7

TreeMap

0

20

40

60

80

100

0 1 2 3 4 5 6 7

HashSet

0

20

40

60

80

100

0 1 2 3 4 5 6 7

AVTree

Figure 8-5: Variation of code coverage and mutating killing with scope. Thick line
shows the statement code coverage and thin line the mutation coverage. For all bench-
marks, Korat generates inputs that achieve the maximum coverage that is possible
without directly generating inputs for helper methods.

We can see that increasing the scope after complete coverage increases mutation cover-
age. This supports the Coverage Hypothesis: The mutation criterion is stronger than
the code coverage criterion, i.e., mutation-adequate scope is larger than code-coverage
adequate scope. This is not surprising; it is well-known that complete statement or
branch coverage (or for that matter, any coverage criteria) does not guarantee the
absence of faults. Walsh [111] also showed that mutation adequacy is a stronger cri-
terion than statement and branch adequacy. Our experiments reaffirm this, showing
that mutation is stronger than code coverage for bounded-exhaustive testing of data
structures.

As an illustration, consider the following code snippet from SearchTree.remove :

Node temp = left;
while (temp.right.right != null ) {

temp = temp.right;
}

Suppose that the mutation changes only the loop body:

91



Node temp = left;
while (temp.right.right != null ) {

temp = left.right;
}

For test inputs that make the loop execute zero or one times, the original program and
the mutant have the same behavior. For trees with up to four nodes, the loop cannot
execute more than once, and these trees achieve complete coverage for remove . How-
ever, for a tree with five nodes, the loop executes twice in the original program, while
the mutant loops infinitely. (Recall that Ferastrau detects and kills such mutants.)
Because of this, we do not consider the effectiveness of Korat in the scopes that are
coverage adequate, but in the scopes that are mutation adequate.

8.3.3 Feasibility

Figure 8-6 shows the performance of Korat for generating test inputs for our data-
structure benchmarks. Korat generates all nonisomorphic valid structures within the
given scope, i.e., all test inputs up to the given size bound. The tabulated number
of inputs is the sum of inputs for all target methods for each benchmark. Also, the
generation times in Figure 8-6 and the testing times in Figure 8-4 are the sums of
times for all target methods. We use Korat to separately generate inputs for each
method. However, when two methods have the same precondition (e.g., remove and
add for SearchTree ), we could reuse the inputs and thus reduce the generation time.

For each benchmark, the largest tabulated scope is mutation adequate. In all
cases, Korat completes generation in less than two minutes, often in just a few seconds.
All times are elapsed real times from the start of Korat to its completion, including
the JVM initialization that takes around 0.25sec. The use of dedicated generators
reduces the generation times from a few percent up to 70% (for SearchTree and
scope seven). Since dedicated generators have a higher overhead, their use sometimes
slightly increases the generation time, especially for very small scopes.

Since JML specifications are executable, we can also measure specification cov-
erage [16] as the code coverage of the predicate that corresponds to the method’s
precondition, for example, removePre from Section 6.1.2. Figure 8-6 presents cover-
age measured during Korat’s generation of valid structures for the predicate and thus
valid test inputs for the method. For most benchmarks, the tabulated scopes achieve
complete specification coverage, both for statements and branches. It is not always
100%, because finitizations do not even put for fields some values that do not satisfy
the predicate (e.g., finSearchTree from Section 3.2.2 does not put negative values
for the tree size). In this setting, specification coverage becomes adequate for smaller
scopes than implementation coverage, which means that specification coverage is a
weaker criterion than implementation coverage.

We additionally measured the precondition/predicate coverage by executing the
predicate for all valid structures, and not during Korat’s generation. We do not
present this coverage in Figure 8-6, because it is even weaker than specification cov-
erage. Namely, this coverage achieves lower absolute percentage than the specification
coverage—for example, some statements in the predicates, such as return false ,

92



ded. generators
without with

benchmark scope time time spec. coverage #
[sec] [sec] st. [%] br. [%] inputs

5 1.00 0.86 94.74 96.67 1880
SearchTree 6 2.00 1.12 94.74 96.67 8772

7 9.64 2.80 94.74 96.67 41300
5 0.80 0.78 90.00 92.86 15352

HeapArray 6 1.48 1.28 90.00 92.86 118251
7 7.78 7.00 90.00 92.86 1175620
5 2.04 1.88 97.67 98.00 16848

BinHeap 6 4.57 3.79 97.67 98.00 159642
7 37.06 29.30 97.67 98.00 2577984
3 1.70 1.71 97.78 98.28 1632

FibHeap 4 2.70 2.19 97.78 98.28 34650
5 15.48 14.29 97.78 98.28 941058
3 0.61 0.62 100.00 100.00 456

DisjSet 4 0.88 1.02 100.00 100.00 18280
5 11.56 10.48 100.00 100.00 1246380
5 1.16 1.09 100.00 100.00 2584

LinkedList 6 1.23 1.23 100.00 100.00 11741
7 1.67 1.61 100.00 100.00 58175
5 1.76 1.70 100.00 100.00 7427

SortedList 6 3.20 3.07 100.00 100.00 73263
7 23.90 22.54 100.00 100.00 1047608
5 1.06 1.00 100.00 100.00 1150

TreeMap 6 1.62 1.40 100.00 100.00 3924
7 3.96 2.42 100.00 100.00 12754
5 1.06 1.06 89.47 92.31 3638

HashSet 6 1.60 1.40 89.47 92.31 12932
7 4.06 3.58 89.47 92.31 54844
3 0.53 0.49 96.67 96.88 1702

AVTree 4 3.49 2.19 96.67 96.88 27734
5 87.46 43.74 96.67 96.88 417878

Figure 8-6: Performance of Korat for generating test inputs. For each benchmark
and scope, we tabulate the times to generate bounded-exhaustive test suites without
and with dedicated generators, specification coverage (statement and branch), and
the number of test inputs. All times are elapsed real times in seconds from the start
of Korat to its completion.

93



random bounded-exhaustive
mutants

benchmark scope killed [%] scope-1 scope

SearchTree 7 99.26 = =
HeapArray 7 95.99 < <

BinHeap 7 95.10 < <
FibHeap 5 86.87 > <
DisjSet 5 95.06 = =

LinkedList 7 99.59 = =
SortedList 7 96.40 < <

TreeMap 7 89.08 < <
HashSet 7 91.39 < <
AVTree 5 93.17 > <

Figure 8-7: Comparison of bounded-exhaustive testing and random testing. Compar-
ison of mutation coverage for bounded-exhaustive test suites for scopes s and s − 1
with randomly chosen test suites from scope s with the same number of test inputs
as test suites in scope s − 1; ‘=’ means that both suites are equally good, ‘<’ that
random is worse, and ‘>’ that random is better.

are never executed for valid structures—but becomes adequate (and achieves the max-
imum possible percentage) for even smaller scopes than the specification coverage.

We next discuss the testing times presented in Figure 8-4. The postconditions for
all methods specify typical partial correctness properties; they require the resulting
data structures (1) to be valid and (2) depending whether the method adds or removes
an element, to contain or not contain the input element. The testing times depend
on the complexity of methods and their postconditions, so they are not under the
control of Korat. Overall, the testing times are within the same magnitude as the
corresponding generation times across all benchmarks.

These results support the Feasibility Hypothesis: Korat can effectively generate
bounded-exhaustive test suites for the mutation-adequate scope, and it is practical
to check correctness for these test suites, despite the potentially large number of test
inputs. Korat is able to efficiently generate the test inputs due to the pruning based
on accessed fields in the precondition predicates and the elimination of isomorphic
test inputs. Testing only nonisomorphic inputs is very important in reducing the
testing time. In conclusion, Korat can be effectively used for bounded-exhaustive
testing of our benchmarks.

8.3.4 Randomness

Bounded-exhaustive testing uses test suites with all nonisomorphic valid test inputs
within a given scope. A question that naturally arises is whether some test-selection
strategy could reduce the size of bounded-exhaustive test suites without sacrificing

94



their quality. We next evaluate the simplest test-selection strategy, namely, uniform
random sampling.

Consider one benchmark, and let T (s) be the set of all nonisomorphic valid test
inputs within scope s. From T (s), we randomly choose a subset R(s) whose cardinal-
ity is the same as the cardinality of T (s − 1). We then compare the quality of R(s)
against T (s − 1) and T (s). For comparison, we use mutation coverage, because this
criterion is stronger than code coverage. To offset the influence of random selection,
we average mutation coverage over five random samples.

It is important to point out that randomly chosen test inputs are also generated
by Korat. For predicates that express constraints on structurally complex inputs, it
is not feasible to simply generate random inputs that satisfy the predicate, because
the input spaces are very sparse (Section 8.2).

Figure 8-7 shows the comparison of mutation coverage for randomly sampled and
bounded-exhaustive test suites. The randomly sampled test suites achieve lower mu-
tation coverage for half of the benchmarks, the same mutation coverage for three of
the benchmarks, and higher mutation coverage for only two benchmarks, FibHeap

and AVTree . This supports the Randomness Hypothesis: Bounded-exhaustive test
suites for a mutation-adequate scope can be more effective than random test suites
with the same number of inputs randomly selected from a larger scope. There may
be, however, a test-selection strategy different from random that can reduce the size
of bounded-exhaustive test suites without reducing their quality. This strategy would
need to take into account the specifics of the code under test and its specification.

95



96



Chapter 9

Comparison with Testing Based on
Declarative Predicates

This chapter compares testing based on imperative predicates with testing based
on declarative predicates as embodied in the TestEra tool [55, 73]. We present this
comparison is detail because we were involved in the development of TestEra, and
our work on TestEra and Korat mutually enhanced each other. Chapter 10 discusses
other related work.

Section 9.1 gives an overview of TestEra. TestEra uses the Alloy language [52] to
express constraints on test inputs and Alloy Analyzer [51] to solve these constraints
and generate test inputs. This section uses an example to illustrate Alloy and dis-
cusses qualitative differences between imperative and declarative predicates, namely,
Java and Alloy predicates. Section 9.2 presents a quantitative comparison of Korat
and TestEra. Section 9.3 summarizes the comparison.

9.1 Overview of TestEra

TestEra is a tool for bounded-exhaustive testing of programs. The user provides
TestEra with a predicate that characterizes test inputs of interest and a bound for
the input size, and TestEra generates all nonisomorphic valid test inputs within the
bound. If the user provides an oracle, TestEra can additionally run the code for each
input and check the correctness of the output.

Unlike Korat that operates on imperative predicates, TestEra operates on declar-
ative predicates. Specifically, TestEra uses the Alloy language [52] for predicates.
Alloy is a modeling language based on the first-order logic formulas with transitive
closure. Alloy is suitable for modeling structural properties of software. We have de-
veloped Alloy models of several data structures [57, 73], corresponding to the repOk

predicates for class invariants in Korat.

TestEra uses Alloy Analyzer to generate test inputs from Alloy predicates. Each
Alloy predicate expresses constraints on several relations. Alloy Analyzer [51] is an
automatic tool for analyzing Alloy predicates. Given a predicate and a scope—a
bound on the number of atoms in the universe of discourse—Alloy Analyzer can

97



boolean repOk() {
// checks that the object graph is a tree
all n: root.*(left + right) {

n ! in n.ˆ(left + right) // no directed cycle
sole n.˜(left + right) // at most one parent
no n.left & n.right // distinct children

}
// checks that size is consistent
size = #root.*(left + right)
// checks that data is ordered
all n: root.*(left+right) {

all nl: n.left.*(left + right) | LT(nl.info, n.info)
all nr: n.right.*(left + right) | GT(nr.info, n.info)

}
}

Figure 9-1: Example declarative predicate in Alloy. This predicate expresses the class
invariant for the SearchTree class.

generate all mostly nonisomorphic solutions to the predicate. Each solution gives
values to the relations in the predicate to make it evaluate to true. Alloy Analyzer
operates in three steps: (1) it translates Alloy predicates into propositional formulas,
i.e., constraints where all variables are boolean; (2) it uses off-the-shelf SAT solvers to
find solutions for the propositional formulas; (3) it translates each solution from the
propositional domain into the relational domain. TestEra can additionally translate
each Alloy solution into an actual test input [55].

We developed the first version of TestEra [56] before Korat, and Alloy Analyzer has
influenced the design of Korat, in particular finitizations. Setting the scope in Alloy
Analyzer corresponds to setting the finitization parameters in Korat. Additionally,
Alloy models of data structures declare field types; these declarations correspond
to setting field domains in Korat finitizations. Our work on Korat also influenced
generation of nonisomorphic solutions in Alloy Analyzer (Section 9.2.1).

9.2 Ease of Writing Predicates

We next present an example that illustrates Alloy predicates. Through the ex-
ample, we discuss the relative ease of writing Alloy and Java predicates for the same
constraints that describe structural properties. While writing predicates in either Al-
loy or Java is always easier than, say, writing them directly as propositional formulas,
we cannot currently claim that writing predicates in either Alloy or Java is always
easier than writing them in the other language.

Recall the SearchTree example from Section 2.1. Appendix A shows the full
Java code for the repOk method that checks the class invariant for SearchTree .
This invariant has three properties: (1) the underlying graph is indeed a tree, (2) the
value of the size is the same as the number of nodes, and (3) the data is ordered for
binary search. Figure 9-1 shows an Alloy predicate, adapted from Khurshid [55], that

98



specifies these properties. The predicate specifies the first and the third properties
with universally quantified formulas and the second property with an equality. Alloy
implicitly conjoins the formulas. We explain details of the first formula.

The Alloy expression root.*(left + right) denotes the set of all nodes reach-
able from the root along the fields left and right . Alloy represents each Java field
with a relation, for example, left is a binary relation from Node objects to Node

objects. The empty set represents null ; if a field f of an object o has value null ,
there is no pair for o in the relation for f . The Alloy operations ‘+’, ‘* ’, and ‘. ’ denote
union, reflexive transitive closure, and relation composition, respectively. The first
formula specifies that for every node reachable from root , three subformulas hold.
First, node is not reachable from itself; ‘ˆ ’ is transitive closure, ‘in ’ is membership,
and ‘! ’ is negation. Second, node does not have two incoming pointers; ‘˜ ’ is rela-
tion transposition, and ‘sole ’ checks that the set has at most one element. Third,
node points to different children; ‘&’ is set intersection, and ‘no’ checks that the set
is empty.

We can see that Alloy predicates are much more succinct than Java predicates; to
specify the invariant in this example takes about three times less lines in Alloy than
in Java. Being declarative, Alloy allows the operations that are not easy to compute
with an imperative predicate, e.g., ‘˜ ’ finds the inverse of all pointers. However, Alloy
has a different style for writing predicates than Java, and Alloy does not have built-in
support for several Java constructs [55], e.g., primitive values or exceptions. We have
found that these issues make it hard for programmers familiar with Java to write
Alloy predicates. On the other hand, our experience also shows that for researchers
familiar with Alloy, it is often easier to write Alloy predicates than Java predicates.

9.2.1 Nonisomorphic Inputs

We discuss generation of nonisomorphic inputs in TestEra and compare it with Korat.
Alloy Analyzer can automatically add so called symmetry-breaking predicates [3, 24]
to the propositional formula such that different solutions to the formula represent
(mostly) nonisomorphic solutions of the Alloy predicate. However, there is a trade-
off in adding symmetry-breaking predicates: if too few are added, the SAT solver
spends more time generating isomorphic solutions, but if too many are added, the
formula becomes too big, and the solver spends more time exploring it. By de-
fault, Alloy Analyzer adds symmetry-breaking predicates that eliminate most iso-
morphic solutions and significantly decrease the solving time [96] compared to the
time without symmetry-breaking predicates. If Alloy Analyzer automatically added
symmetry-breaking predicates to eliminate all isomorphic solutions, the solving time
would significantly increase compared to the time with default symmetry-breaking
predicates. Inspired by Korat, we developed a methodology for manually adding
symmetry-breaking predicates to Alloy to eliminate all isomorphic solutions and still
reduce the solving time [57].

The methodology requires the user to define a total order on all objects that
can appear in the inputs and a traversal that puts the order on the objects that
are actually reachable from the root. The combination of these two orders induces

99



boolean breakSymmetries() {
// if tree is nonempty, root is the first node in linear order
root in OrdFirst( Node)
// define traversal and require nodes to be visited in order
all n: root.*(left + right) {

some n.left => n.left = OrdNext(n)
some n.right && no n.left => n.right = OrdNext(n)
some n.right && some n.left =>

n.right in OrdNext(n.left.*(left + right))
}

}

Figure 9-2: Manual symmetry-breaking predicate in Alloy. The user can write this
example predicate to eliminate isomorphic solutions for SearchTree invariant.

a lexicographic order, similar to that used in Korat to compare input structures
(Section 3.2.5). Conjoining the original predicate, which puts constraints on the input,
and the symmetry-breaking predicate produces a new predicate whose solutions are
exactly nonisomorphic inputs of the original predicate.

Figure 9-2 shows an example symmetry-breaking predicate taken from Khur-
shid [55]. Alloy provides a library of functions for imposing order. The function
OrdFirst takes a set, imposes a total order on the elements of the set, and returns
the smallest element from the set. The function OrdNext takes a set, which can be
a singleton, and returns the smallest element that is greater than all the elements in
the set. The predicate uses these functions to impose a pre-order [23] for the nodes
in the tree: all children of a node n are larger than n itself, and all children in the left
subtree are smaller than the children in the right subtree. Note that this ordering is
with respect to the node identities, not the values in the nodes; the repOk predicate
actually imposes an in-order [23] on the values.

Symmetry Breaking

We next compare symmetry breaking in Korat and TestEra. We first discuss the
advantages and disadvantages of automatic symmetry breaking in these two tools.
We then present an example that uses manual symmetry breaking for generating
directed acyclic graphs (DAGs).

Korat automatically breaks all symmetries if inputs are structures, i.e., rooted and
deterministically edge-labeled (object) graphs (Definition 2). However, Korat does
not automatically break all symmetries if inputs are general graphs, i.e., a node/object
can have several outgoing edges/fields with the same label. At the concrete level,
object graphs in Java do not have such nodes. But there can be such nodes if inputs
are not rooted (in which case, we can introduce a special root node and connect it
to every other node with edges that share the same label) or more broadly, when we
view sets at the abstract level (such that one objects can have fields that are sets of
objects). This is the case, for example, for (general) DAGs: every node has a set of
successor nodes. More importantly, such general graphs could represent inputs that

100



arise in practice in system testing, even though structures could suffice to represent
inputs that arise in unit testing.

In theory, TestEra can automatically break all symmetries for structures and even
for general graphs. For general graphs with n nodes, therefore, TestEra could auto-
matically generate up to n! less graphs than Korat, and thus TestEra would be more
practical than Korat when inputs are general graphs. But breaking all symmetries
can significantly slow down TestEra’s generation (and would correspond to generating
all inputs with Korat and then filtering out isomorphic ones). In practice, TestEra
automatically breaks some symmetries for structures and general graphs. Experimen-
tal results for several structures [55] show that the number of solutions that TestEra
with default symmetry breaking generates is from 1.5 times to 177 times larger than
the number of nonisomorphic solutions. The user of TestEra can manually provide
symmetry-breaking predicates to efficiently break all symmetries. When structures
have a tree backbone [55,80], the user can easily follow the above methodology. How-
ever, it is not clear how to break all symmetries for graphs with no tree backbone
such as DAGs.

Sullivan et al. [104] recently presented a case study that used bounded-exhaustive
testing to detect faults in a real application. Their study used TestEra to generate
test inputs from Alloy predicates. Without considering the details of the study, we
mention that one of the predicates can be viewed as specifying the invariant for
rooted DAGs, namely, that there are no directed cycles among the nodes reachable
from the root. An Alloy expert developed the predicate for this invariant and also a
symmetry-breaking predicate that eliminates most isomorphic DAGs. We developed
a corresponding Java predicate for this invariant and also manually added symmetry
breaking that eliminates some isomorphic DAGs. Our use of Korat revealed that the
symmetry-breaking predicate written in Alloy was incorrect: it eliminated not only
nonisomorphic inputs but also some valid inputs.

In summary, automatic symmetry breaking is preferable; manual symmetry break-
ing puts additional burden on the user and is error-prone. Korat can automatically
break all symmetries for structures, while TestEra can automatically break some
symmetries even for general graphs. It would be worthwhile to explore how the tech-
niques from these tools could enhance each other: how to automatically break (1)
some symmetries for general graphs in Korat and (2) all symmetries for structures in
TestEra (without slowing down the generation).

9.3 Efficiency of Generation and Checking

We next compare the performance of testing based on Korat and TestEra. More
precisely, we present the experimental results for performance of Korat and TestEra
in generating data structures and briefly discuss correctness checking. We compared
Korat and TestEra earlier [13], but both tools have evolved since then, and this
comparison includes the latest results.

Figure 9-3 summarizes the performance comparison. We took the timing results
for TestEra from Khurshid [55] and performed all Korat experiments on the same

101



benchmark size solutions Korat SAT
[sec] [sec]

7 429 5.69 6.46
SearchTree 8 1430 48.54 40.46

9 4862 377.83 548.69
10 16796 3480.63 —
6 13139 0.72 5.10

HeapArray 7 117562 2.03 62.62
8 1005075 15.30 1171.64
9 10391382 151.50 —
7 4140 0.81 4.76

LinkedList 8 21147 0.94 36.52
9 115975 2.39 304.97
10 678570 11.62 —
7 35 2.35 110.42

TreeMap 8 64 8.78 254.13
9 122 44.25 741.55
10 260 242.81 —
7 1716 2.33 31.52

HashSet 8 6435 8.85 151.42
9 24310 38.99 511.51
10 92378 177.47 —

Figure 9-3: Comparison of Korat and SAT. For each benchmark and size, we tabulate
the number of satisfying solutions and the times that Korat and SAT take to generate
these solutions.

Linux machine with a 1.8 GHz Pentium 4 processor using Sun’s Java 2 SDK 1.3.1
JVM. For each benchmark for which the TestEra results are available [55], we tabulate
for several sizes the number of data structures generated and the times that Korat
and SAT solver take to generate these structures. TestEra uses Alloy Analyzer, which
in turn uses off-the-shelf SAT solvers for generation. The results in Figure 9-3 are for
the mChaff SAT solver [82].

All times in Figure 9-3 are the total elapsed real times (in seconds) that each
experiment took from the beginning to the end. For Korat, we present times without
dedicated generators, i.e., Korat can generate data structures even faster with dedi-
cate generators. Korat times include the JVM start-up time, which is about 0.25sec.
For SAT, the times also include the start-up time, but it is smaller than for Korat
because the experiments with SAT use a precompiled binary for mChaff. However,
SAT solving times do not show the total time that Alloy Analyzer takes: before in-
voking the SAT solver, Alloy Analyzer needs to translate the Alloy predicate into a
propositional formula, which can take from 0.25sec up to over a minute, depending
on the scope.

102



In all cases but SearchTree for size eight, Korat outperforms SAT. Korat is not
only faster for smaller sizes, but it also completes generation for larger sizes; SAT did
not complete generation after an hour for the largest listed size for each benchmark.
Since Java and Alloy predicates encode the same solutions, there are two reasons
that could explain why Korat is faster than SAT. First, it may be that the current
(implementation of the) translation of Alloy into propositional formulas generates
unnecessarily large formulas. Second, it may be that SAT solvers are very inefficient
for solution enumeration, i.e., for generating all solutions of a given formula.

SAT solvers are not optimized for solution enumeration; actually only a few solvers
even support solution enumeration [57]. Instead, SAT solvers are optimized to find
one solution or show that none exists, because this is what suffices in most applications
of SAT solvers. We advocated the importance of efficient solution enumeration for
testing [57], and our results also showed that mChaff was the fastest for solution
enumeration, faster than the relsat SAT solver [7] and also faster than using Boolean
Decision Diagrams, in particular the CUDD package [99], instead of SAT solving.

Figure 9-3 presents the results for solving propositional formulas from Alloy pred-
icates with manually added symmetry-breaking predicates. Our previous work [13]
compared Korat with propositional formulas with automatically added symmetry-
breaking predicates. The results showed that SAT solving is then even more slower
than Korat. One reason is that SAT can generate a much greater number of solutions
than Korat, which takes a greater amount of time by itself. One way to reduce the
number of solutions is to automatically add more symmetry-breaking predicates, but
this would further increase the size of the propositional formulas, and it is not clear
how this trade-off would affect SAT solving.

We finally discuss the performance of checking code for bounded-exhaustive suites
with Korat and TestEra. Checking consists of three steps: (1) preparing the actual
test inputs, (2) running the code, and (3) checking the output. For step (1), Korat
and TestEra take about the same time: Korat generates an actual test input, i.e., a
Java object graph, directly from each valid candidate (Section 3.2.4), and TestEra
creates Java objects and set their fields according to each boolean solution [55]. For
step (2), Korat and TestEra take the same time for the same inputs. For step (3),
Korat checks the correctness directly evaluating Java assertions at run-time, whereas
TestEra translates Java object graphs into the Alloy domain to evaluate oracles writ-
ten in Alloy [55]. For semantically equivalent oracles, TestEra typically has a higher
overhead, due to the translation, and thus Korat has faster checking.

9.4 Summary

So far, there is no clear winner: we view Korat and TestEra as complementary
approaches. Our main argument for developing Korat, after we already developed
TestEra, was simple: for Java programmers who are not familiar with Alloy, it is
easier to write a repOk predicate in Java than in Alloy. However, to really compare
which language is easier to use in general, we would need to conduct an extensive
user study [79]. It is out of the scope of this dissertation, but we list some questions

103



that the study should answer:

• (Development) How much time does it take to write a predicate from scratch,
say from a given description in English? How much time does it take to get the
predicate right, as opposed to writing something that is almost right?

• (Maintenance) How much time does it take to modify a given predicate if the
description somewhat changes? How much time does it take for one person to
understand/modify a predicate written by another person?

• (Reuse) How much reuse is there from one problem to another and how good
libraries can we build?

• (Efficiency) How well can Korat/TestEra generate test inputs from predicates?
How easy is it for the user to optimize that?

Regarding the efficiency of test-input generation, our results show that well written
imperative predicates lead to faster generation of structures in Korat than in TestEra.
Before conducting these experiments, we expected that Korat would generate test
inputs slower than SAT and the whole TestEra. Our intuition was that Korat depends
on the executions of repOk to “learn” the invariant of the structures, whereas SAT
can “inspect” the entire formula, which represents the invariant, to decide how to
best search for a solution. The experimental results show that our assumption was
incorrect—Korat generates structures much faster than SAT. However, the generation
time for Korat is sensitive to the way that predicates are written (Section 11.1.2, and
it is unclear without a user study whether Korat or TestEra would be more efficient for
typical predicates. Moreover, it may be possible to further optimize the translation
of Alloy into propositional formulas and solution enumeration in SAT to outperform
Korat. Finally, when inputs are not structures (Section 9.2.1), TestEra automatically
break symmetries that Korat does not, and thus TestEra generates inputs faster.

104



Chapter 10

Related Work

This chapter reviews the work related to Korat and bounded-exhaustive testing.
Section 10.1 discusses other projects on automating generation of test inputs. Sec-
tion 10.2 compares bounded-exhaustive testing with static program analysis, in par-
ticular shape analysis that considers data-structure benchmarks similar to those used
in Korat experiments. Section 10.3 compares bounded-exhaustive testing with soft-
ware model checking.

10.1 Automated Test-Input Generation

There is a large body of research on automating generation of test inputs. The
proposed approaches generate inputs from the code under test or from other artifacts
such as specifications or models of the system under test and its inputs. An early
paper by Goodenough and Gerhart [37] emphasizes the importance of specification-
based testing, in particular in detecting errors of omission. Many projects propose
techniques and tools that automate test-input generation from specifications, such
as Z specifications [30, 47, 103], UML statecharts [84], or ADL specifications [16,
94]. Unlike Korat, these tools do not consider linked data structures with complex
invariants.

Researchers have also been exploring the use of constraint solving for test-input
generation since the 1970s [29,39,49,50,61,63,68]. However, those approaches focused
on constraints on primitive data, typically integers and arrays of integers. One reason
for this is that for some types of constraints on integers, for example linear arithmetic,
there are decision procedures that can check the satisfiability of constraints without
requiring a bound on the size. We instead consider constraints on more complex,
structural data, but require the user to provide a bound on the size.

To the best of our knowledge, TestEra was the first tool for bounded-exhaustive
generation of structurally complex test inputs from (declarative) constraints. Chap-
ter 9 compares Korat and TestEra [55, 73] in detail. TestEra provided the initial
motivation for the work on Korat. In turn, TestEra was inspired by the work on the
Alloy language [52] and the bounded-exhaustive, SAT-based checking done by Alloy
Analyzer [51].

105



There are many tools that generate test inputs from different test descriptions,
for example from generators, grammars, or models (such as finite state machines).
QuickCheck [20] is a tool for testing Haskell programs. It requires the tester to write
Haskell functions that can produce valid test inputs, similar to the examples presented
in Chapter 5. Executions of such functions with different random seeds produce
different test inputs. Korat differs in that it requires only an imperative predicate
that characterizes valid test inputs and then uses a general-purpose search to generate
all valid inputs. DGL [75] and lava [97] generate test inputs from context grammars.
They were used mostly for random testing, although they could in principle also
exhaustively generate test inputs, but that would boil down to writing special-purpose
generators.

The AsmL Test Tool (AsmLT) [33] contains a solver for imperative predicates
inspired by Korat. AsmLT generates test inputs from AsmL specifications [42],
and the solver solves predicates written in the AsmL language. The first version
of AsmLT [40] used only finite-state machines to generate test inputs as sequences
of (method) calls. The solver additionally enables AsmLT to generate data struc-
tures. The use of AsmLT at Microsoft resulted in some of the largest case studies on
bounded-exhaustive testing so far.

A popular approach to generate test inputs as sequences of method calls is to use
(smart) random generation. Tools for Java such as Jtest [89] (a commercial tool) or
JCrasher [25] and Eclat [88] (two research prototypes) implement this approach. The
advantage of random generation is that, given the same amount of time, it produces
(some) larger inputs than bounded-exhaustive generation; however, the disadvantage
is that these inputs are not exhaustive. Our experiments show that random testing
with the same number of inputs from a larger scope is often worse than bounded-
exhaustive testing with all inputs from a smaller scope (Section 8.3.4), but more
evaluation is necessary to compare random testing and bounded-exhaustive testing.
Another advantage of random generation is that it does not require imperative predi-
cates such as repOk methods that check data-structure invariants. However, random
generation of test inputs as sequences requires that methods be composed into se-
quences. Such methods are available for abstract data types, but not, for example,
for XML documents that arise in XPath queries.

Cheon and Leavens [17] propose JMLunit, a tool that automatically translates
JML specifications into test oracles for JUnit [9], a popular framework for unit testing
of Java classes. JUnit automates test execution and error reporting, but requires
programmers to provide test inputs and test oracles. JMLunit can also generate test
inputs; it requires the programmer to provide possibilities for each method argument
and uses the entire Cartesian product to generate test inputs, which cannot handle
very large input spaces. Additionally, JMLunit does not generate complex inputs, but
requires the programmer to create and provide them. Our tool based on Korat and
JMLunit further automates and optimizes generation of test inputs, thus automating
the entire testing process.

JMLAutoTest [117] is a tool that builds on Korat and JMLunit. JMLAutoTest
additionally allows the user to provide methods for comparison of equivalent inputs,
such as equals , instead of using built-in isomorphism. It is straightforward to gen-

106



erate only nonequivalent inputs if we first generate all inputs and then do a pairwise
comparison after the generation. It is an open problem how to avoid equivalent inputs
during the generation.

AETG [21] is a popular system for generating test inputs that cover all pair-wise
(or n-wise) combinations of test parameters that correspond to object fields in Korat.
Using pair-wise testing is applicable when parameters are relatively independent.
However, fields of objects in object graphs are dependent. We can view Korat as
an efficient approach to generate all inputs when n is the same as the number of
parameters. Additionally, Korat takes into account isomorphism and generates only
one input from each isomorphism partition.

10.2 Static Analysis

Several projects have developed static analyses for verifying program properties. We
consider some of the projects for checking properties of complex data structures. The
Extended Static Checker (ESC) [32] uses a theorem prover to verify partial correct-
ness of Java classes annotated with JML specifications. ESC can verify absence of
errors such as null pointer dereferences, array bounds violations, and division by zero.
However, tools like ESC do not verify complex properties of linked data structures.

The Three-Valued-Logic Analyzer (TVLA) [93] was the first system to imple-
ment a shape analysis, which verifies that programs with destructive updates preserve
structural invariants of linked data structures. TVLA was initially used to analyze
programs that manipulate singly and doubly linked lists, circular lists, as well as some
sorting programs. Recent work [118] extends TVLA to handle more properties of the
content of data structures and uses symbolic computation to automatically derive
transfer functions, thus reducing the amount of work that the user needs to do.

The Pointer Assertion Logic Engine (PALE) [80] can verify a large class of data
structures that have a spanning tree backbone, with possibly additional pointers that
do not add extra information. These data structures include doubly linked lists,
trees with parent pointers, and threaded trees. However, PALE focuses only on these
structural properties and cannot verify properties that involve the elements of the
structures.

Kuncak et al. proposed Role Analysis [64], a compositional interprocedural anal-
ysis that verifies similar properties as TVLA and PALE. The same authors recently
developed Hob [65], an analysis framework that combines different static-analysis and
theorem-proving techniques [119] to show complex data structure consistency prop-
erties. Hob was applied to programs with linked data structures such as search trees,
singly and doubly-linked lists with and without an iterator, and array-based data
structures such as priority queues. Among the example programs that Hob analyzed
are a working Minesweeper game and the Water simulation benchmark.

Static analysis of program properties is a promising approach for ensuring program
correctness in the long run. However, the current static-analysis techniques can only
verify limited program properties. For example, none of the above techniques can
currently verify correctness of implementations of red-black trees. Recent work on

107



quantitative shape analysis [91] developed a specialized static analysis for verification
of AVL trees. It is likely that a specialized static analysis can be also developed
for red-black trees, but such an approach would require an involved development of
a static analysis for each new property. Bounded-exhaustive testing, on the other
hand, is very general and can verify any decidable program property, but for inputs
bounded by a given size.

Jalloy [53, 108] analyzes methods that manipulate linked data structures by first
building an Alloy model of Java code and then checking it in a bounded-exhaustive
manner with Alloy Analyzer [51]. This approach provides static analysis, but unsound
with respect to both the size of the input and the length of computation. Our
approach based on Korat checks the entire computation and handles larger inputs
and more complex data structures than those in [53, 108]. Further, Korat does not
require Alloy, but JML specifications, and Korat does not require specifications for
all (helper) methods. The advantage of Jalloy is that it can better handle some
scenarios where the number of valid inputs is huge, and bounded-exhaustive testing
is not applicable. Consider testing whether an identity method really implements
identity, i.e., returns the input unchanged, for all inputs within some bound. Using
Korat, we would need to generate all those inputs, whereas Jalloy only needs to check
the formula x == x , which it can do efficiently, without enumerating all x .

10.3 Software Model Checking

There has been a lot of recent interest in applying model checking to software.
VeriSoft [36] was the first system for model checking of programs written in an actual
implementation language, specifically in C. While VeriSoft performs a systematic ex-
ploration of the state space without storing the visited states (stateless), CMC [83]
performs a statefull exploration of C programs. Java PathFinder [109] and Bogor [90]
are two systems that perform a statefull exploration of Java programs. Other projects,
such as Bandera [22] and JCAT [27], translate Java programs into the input language
of existing model checkers such as SPIN [46] and SMV [77]. They handle a significant
portion of Java, including dynamic allocation, object references, exceptions, inher-
itance, and threads. They also provide automated support for reducing program’s
state space through program slicing and data abstraction.

However, most of the work on applying model checking to software has focused on
checking event sequences and not linked data structures. Where data structures have
been considered, the purpose has been to reduce the state space to be explored and
not to check the data structures themselves. Korat and bounded-exhaustive testing,
on the other hand, focus on checking code that manipulates linked data structures.

Recently, Khurshid et al. [58, 110] combined the Java PathFinder model checker
with a Korat-like search for object references and symbolic execution for primitive
values. The resulting system can be used for bounded-exhaustive testing of data
structures. The initial results are promising, but the system still requires manual
instrumentation for symbolic execution and has been evaluated on only two bench-
marks, so it is unclear how the results generalize.

108



Symbolic execution is also the foundation of model checkers that automatically
abstract programs into smaller models that can be effectively checked. Two such
systems are SLAM [6] and BLAST [45], which abstract C programs into boolean
programs. Similar systems typically do not generate test inputs, but automatically
verify simple properties of programs. However, SLAM [4] and BLAST [11] were
recently adapted for test-input generation. Neither of them deals with complex data
structures, which are the focus of this dissertation.

109



110



Chapter 11

Conclusions

This chapter presents the concluding remarks. This dissertation has described the
problem of solving imperative predicates that characterize structurally complex test
inputs, presented a technique for solving imperative predicates and a tool called Korat
that implements the technique, and discussed bounded-exhaustive testing of data
structures. Section 11.1 presents a discussion of the overall approach. Section 11.2
gives some avenues for future work. Section 11.3 provides a summary.

11.1 Discussion

We discuss our proposed approach for solving imperative predicates and bounded-
exhaustive testing, and we point out some limitations and problems with the pro-
posed approach. We first discuss the use of imperative predicates as a language for
expressing properties of structurally complex data. Although using the actual pro-
gramming language has several benefits, it may be that other languages are even
better for expressing properties. We then discuss the performance of Korat for gener-
ation of valid structures. Although Korat is effective for generation of structures for
properties of our benchmark data structures, Korat is not effective for generation of
structures for all properties. Also, it may be possible that there is a technique that
can solve imperative predicates much faster than the techniques that Korat uses. We
finally discuss bounded-exhaustive testing. Although it is practical to test our set of
benchmarks with bounded-exhaustive test suites, this approach is not practical for
all types of software.

11.1.1 Language for Predicates

We believe that building techniques and tools on concepts familiar to the intended
users, such as implementation languages to programmers, is a key for immediate
adoption and potential impact. For this reason, we developed a technique for solving
imperative predicates written in the actual programming languages. Our anecdotal
experience shows that several users found it easier to write imperative predicates for
Korat than declarative predicates for TestEra (Chapter 9). Moreover, the use of the

111



AsmL Test Tool (AsmLT) at Microsoft also points out the importance of building on
a familiar language. AsmLT first included a solver for predicates written in the AsmL
language [40, 42], but the need to learn a new language was an obstacle for a wider
adoption of the tool. As a result, AsmLT now includes a solver for C# predicates.
(As of this writing, the new tool is available only internally.)

However, this does not mean that the existing and widely-used languages are
necessarily the best for expressing properties of test inputs. It may be the case that
other languages make it easier to write the properties or enable faster generation. For
example, Alloy allows the succinct expression of structural properties and AsmL offers
several features not directly available in C#, including parallelism, nondeterministic
choice, and backtracking. The users may be better off in a long run by learning a new
language, despite a potentially steep learning curve. We believe that it is worthwhile
to further investigate the language design, and we present some potential directions
in the next section.

11.1.2 Efficiency of Generation

The results in Chapter 8 show that it is practical to use Korat to generate structures
for our set of data-structure benchmarks. It is important to consider if and how
the generation could be even faster and also for what kind of properties Korat can
effectively generate structures. We argue here that the generation can be faster: since
Korat executes the predicate for some invalid candidate structures, it is possible to
improve the performance simply by reducing the number of invalid candidates. The
results with dedicated generators already support this. We discuss in the next section
how we could make the generation faster.

Performance of Korat in solving a given imperative predicate depends on (1) the
property that the predicate checks and (2) the way that the predicate checks the
property. Performance of Korat thus depends not only on the predicate’s denota-
tional meaning—the set of valid structures for the property—but also on the actual
operational behavior of the predicate. Korat prunes the search for valid structures
based on the order in which the predicate accesses field of the candidate structures.
For certain properties, we can (re)write the predicate such that Korat’s pruning is
effective, but this is not possible for all properties. We next present guidelines for
writing effective predicates and then discuss properties for which this is not possible.

Guidelines for Writing Effective Imperative Predicates

We have found that Korat works well in practice for naturally written imperative
predicates that efficiently check the properties: if a predicate is more efficient in
checking, Korat is usually more efficient in generating valid structures for the pred-
icate. Many practical predicates check a property that is a conjunction of several
(sub)properties. We present five guidelines for (re)writing predicates and the order
in which they check properties to enable Korat to more efficiently prune the search.

Immediate Termination: The basic guideline is that a predicate returns true
or false as soon as it finds the input structure to be valid or invalid, respectively,

112



without reading any additional fields. A predicate typically has to read the whole
structure to determine that it is valid. This is not always the case; for example,
recall from Section 6.1.2 the structures that represent inputs to the remove method
and the removePre predicate for these structures. This predicate should not read
the SearchTree remove.info field, because it can determine whether a structure is
valid without reading this field. A predicate can often determine that a structure is
invalid based only on a part of the structure. In such situations, the predicate should
immediately return false .

Read to Check: A predicate should read a field for the first time only if it
is checking a property that depends on that field. The previous guideline requires
that a predicate not read any field after the predicate determines the result, and this
guideline requires that a predicate not read a field before it needs the field’s value
to determine the result. For example, repOk for SearchTree could access the size

field before any other field. (It cannot, for example, access any left or right field
before accessing root , because nodes are only reachable from the root .) However,
repOk should not read this field before comparing its value with the number of the
nodes in the tree.

Fewer Dependencies First: A predicate should check the properties that de-
pend on fewer fields of the structure before checking the properties that depend on
more fields. For example, the isTree property in our example repOk for SearchTree

(Section 2.1) depends on the fields root , left , and right ; and the isOrdered prop-
erty depends on these fields and additionally on info . Thus, repOk checks isTree

before isOrdered . For the specific predicates from Appendix A, it is necessary to
check isTree before isOrdered , because isTree is a precondition for isOrdered 1.
A related guideline is that a predicate should check first the properties that other
properties conceptually depend on, in this example, isTree before isOrdered , even
if there are no explicit preconditions.

Local Before Global: A predicate should check local properties, which depend
on a smaller part of the structure, before checking global properties, which depend
on a larger part of the structure. For example, each red-black tree has to satisfy two
properties for the node colors: (1) a red node should have black children and (2) the
number of black nodes should be the same on every path from the root to a leaf.
A predicate that checks red-black properties should check the property (1) before
checking the property (2). Note that both of these properties depend on the same
fields (node colors and links between nodes).

Merging Properties: A predicate can merge several properties to check them
together. For example, repOk for SearchTree can check at once that the graph is
a tree (treeness) and that the values are ordered (orderness). This would reduce the
number of candidates that Korat explores, because it can prune the search as soon
as the predicates finds either treeness or orderness to be false . Although merging
properties can make generation faster, we recommend a careful and sparing use of this

1In general, a predicate that depends on fewer fields does not need to be a precondition for a
predicate that depends on more fields; we could have written isOrdered to keep track of the visited
nodes (to avoid cycles) and not depend on isTree .

113



guideline because it makes the predicates harder to reuse and change! For example, we
cannot use a predicate that checks treeness and orderness together in another context
where we need only treeness and have no node values. (In this specific example,
repOk would not even need to check treeness if it maintains a set of visited values;
checking that the values are ordered and not repeated would imply treeness.)

Ineffective Properties

We next discuss properties for which there is no imperative predicate that Korat
can efficiently solve. In this discussion, we consider the number of invalid candidate
structures as a measure of Korat efficiency. We do not consider the time that Korat
takes; despite the large number of invalid candidate structures, Korat may still be
able to generate in reasonable time all nonisomorphic valid structures, within small
scopes, for these properties. We also do not consider the number of valid structures:
it may be very large, but it depends on the property, and Korat cannot control it;
for example, for predicate true , all structures are valid. We focus on the efficiency
of Korat’s pruning.

Korat is ineffective for every global property that (1) depends on a large number
of fields, usually the whole structure; and (2) is not expressible as a conjunction of
local properties that depend on a smaller number of fields. Consider, for example,
the property that requires the sum of array elements to be equal to some constant.
This property depends on the whole array and cannot be checked locally, so Korat’s
pruning is ineffective for this property. In contrast, consider the property that requires
all array elements to be different. This property also depends on the whole array, but
we can check it with several more local properties: the second element is different
from the first, the third element is different from the second and first, and so on.

Korat is ineffective for many numerical properties that depend on the whole struc-
ture. On the other hand, Korat is effective for the usual structural properties; al-
though they globally depend on the whole structure (e.g., that a graph is a tree), we
can check them with several more local properties (e.g., there are no local cycles). We
hypothesize that structural properties are amenable to local checking due to the re-
cursive nature of data structures: reasoning about data structures typically proceeds
by structural induction where all substructures satisfy the same invariants.

11.1.3 Bounded-Exhaustive Testing

Bounded-exhaustive testing checks the code for all nonisomorphic inputs within a
given scope. Our experiments show that this form of testing is very effective for
data-structure benchmarks; it is feasible to obtain test suites that have high state-
ment, branch, and mutation coverage. The use of bounded-exhaustive testing also
discovered subtle faults in several real applications, including a naming architecture
for dynamic networks [73], a constraint solver for first-order logic formulas [73], a
fault-tree analyzer [104], web-service protocols, and XML processing tools [102].

It is clear, however, that bounded-exhaustive testing cannot detect all faults. For
example, it will miss all software problems, be they correctness or performance, that

114



are detected only with large inputs. It is also not applicable for finding concurrency
problems such as race conditions and deadlocks. It is less applicable when test inputs
are simple, say just an integer for a procedure that finds a square root, or when
test inputs have to satisfy simple properties that almost all inputs from the input
space satisfy. Bounded-exhaustive testing is the most effective for test inputs that
are structurally complex and have to satisfy strong properties. This is the case for
applications that manipulate complex, linked data structures; our solver Korat indeed
focuses on generating such complex data.

A primary challenge in using bounded-exhaustive testing is the huge number of
test inputs. While Korat may effectively generate these inputs, it may be prohibitively
expensive to test the software for all of them. Actually, the scalability of bounded-
exhaustive testing is limited by the complexity of data that the code operates on (and
thus the potential number of inputs) rather than by the complexity and size of the
code under test. For example, Sullivan et al. [104] used bounded-exhaustive testing
for testing an application that has over 30,000 lines of C++ code [104], and testers
at Microsoft used bounded-exhaustive testing for testing an application that has over
10,000 lines of C# code [102]. While it was feasible to test such code for millions of
inputs, it may be infeasible to do so for billions.

Another challenge in bounded-exhaustive testing, as in many other techniques that
automate test-input generation, is when to stop the generation. The best rule we can
give is: stop when the testing becomes too slow, i,e., generate test suites increasing
the scope until there are too many inputs. The user may additionally measure a
certain coverage that the test inputs achieve. Our evaluation uses structural code
coverage and mutation coverage. While measuring structural code coverage may be
practical for any application, mutation testing may not be practical for applications
with a large number of mutants, because of the large number of test inputs.

11.2 Future Work

Our test-generation tool requires the user to provide an imperative predicate. In
Java, an imperative predicate is a method that takes an input structure and returns
a boolean. Additionally, the user provides a finitization that bounds the number of
objects in the structure and the values for the fields of those objects. Korat then
generates all nonisomorphic structures, within the bounds, for which the predicate
returns true. Two structures are isomorphic if they differ only in the identity of
objects (Section 3.2.5). The structures that Korat generates form a basis for bounded-
exhaustive testing. We next present several ideas for extending the work on Korat
by changing the language for predicates, considering different types of generation,
improving the performance of generation, and applying Korat in other areas.

Language Design: A key issue in generating test inputs from constraints such as
imperative or declarative predicates is to find the right trade-off between the ease of
writing the constraints and the efficiency of generation. Korat in its basic form already
provides a good balance. The library of dedicated generators (Section 5.3) further
allows a combination of predicates, which are often easier to write, and generators,

115



which are often more efficient. However, to extend the library, the user needs to
understand the internals of Korat. It would be beneficial to explore ways that make
it easier for the user to provide specialized generators. We can facilitate this by adding
backtracking to the languages that do not have it, such as Java or C#. It would be
also interesting to explore how languages with different paradigms, such as Java and
Alloy, can combine into one language for writing constraints on test inputs.

Nonequivalent Structures: Korat has a very efficient, built-in support for gen-
erating only nonisomorphic structures. To reduce the number of generated structures,
however, the user may want to obtain only nonequivalent structures, with some equiv-
alence weaker than isomorphism (Section 1.1.3). For instance, recall our SearchTree

example: the user could consider two SearchTree objects equivalent if they have the
same elements (regardless of the structure of the tree) or if they have the same struc-
ture (regardless of the elements in the tree). This arises in integration testing: once
we have tested the SearchTree class, we want to use it at the abstract level, without
considering the concrete data representation that the implementation uses. In such
context, it is redundant to test with equivalent structure as test inputs [116].

There are basically two approaches to describe equivalent structures [116]: (1)
provide an abstraction function that maps each structure into an element of some
other domain, for example trees into sets, in which case two structures are equiva-
lent iff they map to the same element; or (2) provide a binary predicate that takes
two structures and returns true or false, for example, equals methods in Java. A
straightforward approach to generate only nonequivalent structures is to generate all
(nonisomorphic) structures and then filter out the equivalent ones. However, the
question is if we can eliminate nonequivalent structures more efficiently during the
generation, akin to how Korat eliminates nonisomorphic structures. One technique to
consider is to have specialized nonequivalence generators for a certain type of struc-
tures and then only allow the abstraction functions that map into those structures.

Nonexhaustive Generation: An obvious approach to reduce the number of
structures is to consider nonexhaustive generation. Instead of generating all struc-
tures, we could, for example, randomly generate some of them. We can easily adapt
Korat for nonexhaustive search: instead of generating candidate structures follow-
ing the usual strategy, we could generate them with another strategy. For example,
we could randomly choose some candidate, then apply Korat search until it finds
a valid structure following the candidate, and then again randomly choose another
candidate. Korat is also amenable for applications of simulated annealing or genetic
algorithms [92].

In particular, we think that neighborhood exploration would be an interesting
globally nonexhaustive, but locally exhaustive, strategy for generating structures.
Neighborhood exploration generates all structures similar (according to an appropri-
ate metric) to some given structure, for example, trees that have at most one node
more or less than the given tree. This strategy could be especially useful in the fol-
lowing testing scenario: (1) run a deployed program and record the actual inputs to
some unit under test; (2) automatically generate all inputs similar to the recorded
inputs and test the program for them. This would enable focusing on input patterns
that are important in practice.

116



Faster Solving: Given a predicate, Korat generates valid structures by searching
through the predicate’s structure space; Korat prunes the search by monitoring the
executions of the predicate on candidate structures and keeping track of the accessed
fields. This technique works well in practice, but in theory monitoring only field ac-
cesses is imprecise. We could instead keep track of more refined dynamic dependencies
to detect which fields the return value actually depends on: even though an execution
reads some field, the return value may have no (data or control) dependency on that
field. This approach would make executions of candidates slower than in Korat, due
to additional book keeping, but it could reduce the number of candidates. Without
an empirical evaluation on actual imperative predicates, it is hard to compare this
approach with Korat.

Instead of finding only which fields the return value depends on, we could use
symbolic execution to find how the return value depends on the values of those fields.
We could then use constraint solving to find the values for the fields that make the
return value true. Khurshid et al. [58,110] have started exploring this approach with
a symbolic execution that uses symbolic expressions for primitive values and concrete
pointers for object references. The initial results on two benchmarks are promising,
but it is unclear hot they generalize.

Predicate Synthesis: Currently Korat requires the user to provide an imperative
predicate that characterizes test inputs. We could consider automatic synthesis of
predicates from the code under test and/or from the specific test inputs that the
user provides. Pacheco and Ernst have recently developed Eclat [88], a tool that
automatically generates additional test inputs from a given set of test inputs and
the code under test. Eclat builds on Daikon [31], a tool that dynamically detects
likely program invariants, to generalize likely predicates from the given tests. Eclat
uses random generation, and we could instead use Korat for bounded-exhaustive
generation.

Novel Applications: There may be several other applications for solvers for
imperative predicates besides bounded-exhaustive testing. We discuss a potential
application in enumerative combinatorics. Researchers in this area often write pro-
grams that count objects of interest by generating them for different sizes. Researchers
then analyze the obtained sequences. Counting objects by generation corresponds to
bounded-exhaustive generation. Optimizing counting programs can take more effort
than the benefit gained from obtaining a longer sequence [74]. To make it easier
to generate combinatorial objects, we could (1) design a domain-specific language for
specifying combinatorial properties (the language should build on mathematical nota-
tion familiar to combinatorics researchers) and (2) develop a Korat-like tool that gen-
erates objects with given properties by combining highly-optimized, user-contributed
specialized generators and a general Korat-like search.

11.3 Summary

Despite the recent advances in verification and validation technology, testing remains
the most widely used method for increasing software reliability. Moreover, the im-

117



portance of testing is increasing as the consequences of software errors become more
severe. Software nowadays controls numerous embedded and infrastructural systems
where errors can lead to great financial losses or even loss of life. Software errors can
also lead to security and privacy vulnerabilities, and we are witnessing a decreased
tolerance for errors even from the end users of noncritical applications.

At the same time, software systems are increasing in complexity. Software is
becoming more connected; seemingly benign errors in one part of the system can
easily propagate to the other parts and cause serious problems. As a result, testing is
gaining importance and software developers are spending more time testing. Recent
software development methodologies, such as Extreme Programming [8]—also known
as test-driven development or test-first programming, require developers to develop
tests even before developing the code.

We focus on software that manipulates structurally complex data. Such software is
increasingly pervasive in modern systems and poses important challenges for testing.
In particular, manually developing test suites for such code is very tedious. Auto-
mated testing can significantly help programmers to develop and maintain reliable
software.

This dissertation presented an approach for testing based on automatic generation
of structurally complex test inputs from imperative predicates—pieces of code that
check the properties of the desired test inputs. Our main contribution is a technique
for solving imperative predicates and an implementation of this technique in a tool
called Korat. Given a predicate and a bound on its inputs, Korat automatically
generates all inputs that satisfy the properties. Testing the code with all such inputs
corresponds to bounded-exhaustive testing.

This dissertation presented results that show that bounded-exhaustive testing is
effective for unit testing of data-structure implementations. It is feasible to use Ko-
rat to generate all test inputs within small bounds. The key to efficient generation
are the optimizations that Korat applies: it prunes a vast majority of invalid test
inputs and eliminates isomorphic test inputs. The Korat technique for solving im-
perative predicates has also been adopted in industry, where its use found previously
unknown errors in important real-world applications that were already well tested.
These results suggest that bounded-exhaustive testing is a practical way for testing
applications that manipulate complex data.

118



Appendix A

Full Example Code and
Experimental Results

This appendix presents the full code for the SearchTree example used throughout
the dissertation and the full experimental results for method testing described in
Section 8.3. Figures A-1 and A-2 show the full code for the example remove and
repOk methods introduced in Section 2.1. Figure A-3 presents detailed experimental
results for bounded-exhaustive testing of our data structure benchmarks.

boolean remove( int info) {
Node parent = null ;
Node current = root;
while (current != null ) {

if (info < current.info) {
parent = current;
current = current.left;

} else if (info > current.info) {
parent = current;
current = current.right;

} else {
break ;

}
}
if (current == null ) return false ;
Node change = removeNode(current);
if (parent == null ) {

root = change;
} else if (parent.left == current) {

parent.left = change;
} else {

parent.right = change;
}
return true ;

}

Node removeNode( Node current) {
size--;
Node left = current.left;
Node right = current.right;
if (left == null ) return right;
if (right == null ) return left;
if (left.right == null ) {

current.info = left.info;
current.left = left.left;
return current;

}
Node temp = left;
while (temp.right.right != null ) {

temp = temp.right;
}
current.info = temp.right.info;
temp.right = temp.right.left;
return current;

}

Figure A-1: Full code for the example remove method.

119



boolean repOk() {
// checks that empty tree has size zero
if (root == null ) return size == 0;
// checks that the object graph is a tree
if (!isTree()) return false ;
// checks that size is consistent
if (numNodes(root) != size) return false ;
// checks that data is ordered
if (!isOrdered(root)) return false ;
return true ;

}

/** Checks that the input object graph
is actually a tree.
Uses a work-list based
breadth-first traversal. */

boolean isTree() {
Set visited = new HashSet();
visited.add(root);
LinkedList workList = new LinkedList();
workList.add(root);
while (!workList.isEmpty()) {

Node current =
( Node)workList.removeFirst();

if (current.left != null ) {
// checks that the graph
// has no sharing
if (!visited.add(current.left))

return false ;
workList.add(current.left);

}
if (current.right != null ) {

// checks that the graph
// has no sharing
if (!visited.add(current.right))

return false ;
workList.add(current.right);

}
}
return true ;

}

/** Returns the number of the nodes
in the tree. */

//@ requires isTree();
int numNodes( Node n) {

if (n == null ) return 0;
return 1 + numNodes(n.left) +

numNodes(n.right);
}

/** Checks that the subtree
rooted in n is ordered. */

//@ requires isTree();
boolean isOrdered( Node n) {

return isOrdered(n, Integer .MIN_VALUE,
Integer .MAX_VALUE);

}

/** Checks that all values
in the subtree rooted in n
are between the bounds
min and max, inclusive. */

boolean isOrdered( Node n,
int min, int max) {

if ((n.info < min) ||
(n.info > max))
return false ;

if (n.left != null ) {
if (n.info == min)

return false ;
if (!isOrdered(n.left, min,

n.info - 1))
return false ;

}
if (n.right != null ) {

if (n.info == max)
return false ;

if (!isOrdered(n.right,
n.info + 1, max))

return false ;
}
return true ;

}

Figure A-2: Full code for the example repOk method.

120



generation testing
gen. ded. spec. coverage # time code coverage m.c.

benchmark scope [sec] [sec] st. [%] br. [%] inputs [sec] st. [%] br. [%] [%]
1 0.06 0.01 57.89 60.00 4 0.06 38.46 40.00 26.10
2 0.05 0.01 94.74 96.67 20 0.06 79.49 87.50 69.85
3 0.07 0.10 94.74 96.67 90 0.07 87.18 92.50 79.77

SearchTree 4 0.17 0.10 94.74 96.67 408 0.14 97.44 97.50 92.64
5 0.38 0.25 94.74 96.67 1880 0.24 100.00 100.00 98.52
6 1.39 0.52 94.74 96.67 8772 0.46 100.00 100.00 99.26
7 9.03 2.19 94.74 96.67 41300 1.25 100.00 100.00 99.26
1 0.01 0.01 61.54 55.00 4 0.04 23.08 25.00 0.41
2 0.01 0.01 100.00 95.00 30 0.09 69.23 68.75 30.45

DisjSet 3 0.04 0.04 100.00 100.00 456 0.09 100.00 100.00 88.47
4 0.29 0.31 100.00 100.00 18280 0.43 100.00 100.00 95.06
5 10.91 9.87 100.00 100.00 1246380 19.93 100.00 100.00 95.06
1 0.01 0.01 80.00 85.71 16 0.04 79.31 66.67 39.05
2 0.01 0.01 90.00 92.86 75 0.05 79.31 66.67 43.79
3 0.02 0.02 90.00 92.86 396 0.09 93.10 83.33 69.70

HeapArray 4 0.08 0.09 90.00 92.86 2240 0.17 96.55 88.89 86.13
5 0.22 0.21 90.00 92.86 15352 0.38 96.55 94.44 89.78
6 0.90 0.71 90.00 92.86 118251 1.88 100.00 100.00 96.35
7 7.09 6.21 90.00 92.86 1175620 17.58 100.00 100.00 96.71
1 0.02 0.01 62.79 62.00 12 0.07 52.87 57.58 31.16
2 0.03 0.02 93.02 94.00 54 0.08 87.36 84.85 62.67
3 0.12 0.09 93.02 94.00 336 0.14 98.85 96.97 89.72

BinHeap 4 0.40 0.30 97.67 98.00 1800 0.24 100.00 98.48 93.15
5 0.81 0.65 97.67 98.00 16848 0.69 100.00 100.00 94.86
6 3.30 2.35 97.67 98.00 159642 4.61 100.00 100.00 95.89
7 35.60 28.06 97.67 98.00 2577984 75.96 100.00 100.00 96.91
1 0.01 0.07 55.55 51.72 12 0.07 35.48 43.55 15.82
2 0.03 0.03 91.11 93.10 108 0.09 75.27 80.64 44.10

FibHeap 3 0.28 0.24 97.78 98.28 1632 0.24 95.70 98.39 75.08
4 1.22 0.90 97.78 98.28 34650 1.08 95.70 98.39 81.48
5 14.14 12.94 97.78 98.28 941058 23.37 100.00 100.00 88.88
1 0.01 0.01 100.00 100.00 15 0.08 64.15 68.75 58.19
2 0.01 0.01 100.00 100.00 50 0.09 90.57 84.38 98.77
3 0.03 0.03 100.00 100.00 169 0.12 90.57 84.38 99.59

LinkedList 4 0.07 0.07 100.00 100.00 627 0.16 90.57 84.38 99.59
5 0.18 0.18 100.00 100.00 2584 0.26 90.57 84.38 99.59
6 0.33 0.31 100.00 100.00 11741 0.48 90.57 84.38 99.59
7 0.74 0.71 100.00 100.00 58175 1.54 90.57 84.38 99.59
1 0.03 0.04 71.43 62.50 7 0.11 62.50 50.00 33.33
2 0.04 0.07 100.00 100.00 36 0.11 80.00 74.14 52.81
3 0.07 0.07 100.00 100.00 188 0.15 92.50 89.66 90.04

SortedList 4 0.22 0.20 100.00 100.00 1066 0.28 92.50 89.66 93.93
5 0.53 0.48 100.00 100.00 7427 0.50 92.50 89.66 96.53
6 1.94 1.77 100.00 100.00 73263 2.57 92.50 89.66 97.40
7 22.68 21.13 100.00 100.00 1047608 37.91 92.50 89.66 97.40
1 0.02 0.02 57.14 63.33 6 0.06 14.41 14.89 5.46
2 0.03 0.03 100.00 100.00 28 0.06 45.95 50.00 28.66
3 0.07 0.04 100.00 100.00 96 0.09 63.96 73.40 61.09

TreeMap 4 0.18 0.15 100.00 100.00 328 0.15 89.19 85.11 78.15
5 0.38 0.31 100.00 100.00 1150 0.24 100.00 91.49 87.37
6 0.94 0.61 100.00 100.00 3924 0.38 100.00 91.49 89.76
7 3.28 1.75 100.00 100.00 12754 0.73 100.00 91.49 89.76
1 0.01 0.01 57.89 69.23 4 0.04 51.92 50.00 29.91
2 0.01 0.01 89.47 92.31 34 0.05 96.15 95.00 77.45
3 0.06 0.05 89.47 92.31 212 0.09 100.00 100.00 90.57

HashSet 4 0.23 0.22 89.47 92.31 1170 0.19 100.00 100.00 90.98
5 0.36 0.34 89.47 92.31 3638 0.27 100.00 100.00 91.39
6 0.91 0.71 89.47 92.31 12932 0.62 100.00 100.00 91.80
7 3.38 2.88 89.47 92.31 54844 1.55 100.00 100.00 92.21
1 0.01 0.01 53.33 56.25 2 0.07 55.29 51.92 40.00
2 0.05 0.03 90.00 87.50 86 0.14 75.29 78.85 60.00

AVTree 3 0.21 0.17 96.67 96.88 1702 0.78 88.23 84.61 75.12
4 3.16 1.86 96.67 96.88 27734 8.36 94.12 92.31 91.21
5 87.13 43.41 96.67 96.88 417878 134.51 94.12 92.31 93.65

Figure A-3: Korat’s performance for test generation and checking. We tabulate
the time for test generation (with regular and dedicated generators), specification
coverage (statement and branch), the time for correctness checking, code coverage
(statement and branch), and mutation coverage (the percentage of killed mutants).
All times are elapsed real times in seconds from the start of Korat to its completion.

121



122



Bibliography

[1] William Adjie-Winoto, Elliot Schwartz, Hari Balakrishnan, and Jeremy Lilley.
The design and implementation of an intentional naming system. In Proc.
17th ACM Symposium on Operating Systems Principles (SOSP), Kiawah Island,
December 1999.

[2] Hiralal Agrawal, Richard A. DeMillo, R. Hathaway, William Hsu, Wynne Hsu,
Edward W. Krauser, Rhonda J. Martin, Aditya P. Mathur, and Eugene H. Spaf-
ford. Design of mutant operators for the C programming language. Technical
Report SERC-TR-41-P, Purdue University, West Lafayette, IN, 1989.

[3] Fadi A. Aloul, Arathi Ramani, Igor L. Markov, and Karem A. Sakallah. Solving
difficult SAT instances in the presence of symmetry. In Proc. 39th Conference
on Design Automation, pages 731–736, 2002.

[4] Thomas Ball. A theory of predicate-complete test coverage and generation.
Technical Report MSR-TR-2004-28, Microsoft Research, Redmond, WA, April
2004.

[5] Thomas Ball, Daniel Hoffman, Frank Ruskey, Richard Webber, and Lee J.
White. State generation and automated class testing. Software Testing, Veri-
fication & Reliability, 10(3):149–170, 2000.

[6] Thomas Ball and Sriram K. Rajamani. Automatically validating temporal
safety properties of interfaces. In Proc. 8th International SPIN Workshop on
Model Checking of Software, pages 103–122, 2001.

[7] Roberto J. Bayardo Jr. and Robert C. Schrag. Using CSP look-back techniques
to solve real world SAT instances. In Proc. National Conference on Artificial
Intelligence, pages 203–208, 1997.

[8] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-
Wesley, 2000.

[9] Kent Beck and Erich Gamma. Test infected: Programmers love writing tests.
Java Report, 3(7), July 1998.

[10] Boris Beizer. Software Testing Techniques. International Thomson Computer
Press, 1990.

123



[11] Dirk Beyer, Adam J. Chlipala, Thomas A. Henzinger, Ranjit Jhala, and Rupak
Majumdar. Generating tests from counterexamples. In Proc. 26th International
Conference on Software Engineering, pages 326–335, 2004.

[12] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and
Yunshun Zhu. Bounded Model Checking, volume 58 of Advances in Computers.
Elsevier, 2003.

[13] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. Korat: Auto-
mated testing based on Java predicates. In Proc. International Symposium on
Software Testing and Analysis (ISSTA), pages 123–133, July 2002.

[14] Lilian Burdy, Yoonsik Cheon, David Cok, Michael D. Ernst, Joe Kiniry, Gary T.
Leavens, K. Rustan M. Leino, and Erik Poll. An overview of JML tools and
applications. Software Tools for Technology Transfer, 2005. (to appear).

[15] Mattias Bybro. A mutation testing tool for java programs. Master’s thesis,
Stockholm University, Stockholm, Sweden, 2003.

[16] Juei Chang and Debra J. Richardson. Structural specification-based testing:
Automated support and experimental evaluation. In Proc. 7th ACM SIGSOFT
Symposium on the Foundations of Software Engineering (FSE), pages 285–302,
September 1999.

[17] Yoonsik Cheon and Gary T. Leavens. A simple and practical approach to unit
testing: The JML and JUnit way. In Proc. European Conference on Object-
Oriented Programming (ECOOP), June 2002.

[18] Philippe Chevalley and Pascale Thévenod-Fosse. A mutation analysis tool for
Java programs. Journal on Software Tools for Technology Transfer (STTT),
pages 1–14, December 2002.

[19] Koen Claessen and John Hughes. Quickcheck: A lightweight tool for random
testing of Haskell programs. In Proc. Fifth ACM SIGPLAN International Con-
ference on Functional Programming, pages 268–279, 2000.

[20] Koen Claessen and John Hughes. Testing monadic code with QuickCheck. In
Proc. ACM SIGPLAN workshop on Haskell, pages 65–77, 2002.

[21] David M. Cohen, Siddhartha R. Dalal, Michael L. Fredman, and Gardner C.
Patton. The AETG system: An approach to testing based on combinatorial
design. IEEE Transactions on Software Engineering, 23(7):437–444, 1997.

[22] James Corbett, Matthew Dwyer, John Hatcliff, Corina Pasareanu, Robby,
Shawn Laubach, and Hongjun Zheng. Bandera: Extracting finite-state models
from Java source code. In Proc. 22nd International Conference on Software
Engineering (ICSE), June 2000.

124



[23] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction
to Algorithms. The MIT Press, Cambridge, MA, 1990.

[24] James Crawford, Matthew Ginsberg, Eugene Luks, and Amitabha Roy.
Symmetry-breaking predicates for search problems. In Proc. Fifth International
Conference on Principles of Knowledge Representation and Reasoning, 1996.

[25] Christoph Csallner and Yannis Smaragdakis. JCrasher: An automatic robust-
ness tester for Java. Software Practice and Experience, 34:1025–1050, 2004.

[26] Marcio E. Delamaro and Jose C. Maldonado. Proteum—A tool for the assess-
ment of test adequacy for C programs. In Conference on Performability in
Computing Systems (PCS 96), New Brunswick, NJ, July 1996.

[27] Claudio Demartini, Radu Iosif, and Riccardo Sisto. A deadlock detection tool
for concurrent Java programs. Software Practice and Experience, July 1999.

[28] Richard A. DeMillo, Richard J. Lipton, and Frederick G. Sayward. Hints on
test data selection: Help for the practicing programmer. Computer, 4(11):34–41,
April 1978.

[29] Richard A. DeMillo and A. Jefferson Offutt. Constraint-based automatic test
data generation. IEEE Transactions on Software Engineering, 17(9), 1991.

[30] Michael R. Donat. Automating formal specification based testing. In Proc.
Conference on Theory and Practice of Software Development, volume 1214,
pages 833–847, Lille, France, 1997.

[31] Michael D. Ernst. Dynamically Discovering Likely Program Invariants. PhD
thesis, University of Washington Department of Computer Science and Engi-
neering, Seattle, Washington, August 2000.

[32] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson,
James B. Saxe, and Raymie Stata. Extended static checking for Java. In
Proc. ACM SIGPLAN 2002 Conference on Programming language design and
implementation, pages 234–245, 2002.

[33] Foundations of Software Engineering, Microsoft Research. The AsmL test
generator tool. http://research.microsoft.com/fse/asml/doc/
AsmLTester.html .

[34] Phyllis Frankl, Stewart Weiss, and Cang Hu. All uses versus mutation testing:
An experimental comparison of effectiveness. Journal of Systems and Software,
38(3):235–253, 1997.

[35] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements od Reusable Object-Oriented Software. Addison-Wesley Pro-
fessional Computing Series. Addison-Wesley Publishing Company, New York,
NY, 1995.

125



[36] Patrice Godefroid. Model checking for programming languages using VeriSoft.
In Proc. 24th Annual ACM Symposium on the Principles of Programming Lan-
guages (POPL), pages 174–186, Paris, France, January 1997.

[37] John B. Goodenough and Susan L. Gerhart. Toward a theory of test data
selection. IEEE Transactions on Software Engineering, June 1975.

[38] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language
Specification. Sun Microsystems, Inc., 2001.

[39] Arnaud Gotlieb, Bernard Botella, and Michel Rueher. Automatic test data gen-
eration using constraint solving techniques. In Proc. International Symposium
on Software Testing and Analysis (ISSTA), Clearwater Beach, FL, 1998.

[40] Wolfgang Grieskamp, Yuri Gurevich, Wolfram Schulte, and Margus Veanes.
Generating finite state machines from abstract state machines. In Proc. Inter-
national Symposium on Software Testing and Analysis (ISSTA), pages 112–122,
July 2002.

[41] Ralph E. Griswold and Madge T. Griswold. The Icon programming language.
Peer-to-Peer Communications, San Jose, CA, third edition, 1996.

[42] Yuri Gurevich. Evolving algebras 1993: Lipari guide. In Specification and
Validation Methods, pages 9–36. Oxford University Press, 1995.

[43] John Guttag and James Horning. The algebraic specification of abstract data
types. Acta Informatica, 10:27–52, 1978.

[44] Richard G. Hamlet. Testing programs with the aid of a compiler. IEEE Trans-
actions on Software Engineering, 3(4), July 1977.

[45] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Gregoire Sutre.
Software verification with BLAST. In Proc. 10th SPIN Workshop on Software
Model Checking, pages 235–239, 2003.

[46] Gerald Holzmann. The model checker SPIN. IEEE Transactions on Software
Engineering, 23(5), May 1997.

[47] Hans-Martin Horcher. Improving software tests using Z specifications. In Proc.
9th International Conference of Z Users, The Z Formal Specification Notation,
1995.

[48] W.E. Howden. Reliability of the path analysis testing strategy. IEEE Transac-
tions on Software Engineering, SE-2(3):208–215, 1976.

[49] William E. Howden. Symbolic testing and the dissect symbolic evaluation sys-
tem. IEEE Transactions on Software Engineering, 3(4):266–278, 1977.

[50] J. C. Huang. An approach to program testing. ACM Computing Surveys, 7(3),
1975.

126



[51] Daniel Jackson, Ian Schechter, and Ilya Shlyakhter. ALCOA: The Alloy con-
straint analyzer. In Proc. 22nd International Conference on Software Engineer-
ing (ICSE), Limerick, Ireland, June 2000.

[52] Daniel Jackson, Ilya Shlyakhter, and Manu Sridharan. A micromodularity
mechanism. In Proc. 9th ACM SIGSOFT Symposium on the Foundations of
Software Engineering (FSE), Vienna, Austria, September 2001.

[53] Daniel Jackson and Mandana Vaziri. Finding bugs with a constraint solver.
In Proc. International Symposium on Software Testing and Analysis (ISSTA),
Portland, OR, August 2000.

[54] Bart P. F. Jacobs, Joseph R. Kinirya, and Martijn E. Warnier. Java program
verification challenges. Technical Report NIII-R0310, Computing Science Insti-
tute, University of Nijmegen, 2003.

[55] Sarfraz Khurshid. Generating Structurally Complex Tests from Declarative Con-
straints. PhD thesis, Dept. of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, December 2003.

[56] Sarfraz Khurshid and Darko Marinov. Checking Java implementation of a nam-
ing architecture using TestEra. In Scott D. Stoller and Willem Visser, editors,
Electronic Notes in Theoretical Computer Science (ENTCS), volume 55. Else-
vier Science Publishers, 2001.

[57] Sarfraz Khurshid, Darko Marinov, Ilya Shlyakhter, and Daniel Jackson. A case
for efficient solution enumeration. In Proc. Sixth International Conference on
Theory and Applications of Satisfiability Testing (SAT 2003), Santa Margherita
Ligure, Italy, May 2003.

[58] Sarfraz Khurshid, Corina Pasareanu, and Willem Visser. Generalized symbolic
execution for model checking and testing. In Proc. 9th International Conference
on Tools and Algorithms for Construction and Analysis of Systems (TACAS),
Warsaw, Poland, April 2003.

[59] Sun-Woo Kim, John Clark, and John McDermid. The rigorous generation of
Java mutation operators using HAZOP. In 12th International Conference on
Software & Systems Engineering and their Applications (ICSSEA’99), Decem-
ber 1999.

[60] Sun-Woo Kim, John Clark, and John McDermid. Class mutation: Mutation
testing for object oriented programs. In FMES 2000, October 2000.

[61] James C. King. Symbolic execution and program testing. Communications of
the ACM, 19(7):385–394, 1976.

[62] K. N. King and A. Jefferson Offutt. A Fortran language system for mutation-
based software testing. Software Practice and Experience, 21(7):685–718, 1991.

127



[63] Bogdan Korel. Automated test data generation for programs with procedures.
In Proc. International Symposium on Software Testing and Analysis (ISSTA),
San Diego, CA, 1996.

[64] Viktor Kuncak, Patrick Lam, and Martin Rinard. Role analysis. In Proc.
29th Annual ACM Symposium on the Principles of Programming Languages
(POPL), Portland, OR, January 2002.

[65] Patrick Lam, Viktor Kuncak, and Martin Rinard. Generalized typestate check-
ing for data structure consistency. In Proc. 6th International Conference on
Verification, Model Checking and Abstract Interpretation, January 2005. (to
appear).

[66] Butler W. Lampson. Principles of computer systems. http://web.mit.
edu/6.826/www/notes .

[67] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of
JML: A behavioral interface specification language for Java. Technical Report
TR 98-06i, Department of Computer Science, Iowa State University, June 1998.

[68] Bruno Legeard, Fabien Peureux, and Mark Utting. Automated boundary test-
ing from Z and B. In Proc. Formal Methods Europe (FME), Copenhagen,
Denmark, July 2002.

[69] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Ad-
dison Wesley, second edition, 1999.

[70] Barbara Liskov and John Guttag. Program Development in Java: Abstraction,
Specification, and Object-Oriented Design. Addison-Wesley, 2000.

[71] Yu-Seung Ma, Yong-Rae Kwon, and Jeff Offutt. Inter-class mutation opera-
tors for Java. In Proc. 13th International Symposium on Software Reliability
Engineering, pages 352–363, 2002.

[72] Darko Marinov, Alexandr Andoni, Dumitru Daniliuc, Sarfraz Khurshid, and
Martin Rinard. An evaluation of exhaustive testing for data structures. Tech-
nical Report MIT-LCS-TR-921, MIT CSAIL, Cambridge, MA, September 2003.

[73] Darko Marinov and Sarfraz Khurshid. TestEra: A novel framework for auto-
mated testing of Java programs. In Proc. 16th IEEE International Conference
on Automated Software Engineering (ASE), San Diego, CA, November 2001.

[74] Darko Marinov and Radoš Radoičić. Counting 1324-avoiding permutations.
Electronic Journal of Combinatorics, 9(2), May 2003.

[75] Peter M. Maurer. Generating test data with enhanced context-free grammars.
IEEE Software, 7(4):50–55, July 1990.

128



[76] William M. McKeeman. Differential testing for software. Digital Technical
Journal, 10(1):100–107, 1998.

[77] K. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[78] Laurent Michel and Pascal Van Hentenryck. A constraint-based architecture
for local search. In Proc. ACM SIGPLAN 2002 Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), pages 83–100,
2002.

[79] Francesmary Modugno, Albert T. Corbett, and Brad A. Myers. Graphical rep-
resentation of programs in a demonstrational visual shell—An empirical evalua-
tion. ACM Transactions on Computer-Human Interaction, 4(3):276–308, 1997.

[80] Anders Moeller and Michael I. Schwartzbach. The pointer assertion logic en-
gine. In Proc. SIGPLAN Conference on Programming Languages Design and
Implementation, Snowbird, UT, June 2001.

[81] Ivan Moore. Jester—A JUnit test tester. In 2nd International Conference on
eXtreme Programming and Flexible Processes in Software Engineering, May
2001.

[82] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and
Sharad Malik. Chaff: Engineering an efficient SAT solver. In Proceedings of the
39th Design Automation Conference (DAC), June 2001.

[83] Madanlal Musuvathi, David Park, Andy Chou, Dawson R. Engler, and David L.
Dill. CMC: A Pragmatic Approach to Model Checking Real Code. In Proc.
Fifth Symposium on Operating Systems Design and Implementation, December
2002.

[84] Jeff Offutt and Aynur Abdurazik. Generating tests from UML specifications.
In Proc. Second International Conference on the Unified Modeling Language,
October 1999.

[85] Jeff Offutt, Yu-Seung Ma, and Yong-Rae Kwon. An experimental mutation
system for Java. ACM SIGSOFT Software Engineering Notes, 29(5):1–4, 2004.

[86] Jeff Offutt and Roland Untch. Mutation 2000: Uniting the orthogonal. In Muta-
tion 2000: Mutation Testing in the Twentieth and the Twenty First Centuries,
San Jose, CA, October 2000.

[87] Jeff Offutt, Jeff Voas, and Jeff Payne. Mutation operators for Ada. Technical
Report ISSE-TR-96-09, George Mason University, Fairfax, VA, October 1996.

[88] Carlos Pacheco and Michael D. Ernst. Eclat: Automatic generation and clas-
sification of test inputs. Technical Report MIT-LCS-TR-968, MIT CSAIL,
Cambridge, MA, October 2004.

129



[89] Parasoft. Jtest version 5.1. Online manual, July 2004. http://www.
parasoft.com/ .

[90] Robby, Matthew B. Dwyer, and John Hatcliff. Bogor: An extensible and highly-
modular software model checking framework. In Proc. ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering, pages 267–276, September
2003.

[91] Radu Rugina. Quantitative shape analysis. In Proc. 11th International Static
Analysis Symposium (SAS’04), August 2004.

[92] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice-Hall, Englewood Cliffs, NJ, 1995.

[93] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Solving shape-analysis
problems in languages with destructive updating. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), January 1998.

[94] Sriram Sankar and Roger Hayes. Specifying and testing software components
using ADL. Technical Report SMLI TR-94-23, Sun Microsystems Laboratories,
Inc., Mountain View, CA, April 1994.

[95] Jacob T. Schwartz, Robert B. Dewar, Edmond Schonberg, and Ed Dubinsky.
Programming with Sets: An Introduction to SETL. Springer-Verlag, New York,
NY, 1986.

[96] Ilya Shlyakhter. Generating effective symmetry-breaking predicates for search
problems. In Proc. Workshop on Theory and Applications of Satisfiability Test-
ing, June 2001.

[97] Emin Gün Sirer and Brian N. Bershad. Using production grammars in software
testing. In Proc. 2nd conference on Domain-specific languages, pages 1–13,
1999.

[98] N. J. A. Sloane, Simon Plouffe, J. M. Borwein, and Robert M. Corless. The
encyclopedia of integer sequences. SIAM Review, 38(2), 1996. http://www.
research.att.com/˜njas/sequences/Seis.html .

[99] Fabio Somenzi. CUDD: CU decision diagram package. http://vlsi.
colorado.edu/˜fabio/CUDD/ .

[100] J. Mike Spivey. The Z Notation: A Reference Manual. Prentice Hall, second
edition, 1992.

[101] Richard P. Stanley. Enumerative combinatorics. Vol. 1. Cambridge University
Press, New York, NY, 1997.

130



[102] Keith Stobie. Advanced modeling, model based test generation, and Abstract
state machine Language (AsmL). Seattle Area Software Quality Assurance
Group, http://www.sasqag.org/pastmeetings/asml.ppt , January
2003.

[103] Phil Stocks and David Carrington. A framework for specification-based testing.
IEEE Transactions on Software Engineering, 22(11):777–793, 1996.

[104] Kevin Sullivan, Jinlin Yang, David Coppit, Sarfraz Khurshid, and Daniel Jack-
son. Software assurance by bounded exhaustive testing. In Proc. International
Symposium on Software Testing and Analysis (ISSTA), pages 133–142, 2004.

[105] Sun Microsystems. Java 2 Platform, Standard Edition, v1.3.1 API Specification.
http://java.sun.com/j2se/1.3/docs/api/ .

[106] Roland Untch, A. Jefferson Offutt, and Mary Jean Harrold. Mutation testing
using mutant schemata. In Proc. International Symposium on Software Testing
and Analysis (ISSTA), pages 139–148, June 1993.

[107] Mandana Vaziri. Finding Bugs Using a Constraint Solver. PhD thesis, Com-
puter Science and Artificial Intelligence Laboratory, Massachusetts Institute of
Technology, 2003.

[108] Mandana Vaziri and Daniel Jackson. Checking properties of heap-manipulating
procedures with a constraint solver. In Proc. 9th International Conference on
Tools and Algorithms for Construction and Analysis of Systems (TACAS), War-
saw, Poland, April 2003.

[109] Willem Visser, Klaus Havelund, Guillaume Brat, and SeungJoon Park. Model
checking programs. In Proc. 15th IEEE International Conference on Automated
Software Engineering (ASE), Grenoble, France, 2000.

[110] Willem Visser, Corina S. Pasareanu, and Sarfraz Khurshid. Test input gen-
eration with Java PathFinder. In Proc. 2004 ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages 97–107, 2004.

[111] Patrick J. Walsh. A Measure of Test Case Completeness. PhD thesis, State
University of New York at Binghamton, 1985.

[112] Elaine J. Weyuker and Thomas J. Ostrand. Theories of program testing and
the application of revealing subdomains. IEEE Transactions on Software En-
gineering, 6(3):236–246, May 1980.

[113] W. Eric Wong. On Mutation and Data Flow. PhD thesis, Purdue University,
West Lafayette, IN, 1993.

[114] World Wide Web Consortium (W3C). Web services activity. http://www.
w3.org/2002/ws .

131



[115] World Wide Web Consortium (W3C). XML path language (XPath). http:
//www.w3.org/TR/xpath .

[116] Tao Xie, Darko Marinov, and David Notkin. Rostra: A framework for detecting
redundant object-oriented unit tests. In Proc. 19th IEEE International Con-
ference on Automated Software Engineering, pages 196–205, September 2004.

[117] Guoqing Xu and Zongyuan Yang. JMLAutoTest: A novel automated testing
framework based on JML and JUnit. In Proc. 3rd International Workshop
on Formal Approaches to Testing of Software (FATES), Montreal, Canada,
October 2003.

[118] Greta Yorsh, Thomas W. Reps, and Shmuel Sagiv. Symbolically computing
most-precise abstract operations for shape analysis. In 10th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems,
pages 530–545, 2004.

[119] Karen Zee, Patrick Lam, Viktor Kuncak, and Martin Rinard. Combining the-
orem proving with static analysis for data structure consistency. In Interna-
tional Workshop on Software Verification and Validation (SVV 2004), Seattle,
November 2004.

[120] Hong Zhu, Patrick A. V. Hall, and John H. R. May. Software unit test coverage
and adequacy. ACM Comput. Surv., 29(4):366–427, 1997.

132


