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Abstract. Advances in SAT solver technology have enabled many automated
analysis and reasoning tools to reduce their input problem to a SAT problem, and
then to use an efficient SAT solver to solve the underlying analysis or reasoning
problem. The solving time for SAT solvers can vary substantially for semantically
identical SAT problems depending on how the problem is expressed. This prop-
erty motivates the development of new optimization techniques whose goal is to
produce more efficiently solvable SAT problems, thereby improving the overall
performance of the analysis or reasoning tool.
This paper presents our experience using several mechanical techniques that en-
able the Alloy Analyzer to generate optimized SAT formulas from first-order
logic formulas. These techniques are inspired by similar techniques from the field
of optimizing compilers, suggesting the potential presence of underlying connec-
tions between optimization problems from two very different domains. Our ex-
perimental results show that our techniques can deliver substantial performance
improvement results—in some cases, they reduce the solving time by an order of
magnitude.

1 Introduction
In recent years, dramatic advances in the capabilities of SAT solvers have made them
an attractive target for model checkers and other automated reasoning systems [3, 13,
14, 24]. The standard approach is to automatically generate a SAT problem, invoke the
SAT solver to produce a solution, then transform the SAT solution back into a solution
for the initial problem.

The efficiency of this approach depends largely on the efficiency of the SAT solver.
However, the SAT solving times can vary by significant factors for semantically identi-
cal SAT problems depending on the precise formulation of the SAT problem [7]. This
suggests that appropriately optimizing the generated SAT problems may significantly
improve the overall performance of systems that use SAT solvers.

This paper presents our experience with several techniques that are designed to opti-
mize the SAT problems generated by the Alloy Analyzer [10,12]—a tool that analyzes
declarative specifications by translating them into boolean formulas. Our techniques
transform a given Alloy specification into an equivalent Alloy specification that induces
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faster analysis. These transformations are mechanical and therefore suitable for inclu-
sion in an automatic SAT problem generator. Our experimental results show that our
techniques can substantially reduce the solving time for a set of benchmark problems
from the standard Alloy distribution and previous case studies. The speed-ups range
from a low of 1.04X to a high of 14.52X (it is 14.52 times faster to translate and solve
the optimized version than the unoptimized version).

Conceptually, our set of transformations draws heavily on techniques from the field
of optimizing compilers [2]. We have developed analogs of standard optimizations such
as loop unrolling, loop fission and fusion, loop-invariant code motion, common subex-
pression elimination, constant propagation, and algebraic simplifications. Like their
standard compiler optimization counterparts, the goal of these transformations is to re-
duce the amount of work that the execution engine (the microprocessor or SAT solver)
must perform.

We investigated the effect of applying a range of transformations on a suite of bench-
mark problems. The initial results showed that the most effective transformations were
those that focus on formulas that were universally quantified and expressions that use
transitive closure. We have implemented these transformations in our prototype tool.
The tool allows the user to select a sequence of optimizations which it then applies
fully automatically on the given model.

The ostensible purpose of our transformations is to provide an Alloy solver with
improved performance. To this end, our transformations focus on specific Alloy con-
structs (such as transitive closure and quantified formulas) that are responsible for the
vast majority of the SAT solving time. (Note the recurring analogy with traditional
compiler optimizations, which often focus on loops because programs tend to spend
much of their time in loops.) Despite our focus on Alloy constructs, we expect many of
the general patterns we exploit in Alloy problems to show up in other domains, which
makes our techniques ripe for incorporation into a range of systems that automatically
generate SAT problems.

One intriguing aspect of our system is that SAT solvers are a substantially more
complex compilation target than the microprocessors that are the traditional compilation
targets. In particular, microprocessors often have an available performance model that
the compiler writer can use to guide the optimization decisions. The performance of
SAT solvers, in contrast, is much less well understood. There are two heuristics in the
field: reducing the number of variables tends to reduce the solving time (presumably
because it reduces the search space that the SAT solver must explore) and increasing the
number of constraints also tends to reduce the solving time (again because it reduces
the search space). These are just heuristics so do not hold always [7]. Interestingly
enough, one of our performance-improving transformations (constant subexpression
elimination) also increases the number of variables. This fact illustrates the need to
explore a variety of transformations, not just transformations that are consistent with
the current understanding of the performance of SAT solvers.

It is worth emphasizing that the optimizations we propose translate Alloy models
into equivalent Alloy models that enable faster analysis—we do not present how to op-
timize SAT solvers in general. Our approach is inspired by compiler optimizations and
can be extended to various other SAT-based techniques, such as bounded model check-
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ing [4, 24]. In fact, our approach is not limited to SAT. Any technique that translates a
more complicated logic to a simpler logic for reasoning purposes has the potential to
benefit from our compiler analogy. As the use of decision procedures becomes more
and more popular, we hope this can get more attention from the research community.

This paper makes the following contributions:

– Optimization Concept: It introduces the concept of mechanically transforming
problems to improve the solving time of the resulting automatically generated SAT
problems.

– Transformations: It presents a precisely defined set of transformations that opti-
mize the SAT problems that the Alloy Analyzer generates.

– Implementation: It presents our implementation, which allows the user to select a
sequence of transformations that are then applied fully automatically.

– Experimental Results:It presents experimental results that characterize the effec-
tiveness of our optimized SAT problem generator. The results show that our tech-
niques can substantially decrease the solving time for the generated SAT problem.

2 Example

This section illustrates some performance gains that compiler optimizations can provide
for SAT-based constraint solving. We present a simple example that models in Alloy a
singly-linked acyclic list. We formalize three different constraints that specify acyclic-
ity. We then use the Alloy Analyzer to check that these formulations are equivalent. We
re-write the model by applying our optimizations and illustrate how they enable faster
analysis. We describe essentials of Alloy as we introduce them. Section 3.1 describes
Alloy in more detail.

The following Alloy code declares a list:

sig List {
header: option Entry }

sig Entry {
next: option Entry }

Each list has aheader entry, and each entry has anext entry. The keywordsig

introducessignatures, i.e., basic sets/types.Fields in signature declarations introduce
relations. The fieldheader , for example, introduces the relationheader: List ->

Entry . Further, the keywordoption constrains this relation to be a partial function.
The following three Alloyfunctionsuse various Alloy constructs to state the acyclic-

ity constraint:

fun Acyclic1(l: List) {
all e: l.header.*next | e !in e.ˆnext }

fun Acyclic2(l: List) {
no l.header || (some e: l.header.*next | no e.next) }

fun Acyclic3(l: List) {
no e: l.header.*next | e -> e in ˆnext }

The dot operator(‘ . ’) represents relational join. Alloy allows intuitivepath expres-
sionsthat use transitive closure (‘ˆ ’) and reflexive transitive closure (‘* ’). For example,
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l.header.*next denotes the set of all entries reachable along thenext field from the
header entry of the listl .

Acyclic1 uses universal quantification (‘all ’), negation (‘! ’), and set membership
(‘ in ’) to state that it is not possible to start a traversal from any list entry and follow one
or more fields to get back to the same entry.Acyclic2 uses existential quantification
(‘some’) and states that the list is either empty or contains an entry that is reachable
from the header and has no next entry.Acyclic3 uses cross product (‘-> ’) to state that
the transitive closure ofnext does not contain any self-loops.

To check equivalence of these definitions, we use the followingassertion:
assert Equiv {

all l: List {
Acyclic1(l) => Acyclic2(l)
Acyclic2(l) => Acyclic3(l)
Acyclic3(l) => Acyclic1(l) } }

check Equiv for 6

Thecheck command instructs the Alloy Analyzer to try to generate a counterexample
to the given assertion, i.e., a listl that does not satisfy the (implicit conjunction of)
implication formulas. The analyzer performs the analysis within the givenscope—a
bound on the universe of discourse. In this example, a scope of 6 states that the number
of elements in each basic set (known also as “atoms in the signature”) should be at most
6, i.e., at most 6Entry andObject elements.

The analyzer takes 199.91 seconds to checkEquiv and reports that no counterex-
ample exists for this assertion. We next illustrate how compiler optimizations could
improve the analyzer’s performance.

Our first optimization is inspired by common subexpression elimination (CSE) [2].
Note that the transitive closure operator (‘ˆ ’) appears in the formula body ofAcyclic1

and also ofAcyclic2 . A naive translation of our Alloy assertion to a boolean formula
would translate each of these expressions independently. However, they represent the
same value and we can apply CSE.

The CSE transformationaddsa new state component in our model: it introduces a
new field,nextPlus , in the declaration ofEntry and constrains it to be the transitive
closure ofnext .

sig Entry {
next: option Entry,
nextPlus: set Entry }

fact { nextPlus = ˆnext }

Eachfact specifies a constraint that all solutions to the model must satisfy. We next
replace each occurrence ofˆnext in the functions withnextPlus . The analyzer now
takes 138.03 seconds to checkEquiv and (as before) reports no counterexample. It is
worth pointing out that by applying an optimization that adds a new state component
and is therefore seemingly counter-intuitive (since it increases the size of the underlying
state space), we have achieved a reduction in the solving time.

The above optimization factors out the transitive closure operation. We can, in fact,
represent the closure directly by its definition; for our example, in the scope of 6, we
canunroll the closure with respect to this scope and replace the above fact with:

fact { nextPlus = next + next.next + next.next.next + next.next.next.next +
next.next.next.next.next + next.next.next.next.next.next }
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where ‘+’ denotes set union in Alloy.
For a given scope, we can also unroll some quantified formulas, besides unrolling

the definition of the transitive closure. In particular, we can unroll the formulas, such as
all e: l.header.*next | e !in e.ˆnext , where the quantified variable ranges
over a path expression. (Section 4.1 presents the details of unrolling.) We next apply
the loop unrolling transformation, which automatically unrolls all three definitions of
acyclicity with respect to scope 6, and check the assertion. The analyzer now takes
only 15.84 seconds to checkEquiv and (as before) reports no counterexample. It is
worth pointing out that as a result of this series of optimizations, the Alloy-to-CNF
compilation time has gone up from 0.75 seconds to 1.13 seconds; however, in the same
time, the SAT-solving time has gone down from 199.16 seconds to just 14.71 seconds.

In summary, even this simple example shows a good potential for optimization: by
applying common-subexpression elimination and loop unrolling, we obtain a reduction
of more than 92% in the total time to check the formula, i.e., a 12X speedup!

3 Background

This section gives a brief overview of Alloy and SAT technology; following the com-
piler analogy, Alloy is our input language, and SAT is the target language. We also
discuss some of the optimizations that already exist for generating boolean formulas
that are likely to induce efficient solving.

3.1 Alloy

Alloy [10] is a first-order declarative language based on sets and relations. The Alloy
Analyzer [12] is a tool for automatically analyzing models written in Alloy. The ana-
lyzer translates Alloy models into boolean formulas and uses off-the-shelf SAT tech-
nology to solve the formulas. Following the compiler analogy, the analyzer consists of
the following: a front-end that parses Alloy models into an intermediate representation
(IR), a set of optimizations on this IR, and a back-end that translates IR into boolean
formulas.

Each Alloy model consists of data (i.e., several sets and relations), several facts (i.e.,
formulas that put constraints on the data) and an assertion (i.e., a formula to check on
the data). These formulas can be structured using functions (i.e., parameterized formu-
las that can be invoked elsewhere), which the analyzer inlines into the facts and the
assertion. Additionally, each analysis specifies a scope (i.e., a bound on the size of ba-
sic sets within which to check the formulas). The analyzer translates a conjunction of
all facts and the negation of the assertion into a boolean formula such that the boolean
formula has a solution iff there are some sets and relations that satisfy all the fact and
the negation of the assertion (thus providing a counterexample for the assertion).

Alloy is a relational language; every expression in Alloy denotes a relation (or a set
in the case of a relation of arity one). Even the scalars are represented as singleton sets.
More details of the Alloy language are available elsewhere [10].
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3.2 SAT

Given a propositional formula over a set of boolean variables, the boolean Satisfiability
Problem (SAT) asks whether there exists a variable assignment that makes the formula
evaluate to true. SAT is a classical NP-Complete problem; therefore, it is unlikely that
there is a polynomial algorithm for solving the SAT problem. However, due to its prac-
tical importance in areas such as theorem proving, formal verification, and AI planning,
much research effort has been put into developing efficient algorithms for solving SAT
problems. Although in the worst case these algorithms require exponential time, in prac-
tice current state-of-the-art SAT solvers can often determine the satisfiability of boolean
formulas with tens of thousands of variables in a reasonable amount of time [27].

Modern SAT solvers determine the satisfiability of a formula by systematically
searching the entire boolean space of the formula. They typically require the input
formula to be in the Conjunctive Normal Form (CNF), i.e., a conjunction of clauses,
where each clause is a disjunction of literals. A literal is either a positive or negative oc-
currence of a boolean variable. Some recent SAT solvers can operate without the CNF
requirement [8], but the Alloy Analyzer translates all formulas into CNF.

Applications that use SAT as the reasoning engine often look like compilers. They
take the domain-specific description of the problem as input and translate it into a
boolean formula or a sequence of formulas. The formulas are then given to a SAT
solver to determine their satisfiability, and the results are fed back to the application to
extract meaningful information for the user to understand. For some applications such
as circuit verification [17], translation to SAT is straightforward. On the other hand, for
applications such as checking the Alloy models, the translation is not trivial [12]. In
these applications, different translations of a high-level description may greatly influ-
ence the time it takes to solve the output boolean formula.

3.3 Existing Optimizations

There are many heuristics and optimizations developed for making SAT solving effi-
cient in real-world applications. For example, there are several SAT pre-processors [16,
23] that can take a SAT instance and transform it into another form that the SAT solver
can easier solve. These transformations happen at the propositional formula level, i.e.
after the actual translation has been done. These low-level formulas make it harder or
impossible to detect optimizations that can be applied at the higher-level, before the
translation. Some researchers tried to influence the output with different translations.
For example, Velev [25, 26] tried different encodings of circuit structures for efficient
microprocessor verification. Seshia et al. [20] evaluated different encodings for decid-
ing separation logic and proposed a hybrid approach.

Translation has also been studied in the context of Alloy, and the analyzer includes
several optimizing translations. Symmetry breaking [21] conjoins new boolean con-
strains with the input formula to direct the SAT solver’s search on non-isomorphic in-
stances. Efficient encoding of (partial) functions [24] replaces the general translation
for Alloy relations with a specialized, tighter translation that targets partial functions.
Type-based reduction of the number of variables [6] introduces subtyping in Alloy and
assigns individual scopes to the subtypes, which partition their supertype, to reduce the
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overall search space. Narain [19] provides three guidelines formanualrewriting of Al-
loy models to obtain a more efficient analysis but does not consider automation of these
rewritings.

A key difference of our work from the previous work is that our optimizations are
automatic and at the level of Alloy: they transform an Alloy model to an equivalent Al-
loy model (without requiring a new type system) that is likely to induce faster solving.
This allows our optimizations to be employed in conjunction with existing optimiza-
tions in a seamless fashion, thereby increasing the overall performance gain.

4 Optimizations
This section presents some of the optimizations that are applicable to Alloy models.
These optimizations are either inspired by or lifted directly from the optimizing com-
piler literature. We present the following optimizations:

– loop-invariant hoisting (LIH)
– loop fusion (LFU)
– loop unrolling (LUR)
– common subexpression elimination (CSE)
– algebraic transformations (AT)
– partial evaluation (PE)

4.1 Loop optimizations
Quantifiers (and transitive closure) in Alloy serve a similar purpose as loops in im-
perative programs. We therefore apply several standard loop optimizations to Alloy
formulas that use quantifiers. Each quantified formula introduces a quantified variable
(analogous to a loop-index variable) that ranges over some set (analogous to the set of
values for the loop index) and has a body formula (analogous to the body of the loop).

Loop-invariant hoisting (LIH) This optimization first identifies those subformulas
in a body of a given quantified formula that do not depend on the quantified variables
and then moves these subformulas out of the quantifier scope. For example, in the Al-
loy formula all n: Node | (some Node || n !in n.ˆnext) , the subformula
some Node is independent of the variablen. Moving the subformula outside of the
quantification gives the formulasome Node || all n: Node | n !in n.ˆnext .
This optimization does not give a substantial speedup if the hoisted subformula is much
simpler than the rest of the body.

Loop fusion (LFU) Just as the standard loop fission and fusion optimizations split
or merge loops (to make them parallelizable or eliminate the overhead of checking
branches), we can split or merge several Alloy quantifiers that range over the same set.
For example, the Alloy formulas(all n: N | F1(n)) && (all n: N | F2(n))

and (all n: N | (F1(n) && F2(n))) are semantically equivalent. It turns out,
however, that there can be a significant difference in the solving time for these for-
mulas. We have thus implemented loop fusion in the Alloy Analyzer.

Loop unrolling (LUR) This optimization targets quantified Alloy formulas where
the quantified variables range over some path expression. For instance, the example sec-
tion shows the formulaall e: l.header.*next | e !in e.ˆnext . We illustrate
how such formulas can be completely unrolled for all elements froml.header.*next .
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Consider the general formulaall x: E | F , whereE is an expression of some
basic type/setα, andF is the quantified formula that depends on the variablex. An op-
erational reading of this formula would first evaluateE to some set{a1, . . . , ak} ⊆ α
and then checkF for eachai substituted forx, i.e.,F [ai/x]. However, Alloy formulas
need to be translated into declarative SAT, so the translation does not follow the opera-
tional view. Instead, the analyzer must translate this formula under the assumption that
E can evaluate to any subset ofα, i.e., in the general form

∧
a∈α a ∈ E ⇒ F [a/x]. The

analyzer does not use the general form directly, but applies several optimizations [9].
Consider the special case where the analyzer can statically enumerate the elements

{a1, . . . , ak} thatE evaluates to in some scope. It can then translateall x: E | F

into the Alloy formulaF ( a1) && . . . && F ( ak) . Universally quantified formulas trans-
late into a conjunction; existentially quantified formulas analogously translate into a
disjunction:some x: E | F translates intoF ( a1) || . . . || F ( ak) .

A common pattern in Alloy formulas is to quantify over path expressions. For such
expressions, we cannot enumerate the elements in the set, but we can represent them
using the equality on reflexive transitive closure, expressed in Alloy for the example
next relation:*next = iden[Node] + next + next.next + ... + next s−1,
wheres is the scope forNode. (A similar equality also holds for transitive closure:
ˆnext = next + next.next + ... + next s.)

The relations in the path expressions are often (partial) functions, e.g., when mod-
eling fields of object-oriented programs [24]. Ifnext is a partial function,n.next

denotes a set with at most one element whenn denotes a set with at most one element.
The Alloy formula some n holds iff the set denoted byn is not empty. In the case
of n.next , some n.next holds iff n denotes a singleton set, which in Alloy repre-
sents a scalar. We can therefore translateall n: l.header.*next | F(n) into the
following conjunction:

some l.header => F(l.header)
some l.header.next => F(l.header.next)
...
some l.header.next s−1 => F(l.header.next s−1)

where the guardsome n ensures that we preserve the semantics of Alloy in this transla-
tion. In the general case,next could be an arbitrary relation, and the translation would
need to useone n (instead ofsome n) to specify thatn has exactly one element. How-
ever, the translations ofsome n andone n into boolean formulas differ significantly,
and the translation ofsome n is much more efficient thanone n .

Similarly, we can translatesome n: l.header.*next | F(n) into the disjunc-
tion of (some l.header.next i && F(l.header.next i)) for 0 ≤ i ≤ s− 1.

To illustrate an application of loop unrolling, let us reconsider the list declaration
from Section 2 and checking the equivalence of formulas for acyclicity. We can apply
loop-unrolling to rewriteAcyclic1 as:

fun Acyclic1(l: List) { // all n: l.header.*next | n !in n.ˆnext
some l.header => l.header !in l.header.ˆnext
some l.header.next => l.header.next !in l.header.next.ˆnext
some l.header.next.next => l.header.next.next !in l.header.next.next.ˆnext
some l.header.next.next.next =>

l.header.next.next.next !in l.header.next.next.next.ˆnext
some l.header.next.next.next.next =>

l.header.next.next.next.next !in l.header.next.next.next.next.ˆnext
some l.header.next.next.next.next.next =>

l.header.next.next.next.next.next !in l.header.next.next.next.next.next.ˆnext }
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Our implementation of LUR automatically determines whether it is legal to apply
LUR to each loop and applies LUR whenever legal.

4.2 Non-loop optimizations
We next present the optimizations that do not target quantified Alloy expressions.

Common subexpression elimination (CSE)This is a standard compiler optimiza-
tion that replaces the evaluation ofN identical expressions with (1) one evaluation
whose result is stored and (2)N − 1 reads of the stored result. This optimization effec-
tively trades the space that stores the result for the time to recompute the expressions.
Alloy has no operational computation, but it is still desirable to save and reuse results.
Others have observed this effect, and the back-end of the Alloy Analyzer actually im-
plements a sophisticated optimization that detects and exploits sharing of subformulas
during the translation of quantified Alloy formulas into boolean formulas [22]. How-
ever, our results (Section 5) show that a substantial amount of sharing can be detected
even in the front-end, at the level of Alloy, before the translation to SAT.1

Algebraic transformations (AT) Alloy expressions offer numerous opportunities
for applying algebraic transformations, i.e., using the equational rules of the relational
algebra that underlies the Alloy semantics to replace selected expressions with equiv-
alent rewritten expressions. For example, one such rule is that the transitive reflexive
closure is idempotent:**next = *next for all relationsnext . Our anecdotal expe-
rience indicates that Alloy users sometimes write (typically by making a typographic
mistake) such expressions that can be significantly optimized. For example, replacing
**next with *next in the formula**next = iden[Node] + ˆnext reduces the
checking time by 2X (in scope 7).

Algebraic transformations also apply to the models discussed in Section 5. More-
over, even the transformations that produce expressions of similar complexity, and thus
do not look profitable by themselves, can enable the profitable application of other
optimizations. For example, one of the algebraic rules is that transpose and reflexive
transitive closure commute for example,*˜next = ˜*next . Our implementation ap-
plies this rule as a rewrite from left to right to enable CSE to detect more common
subexpressions that contain transitive closures.

Partial evaluation (PE) Partial evaluation is a standard optimization technique for
evaluating expressions at compile-time. It generalizes constant folding (which evaluates
only basic operations on constant arguments). We illustrate partial evaluation for Alloy
models on the following function adapted from [11]:

fun modifies(pre, post: State, mods: set Ref) {
(all r: Ref - mods | F2) &&
(all r: mods | F1) &&
F3 }

This function is a part of the model that specifies state transitions. Specifically,modifies

expresses the general constraint that a transition from thepre state to thepost state can
modify only references in the setmods. Each specific transition instantiates the generic

1 We have recently found that we can obtain some of the CSE speed-up by adding to the Alloy
model new fields that trigger the existing sharing, without performing the whole CSE.
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function with the appropriate value formods. Transitions that do not modify any ref-
erence thus instantiatemods with the empty set:modifies(s, s’, none[Ref]) ,
wherenone[Ref] represents the empty set.

This constant argument offers the opportunity to partially evaluatemodifies . We
can clonemodifies and specialize the copy for the empty set:Ref - mods evaluates
to Ref , and the whole second quantification evaluates totrue :

fun modifiesEmpty(pre, post: State) {
(all r: Ref | F2) &&
F3 }

We then replace the calls involving the empty set withmodifiesEmpty(s, s’) . Stan-
dard partial evaluation usually involves cloning of functions. However, the translation
of Alloy already inlines all functions2 so we can instead specialize the inlined formulas.

Although this optimization in theory bears great potential, we found that it is rarely
applicable in Alloy models, so we did not implement it. Our experiment with manual
application of PE showed a speed-up of 1.16X for the analysis of the model Views [11].

5 Experiments
This section presents the performance results for several Alloy models taken from the
Alloy distribution (http://alloy.mit.edu/ ) and from previous case studies that
used Alloy models. We evaluate the effectiveness of the optimizations by using our
implemented Alloy transformation system to automatically apply the optimizations to
these models. We report the total time that the Alloy Analyzer takes to compile and
solve the original and optimized models.

We have implemented our optimizations by changing the Java source code of the
Alloy Analyzer version 2.0. (The most recent version is 3.0; we have modified 2.0
because 3.0 was unstable when we had started implementing the optimizations.)

We performed all experiments on a Linux machine with a 1.8 GHz Pentium 4 pro-
cessor using Sun’s Java 2 SDK 1.3.1 JVM. We used our modified Alloy Analyzer and
the mChaff [18] SAT solver.

5.1 Benchmarks
Table 1 lists the benchmark models that we use to evaluate our optimizations:

– List models singly linked-lists as described in Section 2. It checks the equivalence
of the three definitions of acyclicity.

– Types [6] models a part of the Java type system and checks its soundness by check-
ing a subject reduction theorem: statement executions preserve the correspondence
between run-time types and the compile-time types.

– INS [14] models the key data structures and algorithms of the Intentional Nam-
ing System [1], a resource discovery and service location architecture for mobile
networks. It checks partial correctness of these algorithms.

– ProtonId [6] models the tracking of patients in a (proton) radiotherapy facility. It
checks that patients are correctly identified.

2 Alloy does not support recursive functions, because it needs to generate SAT formulas. Hence,
non-termination of inlining or partial evaluation is not an issue.
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model description solving (#solutions)optimizations #ncnb

List from the example section satisfiability (0) CSE, LUR 21
Types soundness of Java type system satisfiability (0) CSE 106
INS dynamic networks satisfiability (0) AT, CSE, LUR 117
ProtonId patient identity for proton machinesatisfiability (0) AT, LFU, CSE 164
Life game of life satisfiability (1) AT, LFU, CSE 88
NetConf network configuration satisfiability (1) LUR 192
BinTree binary search trees enumeration (1430)LFU, CSE 62
RedBlackred-black trees enumeration (35) LFU, CSE, LUR 115

Table 1.Benchmark models

– Life [22] is a model of Conway’s game of life. It simulates multi-step executions
of the game on a variable size grid.

– NetConf [19] is a complex Alloy model for network configuration management. It
builds network configurations that satisfy given management policies.

– BinTree models simple binary search trees [5,15].
– RedBlack models red-black trees [5,15], which implement balanced binary search

trees. The last two models enumerate all appropriate trees within a given size.

For each model, we list whether we are just checking satisfiability (i.e., looking for
one solution or showing that none exists) or enumerating all possible solutions (which
is, for instance, useful in testing [15]). We also list the optimizations that are applied
to get from an original model to an optimized version. We finally show the number of
non-comment non-blank lines in each original model. This is a simple illustration of
the model size and not a measure of the model complexity. (It may be a measure of the
complexity ofdevelopingthe model but notsolvingthe model.)

5.2 Results

Table 2 summarizes the results that we obtain by applying the optimizations to the
different models. For each model, we present corresponding sets of data for both the
original (unoptimized) version and the optimized version. We report the number of
independent variables in the translated boolean formula, the total number of variables
and clauses in the CNF formula, and the time (in seconds) it takes to check (i.e., translate
and solve) the formula. We also present the speed-up resulting from the optimizations.

The models for List, Types, INS, and ProtonId all check an assertion; the scopes
were set to 6, 12, 6, and 6, respectively. The analyzer does not find any counterexam-
ple. For Life and NetConf, the analyzer generates a solution (a simulation of the game
and an appropriate network configuration, respectively). We present the time to find
the first solution in both the unoptimized and the optimized versions. We used a scope
of 12 for Life and a varying scope for different network elements in NetConf (from 4
security tunnels to 6 routers to 12 interfaces). For BinTree and RedBlack, we present
the times the analyzer takes to enumerate all corresponding trees with 8 and 7 nodes,
respectively. For Types, INS, and Life (all of which are available as models in the Alloy
distribution), we ran the analyzer using the maximum scopes for which those models
were previously analyzed (as stated in the distribution files). For other models (which
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unoptimized optimized
model indep. varstotal varsclauses time indep. varstotal varsclauses time speed-up

List 150 3686 19113 199.92 204 4068 2007515.85 12.61
Types 1888 82713381816 4.30 2088 77672357334 3.49 1.23
INS 1295 757257280221208.47 1511 7617672756483.21 14.52
ProtonId 1370 37566237175 3.97 1514 37938238227 3.83 1.04
Life 351 38312188423 51.71 927 3584418608827.61 1.87
NetConf 770 44848415018 10.36 770 44700414574 8.19 1.26
BinTree 146 4504 20064 39.93 274 4056 1902428.39 1.41
RedBlack 263 7662 34472 136.22 361 7459 3423027.30 4.99

Table 2.Comparison of analyses for models with and without optimizations

are not yet a part of the standard Alloy distribution), we chose sizes that are representa-
tive from previous case studies [6,15,19]. The performance results indicate the benefits
of applying optimizations, both for determining the satisfiability of boolean formulas
and for enumerating all solutions.

In all cases the optimizations produce a performance improvement. The speed-up
varies from 1.04X to 14.52X. We point out that the optimizations do not necessarily
decrease the number of variables (whether independent or total) or increase the number
of clauses. In fact, for INS (for example) the optimizations both increase the number of
(independent and total) variables and decrease the number of clauses. Nevertheless, the
benchmark still exhibits a more than 10X speed-up.

Note that we obtain the maximum speed-up on one of the most complex models
(INS). INS models recursive algorithms that were implemented in Java [14], which re-
quires non-trivial fixed-point computations to be expressed in Alloy. Several researchers,
including the first two authors of this paper, analyzed this model in various projects [6,
14,22]. During these projects, the model was optimized (by both manual rewriting and
some automatically applied SAT-generation optimizations) to reduce the solving time.
Based on our previous experience with this model, it came as a great surprise to us that
it was possible to obtain such a substantial speed-up. We hypothesize that more com-
plex models would indeed benefit the most from systematic compiler optimizations, in
part because the complexity of the model inhibits the manual application of large-scale
transformations such as loop unrolling.

We next discuss how different optimizations contribute to the speed-up. For Types
and NetConf, the entire speed-up comes from a single optimization—CSE for Types
and LUR for NetConf. For List, the overall speed-up is split between CSE and LUR as
33.6% for CSE and 66.4%, for LUR. For INS, the overall speed-up is split between AT,
CSE, and LUR as 2.8%, 98.4%, and -1.2%, respectively. In other words, applying all
optimizations (AT, CSE, LUR) to INS does not give the best speed-up; namely, applying
just AT and CSE, without LUR, gives 17.34X speed-up over the unoptimized version!
This problem is well-known for the compiler optimizations: the “optimizations” are
heuristics that improve the code in most cases but can also degrade the code in some
cases. Choosing the best set of optimizations to apply (and the best order in which to
apply them) is an open research problem in compiler community. We plan to investigate
this problem in the context of Alloy.
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Our experiments include the change in the compilation time that results from the
automatic application of the optimizations. Specifically, the time that we present is the
sum of execution times of three parts: (1) the compilation time that includes the time
required to parse the Alloy model and apply the optimizations, (2) the translation time
required to translate the (optimized) model into a boolean formula, and (3) the SAT
solving time. For the original models, the compilation time ranges from 0.39 sec (for
List) to 2.55 sec (for RedBlack), and the translation time ranges from 0.35 sec (for
List) to 1.52 sec (for Types). With all our optimizations, the compilation time increases
by at most 0.24 sec (for List), and the translation time increases by at most 0.37 sec
(for NetConf).3 Some optimizations even decrease the total compilation time as also
observed in other compilation projects [22]. Our results indicate that the compilation
and translation times in the experiments were negligible in comparison with the SAT
solving time, so even a small increase in the compilation and translation times can be
easily outweighed by a decrease in the SAT solving time.

5.3 Discussion
The experiments indicate that the most beneficial optimizations are common subex-
pression elimination and loop unrolling. The most commonly factored out expressions
were those that were based on transitive closure. Indeed, loop unrollings also involved
formulas that used (quantified expressions with) transitive closure. Alloy specifications
often use transitive closure and quantifiers. These constructs tend to be heavily used
since they are the source of much of Alloy’s expressive power (as compared to first-
order logic without transitive closure or relational queries without quantification) [10].
These Alloy constructs are also analogous to loops in code. Solving formulas with these
constructs, however, is expensive. Our experience indicates that, in much the same way
that the optimizations in a regular compiler focus on the most expensive parts of the
code (i.e., the inner loops), the Alloy compilation should focus on the most expensive
constructs (i.e., quantified formulas and formulas involving transitive closure).

It is worth pointing out that we use the analyzer to check the partial correctness of
our optimizations. It is conceivable that our optimizations, because of a compiler bug,
could incorrectly create optimized models that are not equivalent to the original models.
To check the (partial) correctness, we employ two techniques: (1) we check the equiva-
lence of the original and optimized formulas (using the analyzer) and (2) we enumerate
all solutions to the original formula and all solutions to the optimized formulas and
compare the number of solutions. Even though the second technique does not, in gen-
eral, check equivalence of the formulas, it increases our confidence in the correctness
of the translation and tends to complete more quickly than the first technique. We there-
fore use it when the first technique times out. Note that determining the equivalence of
boolean formulas, which are our compilation target, is decidable. In regular compilers,
on the other hand, determining the equivalence of the unoptimized and optimized code
is undecidable in general.

3 Due to our unfamiliarity with the details of the analyzer, our modified version does not translate
the internal representation of the model after optimizing it. Instead, our version parses the
model, optimizes it, then pretty-prints it and parses it again. Our times do not include pretty-
printing and reparsing, since an actual implementation would not have these two steps.
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6 Conclusions

In many situations, the performance of an analysis or reasoning tool is the critical factor
that determines its utility to the user or the size of the problem that it can meaningfully
address. Reduction to SAT is an increasingly popular solution technique. Previous re-
sults, as well as ours, show that the overall performance of the system depends not only
on the inherent capabilities of the underlying SAT solver, but also on how the problem
is expressed: semantically identical SAT problems have widely varying solving times.

We have presented a set of mechanical transformations that, for Alloy model check-
ing problems, can substantially reduce the SAT solving time. As currently formulated,
these transformations apply specifically to Alloy models. However, they all have direct
analogs in the field of traditional compiler optimizations, and we anticipate that other
researchers should be able to apply similar optimizations to their systems. The overall
result should be a substantial improvement in the performance of systems that use SAT
solvers to solve important analysis and reasoning problems.
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