
BALLERINA: Automatic Generation and Clustering of Efficient Random Unit Tests

for Multithreaded Code

Adrian Nistor1, Qingzhou Luo1, Michael Pradel2, Thomas R. Gross2, Darko Marinov1

1 Department of Computer Science, University of Illinois at Urbana-Champaign, USA
2 Department of Computer Science, ETH Zurich, Switzerland

{nistor1, qluo2, marinov}@illinois.edu, michael@binaervarianz.de, thomas.gross@inf.ethz.ch

Abstract—Testing multithreaded code is hard and expensive.
A multithreaded unit test creates two or more threads, each
executing one or more methods on shared objects of the class
under test. Such unit tests can be generated at random, but
basic random generation produces tests that are either slow or
do not trigger concurrency bugs. Worse, such tests have many
false alarms, which require human effort to filter out.

We present BALLERINA, a novel technique for automated
random generation of efficient multithreaded tests that ef-
fectively trigger concurrency bugs. BALLERINA makes tests
efficient by having only two threads, each executing a single,
randomly selected method. BALLERINA increases chances that
such simple parallel code finds bugs by appending it to more
complex, randomly generated sequential code. We also propose
a clustering technique to reduce the manual effort in inspecting
failures of automatically generated multithreaded tests. We
evaluate BALLERINA on 14 real-world bugs from six popular
codebases: Groovy, JDK, JFreeChart, Apache Log4j, Apache
Lucene, and Apache Pool. The experiments show that tests
generated by BALLERINA find bugs on average 2X-10X faster
than basic random generation, and our clustering technique
reduces the number of inspected failures on average 4X-8X.
Using BALLERINA, we found three previously unknown bugs,
two of which were already confirmed and fixed.

I. INTRODUCTION

General-purpose processors manufactured today have

multiple cores, and the projections are that the number

of cores will be increasing. To harness these cores for

speeding up their applications, developers now write parallel

code, typically using a multithreaded, shared-memory pro-

gramming style. However, writing multithreaded software

is notoriously difficult, as the same code can have different

behavior for different thread interleavings. Additionally, test-

ing multithreaded software is expensive because it requires

(1) writing appropriate test code, (2) exploring (many) thread

interleavings of this test code while checking oracles, and

(3) inspecting oracle violations.

Most research on testing multithreaded software [1]–

[6] has focused on improving approaches for step (2)—

exploring thread interleavings and checking generic oracles.

These approaches typically do not generate test code but

only explore the given test code for various thread inter-

leavings and apply generic oracles checking for bugs such

as data races, atomicity violations, non-determinism, or non-

linearizability [2], [7]–[12]. If an interleaving violates an

oracle, a potential bug is reported to the developer. These

approaches have shown a lot of promise in finding real bugs.

However, they require to be given test code as input, and they

can produce a lot of false alarms.

Automatically generating unit test code for multithreaded

software could greatly ease testing of such software. While

many techniques have been proposed for automated gen-

eration of test code for sequential software, e.g., random

generation of unit tests for object-oriented software [13]–

[15], they do not directly apply to multithreaded software.

Namely, test code for multithreaded, object-oriented soft-

ware needs to create one or more objects that are shared

among multiple threads and to invoke methods on these

objects; putting arbitrary test code for sequential software

into multiple threads rarely creates enough sharing to trigger

concurrency bugs.

A basic random generation of multithreaded tests [2] can

achieve sharing by first creating an object sequentially using

a randomly selected constructor and then invoking in several

parallel threads randomly selected methods on this object.

Unfortunately, this generation has two major problems. First,

it can take a lot of machine time to explore the generated

test code, because the total number of thread interleavings

grows exponentially with the number of threads and sharing

among threads. Second, it can take a lot of developer time to

inspect the reports generated by violations of generic oracles

for multithreaded tests, because such oracles can create a lot

of false alarms (e.g., on the order of ten false alarms to one

true bug report, as shown in Section V).

This paper makes three contributions.

A novel technique for generating efficient multi-

threaded tests that are effective at triggering concur-

rency bugs: We propose BALLERINA, a novel technique

for automated random generation of efficient multithreaded

unit test code. BALLERINA takes as input a class under

test and a set of its methods, and generates as output

multithreaded tests that are both efficient and effective at

triggering concurrency bugs. The key idea is to minimize

parallel execution to reduce the time needed for exploring

it, without sacrificing the bug-triggering capabilities. The

minimal possible configuration for multithreaded unit tests

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

is two threads that each execute a single method under test.

Combining this minimal configuration with basic random

generation would miss many real-world concurrency bugs.

Instead, BALLERINA prepends the minimal parallel suffix

with a more complex sequential prefix that “grows” the

object(s) under test, creating the conditions necessary to

trigger bugs in the parallel suffix.

BALLERINA focuses on bugs that can be triggered by

two threads. This suffices for almost all real-world concur-

rency bugs: a recent study [16] of 96 concurrency bugs in

large C/C++ applications (MySQL, Apache, Mozilla, and

OpenOffice) found that only two bugs require at least three

threads; in other words, 94 out of 96 bugs can be reproduced

with only two threads.

After BALLERINA generates multithreaded tests, it needs

to explore and check them. Exploration is orthogonal to

generation, so BALLERINA could use stress testing [3],

randomized thread interleavings [17]–[20], and/or systematic

exploration [3], [6], [21]. Our BALLERINA implementation

uses Java PathFinder (JPF) [6]. For checking, our imple-

mentation uses linearizability [2], [22], which intuitively

reports a violation whenever a thread interleaving produces

a behavior that cannot be produced in any linearized test

execution where all methods execute atomically. We chose

linearizability because it can find real concurrency bugs [2].

Clustering oracle violations for faster inspection:

While some linearizability violations show true bugs, other

violations are false alarms. For example, the Apache Pool

can throw ConcurrentModificationException in some

concurrent scenarios but does not throw this exception in

a corresponding sequential execution. This behavior is a

linearizability violation, but it is clearly specified in the Pool

documentation, so it is a benign violation, not a true bug.

Ideally, a perfect oracle would not report this behavior, but

all known generic oracles for multithreaded software create

false alarms, e.g., 90% of reported data races are benign [23].

BALLERINA alleviates the problem of false alarms using

clustering. We build on the idea of clustering failures for

sequential code [24]–[29]: first, reports are split into clusters

with similar failures that are likely to be either all false

alarms or all true bugs; then, rather than inspecting the

reports in an arbitrary order, the developer can inspect them

by selecting from different clusters. BALLERINA performs

clustering based on concurrently executing methods under

test and the type of failure.

Evaluation: We evaluate BALLERINA on 14 real-world

bugs from six popular codebases: Groovy, JDK, JFreeChart,

Apache Log4j, Apache Lucene, and Apache Pool. We com-

pare BALLERINA with basic random generation of multi-

threaded tests of six different sizes (based on the number of

threads and methods). We consider four different exploration

approaches (CHESS-like preemption bounding [3], exhaus-

tive stateful search used in JPF [6], stateless search [21], and

parallelized test execution) and measure the cost of exploring

1 class GenericObjectPool extends BaseObjPool implements ObjPool {
2 GenericObjectPool(PoolableObjectFactory factory, int maxActive) {...}
3 Object borrowObject() {...}
4 void returnObject(Object obj) {...}
5 void addObject() {...}
6 void invalidateObject(Object obj) {...}
7 void clear() {...}
8 void evict() {...}
9 void close() {...}
10 void setMaxActive(int maxActive) {...}
11 int getMaxActive() {...}
12 ...
13 }

Figure 1. API for the GenericObjectPool class from Apache Pool

generated tests to find a bug. Compared to basic random

generation of minimal tests (two threads, each with one

method), BALLERINA finds more bugs (13 vs. 3). Compared

to basic random generation of larger tests (two or more

threads, each with two or more methods), tests generated

by BALLERINA trigger the bugs substantially faster, 2X-

10X on average.

We evaluate the effectiveness of our clustering technique

for both BALLERINA and the basic random generation. For

some cases, there are no false alarms, i.e., all reported

violations are true bugs. For some other cases, there can

be a large number of false alarms. Without clustering, the

developer would need to sift through a large number of

reports (e.g., dozens) to find a true bug. Our clustering

reduces inspection time: the developer needs to inspect a

small number of reports (e.g., 3-4) to find a true bug.

Using BALLERINA, we found three previously unknown

bugs in the widely used Apache Log4j and Apache Pool.

Two bugs were confirmed and fixed [30], [31], and the third

is still under investigation [32].

II. EXAMPLE

To illustrate how BALLERINA works, we use the exam-

ple of testing a class from the Apache Pool library. The

library provides several classes that implement pools, i.e.,

collections of objects that can be shared among several

threads. Figure 1 shows declarations of several methods

from the GenericObjectPool class. The constructor takes

a Factory that creates objects for the pool, and sets the

maxActive number of objects in this pool. Clients of this

class first obtain an object from the pool (borrowObject),

then work with this object, and finally return it back to

the pool (returnObject). The methods clear and evict

remove from the pool all idle objects (i.e., those not cur-

rently borrowed) and all objects that satisfy certain criteria,

respectively. The class also has a large number of getter and

setter methods, but we show only those for maxActive.

The GenericObjectPool class is highly concurrent.

Because a number of clients can be invoking the pool

methods from different threads, GenericObjectPool does

not globally lock the entire pool for each method but rather

uses fine-grained locking so that a number of methods

proceed concurrently.

Suppose that we want to test how GenericObjectPool

behaves when clients call various methods from multi-

ple threads. It is easy to apply BALLERINA to generate

multithreaded unit test code for GenericObjectPool. We

instruct BALLERINA to test this class and its methods

listed in Figure 1. We also provide a simple factory class,

because PoolableObjectFactory is an interface, and any

test would need to provide a concrete class.

Generating Tests with BALLERINA: BALLERINA ran-

domly generates tests, each of which consists of two parts.

The sequential prefix creates an object under test (OUT),

in our example a GenericObjectPool object, and invokes

several methods on that object. The parameter values for the

methods are randomly generated, by creating other helper

objects as necessary. The parallel suffix creates two threads

that each execute only one of the given methods on the

OUT created in the sequential prefix. The test execution will

explore multiple interleavings of these two threads.

Figure 2 shows an example test generated by BALLERINA.

The OUT is var4. Its constructor sets maxActive to 1.
After var4 is created, addObject is invoked on it. Both the

parameter value (1) and the method call (addObject) are

required to bring var4 in a state where a bug is triggered by

the parallel suffix. In the parallel suffix, the threads t1 and

t2 invoke borrowObject and evict, respectively, on var4.

We also show var2 generated by BALLERINA, although it

is not necessary to trigger the bug in this case.

Executing the BALLERINA Tests: BALLERINA uses

known techniques to explore different thread interleavings of

generated tests [3], [6], [21] and to check for potential bugs

using linearizability [2]. For example, exploring the test from

Figure 2 with CHESS-like exploration (preemption bound

of two) [3] finds a non-linearizability violation: executing

borrowObject and evict atomically succeeds but execut-

ing them concurrently deadlocks. BALLERINA presents to

the user a report with this test and its interleaving.

Real Unknown Bug: Our inspection of this ex-

ample indeed revealed a previously unknown bug in

GenericObjectPool, which the Pool developers confirmed

and fixed after we had informed them. The analysis shows

that triggering this bug requires a particular, non-trivial pool

state and execution condition, as described by the Pool

developers: “[...] whenever maxActive is about to be attained

by a borrowObject with one idle instance in the pool, if one

thread does a borrow while the evictor is visiting the idle

instance, the borrowing thread will stall until another thread

does a borrow or return.” [30]. Such state cannot be created

with a trivial sequential prefix, and having a more complex

parallel suffix would increase the exploration time to find

the bug.

Comparison with Basic Random Generation: Explor-

ing many thread interleavings for a given test is expen-

1 void test() {
2 // sequential prefix, object under test (OUT): var4

3 final SimpleFactory var0 = new SimpleFactory();
4 final GenericObjectPool var2 = new GenericObjectPool(var0, 0);
5 final GenericObjectPool var4 = new GenericObjectPool(var0, 1);
6 var4.addObject();
7 // parallel suffix
8 Thread t1 = new Thread() {
9 public void run() { var4.borrowObject(); } };
10 Thread t2 = new Thread() {
11 public void run() { var4.evict(); } };
12 t1.start(); t2.start();
13 t1.join(); t2.join();
14 }

Figure 2. A test generated by BALLERINA that triggered an unknown bug

sive [4], [6]. The cost is increasing with the number of

threads and the number of shared memory accesses in each

thread. BALLERINA minimizes this cost by generating the

minimal possible parallel section, two threads with one

method each. In contrast, consider basic random tests that

would have three or more threads and/or execute more than

one method per thread. These tests would have more thread

interleavings and would be slower to explore when they trig-

ger no bug. However, it is not clear a priori that they would

take more time to trigger the bug (because testing more

methods at once could increase the chance to trigger the

bug). In our example of GenericObjectPool, experimental

results (Section V) show that BALLERINA tests trigger the

bug about 5X faster than basic random tests with two threads

and two methods each, while other configurations with more

threads or methods are even slower.

Report Clustering: To reduce the time for inspecting

reports, BALLERINA introduces a novel report clustering

based on the methods under test that execute at the point of

failure and the type of failure. The intuition is that similar

reports are likely to be either all false alarms or all true

bugs. Our evaluation shows that, for GenericObjectPool,

both BALLERINA and basic random tests can generate

up to hundreds of false alarms for each true bug, which

would require that the developer inspects a large number

of false alarm reports to find a true bug, rendering the

tool impractical. With our clustering technique, however, the

developer needs to inspect only three or four false alarms

before finding a true bug report.

III. GENERATING TESTS

We next describe how BALLERINA generates multi-

threaded unit tests for a given class under test (CUT) and a

set of methods. Each test consists of two parts: a sequential

prefix that creates an object under test (OUT) with a CUT

constructor and potentially calls some methods on the OUT

sequentially, and a parallel suffix that calls two methods on

the OUT concurrently.

A. Generating Sequential Prefix

BALLERINA modifies the Randoop algorithm [14] to gen-

erate the OUT in the sequential prefix. In general, Randoop

takes as input a set of classes under test and generates

sequential tests that have random sequences of method calls

to these classes. Randoop broadly but sparsely covers states

of objects from these classes. Even when given only one

CUT, Randoop sparsely covers states of objects of that class,

e.g., calling methods on many objects but not necessarily

calling many methods on one object. In contrast, we want

BALLERINA to more densely cover states of objects for the

one given CUT. To that end, we modified Randoop to focus

the generation on one OUT for each sequence and to “grow”

such objects across various sequences.

Figure 3 shows the pseudo-code for the relevant part of the

Randoop algorithm (adapted from [14]) and the BALLERINA

addition highlighted (lines 8, 11, 12, 13). The algorithm

maintains a collection of method sequences. For each se-

quence that can create one or more objects of the CUT,

BALLERINA tags exactly one OUT. Some sequences create

no objects of the CUT but only objects of other classes,

such as SimpleFactory in the example from Figure 2. In

that case, there is no OUT, but such sequences are still

useful, because they can be used as parameters for methods

in sequences that do have an OUT.

In lines 6 and 7, Randoop randomly chooses a method

m (whose parameters have types τi), some sequences seqs

that can create method parameters, and expressions ei for

these parameters (e.g., a variable such as var0, or null if

no object of a type is available, or constants for primitive

types). In line 9, Randoop generates a new random sequence

newSeq by appending sequences for parameters and adding

a new call newV ar = m(e1 . . . en); it then checks that the
new sequence does not fail with uncaught exceptions.

BALLERINA additionally selects and/or updates the OUT.

In line 8, if the receiver has the CUT type, then BALLERINA

does not randomly select the expression for that parameter

but selects the OUT from the appropriate sequence. Thus,

the OUT from the sequence seqs(1) is enhanced by calling
the method m(τ1 . . . τn) on it, and the same object becomes
the OUT for the newly created sequence newSeq in line

11. In line 12, BALLERINA creates a new OUT when m

is a CUT constructor or a static method returning objects

of the CUT type. If a method both returns an object of the

CUT and has the receiver of the CUT type, then the OUT

is the receiver. Effectively, this favors enhancing the state of

OUT, as opposed to creating a new OUT.

While BALLERINA aims to create diversity of states for

objects of the CUT, it also avoids redundant states that would

only increase testing time but not the chance to find bugs.

In line 13, BALLERINA checks if the new OUT was already

generated by another sequence. Randoop has a similar check

but for the objects produced by the last method call in the

new sequence, while BALLERINA focuses on the OUT.

To illustrate, recall Figure 2 and consider the sequence

that consists of the first three (constructor) calls—call it

S. Assume that var4 is the OUT for S and further

1 Algorithm RandomlyGenerateMethodSequences
2 input: classUnderTest (CUT), methodsUnderTest
3 output: collection of non-error method sequences
4 nonErrorSeqs ← emptyCollection
5 while (time limit not reached)
6 m(τ1 . . . τn) ← randomlySelectOneMethod(methodsUnderTest)
7 �seqs, e1 . . . en� ← randomSeqsAndExprs(nonErrorSeqs, τ1 . . . τn)
8 if (τ1 = CUT) e1 ← seqs(1).OUT
9 newSeq, newV ar ← append(seqs,m, e1 . . . en)
10 if (executing newSeq fails) continue

11 if (τ1 = CUT) newSeq.OUT ← e1

12 else if (returnType(m) = CUT) newSeq.OUT ← newSeq.newVar

13 if (∃ s ∈ nonErrorSeqs s.t. s.OUT.equals(newSeq.OUT)) continue
14 nonErrorSeqs ← nonErrorSeqs ∪ {newSeq}

Figure 3. Integrating BALLERINA’s generation of sequential prefix in the
Randoop algorithm. BALLERINA code is highlighted.

that BALLERINA randomly selects the method addObject.

The only parameter (i.e., the receiver) is of the type

GenericObjectPool, which is the CUT. If BALLERINA

selects the sequence S for that type, it then selects the OUT

var4 (rather than var2) as the expression for that parameter.

B. Generating Parallel Suffix

After generating a collection of sequences, BALLERINA

uses them to generate multithreaded tests by adding code for

the threads. For a parallel suffix, BALLERINA first randomly

selects two methods from the given set. The selection is not

uniform but based on the number of method parameters of

the CUT type. We call these parameters CUT-parameters.

A method that has two or more CUT-parameters is twice

as likely to be selected than a method that has one or zero

CUT-parameters. The intuition for this bias is that methods

with more CUT-parameters have more interactions between

the objects of the CUT and are thus more likely to trigger

concurrency bugs. Of the methods in Figure 1, none has

more than one CUT-parameter, so they are all equally likely

to be selected; for the example in Figure 2, BALLERINA

selected borrowObject and evict.

After selecting two methods, BALLERINA randomly se-

lects parameters for these methods. BALLERINA first ran-

domly selects from the collection one or two sequences with

an OUT to use in the sequential prefix. BALLERINA uses

two sequences if any of the two selected methods has two

or more CUT-parameters; otherwise, it uses one sequence.

We call these sequences selected sequences. For our run-

ning example with borrowObject and evict, there is one

selected sequence, which ends with var4.addObject.

BALLERINA next selects the expressions for the pa-

rameters of the two methods. If a parameter type is the

CUT, BALLERINA randomly selects the OUT from one of

the selected sequences. Otherwise, BALLERINA randomly

selects an object of the appropriate type from the selected

sequences (because those sequences can have other objects

besides the OUT) or, if there is no such object, BALLERINA

selects a sequence from the entire collection. In our example,

each (receiver) parameter for borrowObject and evict is

from the CUT, and thus BALLERINA selects var4, resulting

in the test shown in Figure 2.

IV. REPORT CLUSTERING

BALLERINA uses linearizability [2], [22] as a generic

oracle and may report false alarms. To alleviate the prob-

lem of inspecting failure reports, BALLERINA can cluster

test failures based on their similarity. Each failure report

contains several pieces of information: (1) the test that

was executed, including the methods called from the test

(BALLERINA generates only two methods per test, but

the basic random generation can generate a larger number

of methods per test), (2) the thread interleaving that was

executed up to the failure, (3) the stack trace for each thread,

including the executing methods (i.e., the methods under

test that were executing at the point of the failure), and

(4) the type of failure (deadlock or an exception, including

the class of the exception, e.g., NullPointerException

or ConcurrentModificationException). In general, all

these pieces could be used to determine failure similarity.

BALLERINA uses only the executing methods and the type

of failure to determine similarity. Our experiments show that

these two pieces of information already provide excellent

results for clustering failures of automatically generated mul-

tithreaded unit tests. More specifically, BALLERINA splits

the failures into clusters such that all failures in one cluster

have (1) the same set of executing methods under test (i.e.,

the allocation of methods to threads does not matter) and

(2) the same type of failure. Note that several reports from

the same test can end up in different clusters, and reports

from different tests can end up in the same cluster. Indeed,

while (deterministic) sequential tests can have only one

outcome (pass or fail), a multithreaded test can have different

outcomes for different thread interleavings, some of which

may be false alarms while others are true bugs.

Splitting reports into clusters is the first step in using

clustering; the next step is determining the sampling strat-

egy [24], [27] for inspecting reports from the clusters. A

common sampling strategy [24], [27], which we also use, is

to randomly order clusters and visit them in a round-robin

fashion, randomly selecting one report for inspection from

each cluster. Another strategy, specific to the multithreaded

code, would be to inspect the failures in a cluster in the order

in which the test exploration produced them. We found that

the latter strategy does not provide better results than the

former because two consecutive failures have similar thread

interleavings and thus are likely to be either both false alarms

or both true bugs.

V. EVALUATION

We evaluate BALLERINA on 14 real-world bugs from

six popular codebases: Groovy, JDK, JFreeChart, Apache

Log4j, Apache Lucene, and Apache Pool. Figure 4 shows

the following information about each bug: the application

name, the bug ID that we will use in the rest of the paper,

the issue ID from the application’s issue-tracking system, the

number of lines of code in the application, the class under

test, its number of lines of code, the number of methods we

give BALLERINA to test, and the type of bug. We chose the

methods to test among the more complex methods in the

CUT, simulating how an expert developer of multithreaded

code would use her intuition to focus the BALLERINA tool.

Our evaluation addresses these three research questions:

RQ1: Do tests generated by BALLERINA find more bugs

and/or find bugs faster than tests generated by basic random

generation? A basic random test has T threads, each execut-

ing M methods under test; it is not obvious which T×M

configuration works the best, so we evaluate six: 2×1, 2×2,
2×3, 3×1, 3×2, and 3×3. For basic random, the sequential
prefix randomly chooses a constructor (and its parameter

objects) for the OUT, while BALLERINA also has up to three

method calls on the OUT; both potentially have more method

calls for the other objects used as parameters.

RQ2: Does the speedup provided by BALLERINA vary for

different exploration approaches? We consider CHESS-like

preemption bounding [3], exhaustive stateful search used in

JPF [6], stateless search [21], and parallelized test execution.

The reason for considering multiple exploration approaches

is that there is no established best approach.

RQ3: Does our clustering technique reduce the effort of in-

specting violations reported by exploration of tests generated

by BALLERINA and basic random generation?

To compare the exploration cost of tests, we use the

number of transitions executed by stateful JPF while ex-

ploring the state space and the number of execution paths

for the stateless exploration based on re-execution. This is

consistent with previous studies on exploration costs [17],

[34], [35]. We do not use the actual real time from JPF

because we conducted the experiments on a computing

cluster that has machines with different hardware. Note that

we compare cost to explore not to generate tests, because

generation cost is about the same for various techniques and

often much smaller than exploration cost.

Both BALLERINA and basic random generate tests using

random selection. To check how the results vary for different

random seeds, we evaluate both BALLERINA and basic

random using 200 seeds.

A. Answering RQ1

Figure 5 shows the cost that CHESS-like preemption-

bounded exploration [3] incurs to find a true bug for tests

generated by BALLERINA and basic random. For each bug

we show seven box plots, one for BALLERINA (BLR) and

six for configurations of basic random generation. Each box

plot shows five values that summarize the exploration cost

over 200 random seeds: median, upper and lower quartile

values, and the max and min values not outside the 1.5 inter-

quartile range. All the values are normalized to 1.0 for the

Application BugID Issue ID Total LOC Class Under Test (CUT) CUT LOC # Methods Error

Groovy #1 1890 54,872 MemoryAwareConcurrentReadMap 315 5 Deadlock
JDK #2 [33] 335 StringBuffer 335 9 Deadlock
JDK #3 4779253 2,555 Logger 523 11 Exception
JDK #4 6487638 2,550 Logger 527 9 Deadlock
JFreeChart #5 806667 65,027 NumberAxis 1,059 7 Exception
Log4j #6 509 10,273 FileAppender 185 13 Exception
Log4j #7 1507 10,770 Category 387 9 Exception
Log4j #8 26224 20,098 AsyncAppender 171 12 Deadlock
Log4j #9 38137 15,875 AsyncAppender 161 12 Deadlock
Log4j #10 51783 21,033 WriterAppender 171 12 Exception
Lucene #11 1358 57,347 PhraseQuery 184 7 Deadlock
Pool #12 146 12,615 GenericKeyedObjectPool 1,049 10 Deadlock
Pool #13 149 11,337 GenericObjectPool 782 9 Deadlock
Pool #14 184 11,880 GenericObjectPool 737 9 Starvation

Figure 4. Basic statistics about the tested code and bugs. Issue ID is from the respective bug database.

BALLERINA median for the respective bug. For example,

for Pool#14 (a new bug we found in Pool), the median of

2×2 is about 5, which means it is about 5X slower (not

faster) than the median of BLR. Note that some values are

out of bound, in which case we show the smallest of the

five values that is out of bound. For example, for Pool#14

and 2×2, the next value that is missing is upper quartile
(and it is 16). In some cases a technique does not find the

bug, which is marked with ’not found’ (but we still show

the exploration cost for the generated tests). For example,

for Pool#14, the tests generated by 2×1 do not find the bug.
The tests generated by 2×1 miss eleven out 14 bugs,

while tests generated by 3×1 miss five out of 14 bugs.
In contrast, BALLERINA and all other configurations miss

only one out of 14 bugs (JDK#4). Triggering this bug

requires that the object state has a special string format

that is unlikely to be created by any random generation.

More specifically, triggering the bug requires a call to

the readConfiguration(InputStream ins) method; the

ins parameter can come from a string, but it needs to be

in the java.util.Properties format, as specified by the

readConfiguration documentation. Thus, using a random

string like "Hi!" does not suffice, and Randoop does not

randomly generate strings like "x.level=FINE".

Tests generated by BALLERINA can find more bugs

than tests generated by simple basic random configura-

tions (2×1 and 3×1).

We next turn to comparing the costs for the basic random

configurations that find the same bugs as BALLERINA.

Figure 5 shows the distribution of costs over random seeds.

We can see that the cost for BALLERINA is often lower

than the cost for basic random, although there are individual

scenarios when basic random is faster than BALLERINA,

e.g., for Pool#14, the min whisker of 2×2 is close to 0,
whereas the max whisker of BALLERINA is close to 4. To

summarize the comparison into one number, we compute

the arithmetic mean cost across random seeds (whereas box

plots show median values).

Figure 6 shows the mean exploration cost for all bugs

and compared configurations. For now we discuss the left

half of the table, for CHESS-like preemption bounding. We

tabulate the mean number of transitions that exploration of

tests generated by BALLERINA take to find the bug, and

the slowdown of basic random configurations (computed as

the ratio of their mean over the mean for BALLERINA).

The last row shows the average slowdown, computed as the

geometric mean. The cells marked with ‘n/f’ represent cases

when a configuration does not find a bug.

For the basic random tests with two threads, the con-

figuration that finds the bugs fastest on average is 2×3,
and not 2×2 as one might expect. The reason is that 2×3
executes six methods per test, whereas 2×2 executes only
four, and while exploration of a given 2×2 test is faster
than a given 2×3 test, 2×3 has a higher chance of finding
a bug. The individual slowdown of these configurations

over BALLERINA ranges from 1.3X (for JDK#2 and 2×2)
to 11.1X (for JDK#3 and 2×2). For two cases, Groovy#1
and Log4j#6, 2×2 and 2×3 even find a bug faster than or
as fast as BALLERINA (and their speedup is reflected as

“slowdowns” of less than or equal to 1.0). Triggering these

bugs does not require complex object state, just parallel calls

to the buggy pair of methods. In fact, these are two bugs that

even 2×1 can find, because they are so simple to trigger.
The basic random tests with three threads are quite slow,

with average slowdown of over 8X compared to BALLE-

RINA. Considering the large cost of tests with three threads

and the recent study [16] which found that only two of the

96 real-world concurrency bugs in large C/C++ applications

require at least three threads to trigger, we believe that

focusing BALLERINA on two threads is the right trade-off.

If the programmer wants to look for bugs with three or more

threads, she would first run fast tests with two threads and

only later run the slower tests with three threads.

Tests generated by BALLERINA find bugs faster than

tests generated by basic random configurations (which

find the same bugs), on average 2.6X-10.4X.

 0

 1

 2

 3

 4

 5

 6

 7

 8

BLR 2x1 2x2 2x3 3x1 3x2 3x3
Groovy #1

-9~-9~

 0

 1

 2

 3

 4

 5

 6

 7

 8

BLR 2x1 2x2 2x3 3x1 3x2 3x3
JDK #2

-17~ -16~-15~-9~

 0

 1

 2

 3

 4

 5

 6

 7

 8

BLR 2x1 2x2 2x3 3x1 3x2 3x3
JDK #3

not

found

-15~-13~-9~-19~-8~-14~

 0

 1

 2

 3

 4

 5

 6

 7

 8

BLR 2x1 2x2 2x3 3x1 3x2 3x3
JDK #4

not

found

not

found

not

found

not

found

not

found

not

found

-17~
not

found

-40~

 0

 1

 2

 3

 4

 5

 6

 7

 8

BLR 2x1 2x2 2x3 3x1 3x2 3x3
JFreeChart #5

not

found

-72~-9~-10~-10~-17~-8~

 0

 1

 2

 3

 4

 5

 6

 7

 8

BLR 2x1 2x2 2x3 3x1 3x2 3x3
Log4j #6

-9~-12~-9~

 0

 1

 2

 3

 4

 5

 6

 7

 8

BLR 2x1 2x2 2x3 3x1 3x2 3x3
Log4j #7

not

found

-53~-14~ -10~-14~-14~

 0

 1

 2

 3

 4

 5

 6

 7

 8

BLR 2x1 2x2 2x3 3x1 3x2 3x3
Log4j #8

not

found

-10~ -13~-13~-12~

 0

 1

 2

 3

 4

 5

 6

 7

 8

BLR 2x1 2x2 2x3 3x1 3x2 3x3
Log4j #9

not

found

-9~-12~
not

found

-28~-13~-9~

 0

 1

 2

 3

 4

 5

 6

 7

 8

BLR 2x1 2x2 2x3 3x1 3x2 3x3
Log4j #10

not

found

-12~-9~
not

found

-89~-16~-11~

 0

 1

 2

 3

 4

 5

 6

 7

 8

BLR 2x1 2x2 2x3 3x1 3x2 3x3
Lucene #11

not

found

-10~-13~
not

found

-35~-17~-13~

 0

 1

 2

 3

 4

 5

 6

 7

 8

BLR 2x1 2x2 2x3 3x1 3x2 3x3
Pool #12

not

found

-13~-11~-10~-10~-22~-12~

 0

 1

 2

 3

 4

 5

 6

 7

 8

BLR 2x1 2x2 2x3 3x1 3x2 3x3
Pool #13

not

found

-9~
not

found

-49~-19~-9~

 0

 1

 2

 3

 4

 5

 6

 7

 8

BLR 2x1 2x2 2x3 3x1 3x2 3x3
Pool #14

not

found

-16~-9~-13~-14~-14~ Smallest of the five
 numbers below that
 exceeds the bound

Median

Upper quartile plus 1.5
 times Interquartile range

Lower quartile minus 1.5
 times Interquartile range

Upper quartile

Lower quartile

~

Figure 5. Number of transitions to the first execution for a given bug scenario

Preemption-bounded exploration Exhaustive JPF exploration
Bug BLR Slowdown relative to BLR BLR Slowdown relative to BLR

(absolute) 2x1 2x2 2x3 3x1 3x2 3x3 (absolute) 2x1 2x2 2x3 3x1 3x2 3x3

#1 13,327 0.5 0.6 0.7 1.5 2.4 7.7 16,912 0.5 0.4 0.5 2.4 3.0 5.3
#2 38,932 4.1 1.3 1.9 4.0 3.6 5.2 49,172 4.1 1.2 1.2 7.5 4.8 5.5
#3 103,608 n/f 11.1 2.4 32.0 4.5 3.8 348,638 n/f 20.6 5.8 604.8 37.2 13.8
#4 n/f n/f n/f n/f n/f n/f n/f n/f n/f n/f n/f n/f n/f n/f
#5 25,024 n/f 4.3 2.9 23.8 7.9 9.4 36,738 1.4 1.4 1.2 40.7 24.4 27.8
#6 6,845 0.9 0.9 1.0 2.3 3.4 7.9 8,211 0.9 0.7 0.8 3.7 4.0 7.4
#7 14,196 n/f 3.1 1.8 9.6 7.0 22.4 18,263 n/f 12.5 17.1 147.9 482.0 357.9
#8 239,650 n/f 3.3 2.1 12.0 7.4 7.3 335,982 n/f 3.5 2.5 36.5 30.2 32.1
#9 104,174 n/f 4.5 3.1 n/f 14.0 27.0 6,558,767 n/f 3.5 1.3 n/f 4.6 2.2
#10 55,920 n/f 4.7 1.6 n/f 3.7 3.1 5,067,672 n/f 1.8 0.8 n/f 0.9 0.2
#11 4,958 n/f 6.1 10.8 n/f 35.6 28.7 7,516 n/f 8.0 16.5 n/f 224.8 191.0
#12 4,267,926 n/f 2.6 4.3 19.2 19.4 10.7 58,918,609 n/f 7.1 5.4 7.9 4.1 3.3
#13 2,348,863 n/f 3.3 5.0 n/f 44.7 24.2 n/f n/f n/f n/f n/f n/f 11.6
#14 1,331,407 n/f 4.0 4.6 11.7 7.4 14.2 33,720,545 n/f 10.9 10.4 11.9 5.5 7.5

SLOW 1.2 3.0 2.6 8.7 8.1 10.4 1.2 3.3 2.6 21.2 12.6 10.7

Figure 6. Stateful exploration: mean number of transitions to the bug scenario. The last row shows the geometric mean of slowdowns.

Number of Paths Number of Transitions
Bug BLR Slowdown relative to BLR BLR Slowdown relative to BLR

(absolute) 2x1 2x2 2x3 3x1 3x2 3x3 (absolute) 2x1 2x2 2x3 3x1 3x2 3x3

#1 17,683 0.5 0.5 0.5 4.1 4.7 4.4 712,757 0.4 0.7 1.0 5.5 10.8 13.9
#2 36,346 4.3 1.3 1.8 13.3 9.3 6.8 988,035 5.0 2.0 3.4 25.4 22.2 20.3
#3 144,314 n/f 12.4 2.0 83.0 7.5 4.8 8,407,268 n/f 21.4 3.6 159.0 16.3 13.2
#5 18,842 n/f 3.3 1.9 29.3 7.1 5.5 833,586 n/f 4.8 3.6 40.3 14.5 15.1
#6 7,887 0.6 0.6 0.5 3.9 4.5 4.8 315,681 0.3 0.5 0.6 3.6 6.9 10.4
#7 10,890 n/f 1.9 0.7 16.3 4.9 3.7 280,129 n/f 2.7 1.3 24.4 10.9 10.8
#8 232,071 n/f 3.8 2.4 25.3 16.2 15.2 9,067,584 n/f 5.8 4.6 41.5 37.2 45.6
#9 100,436 n/f 3.0 1.7 n/f 15.7 20.2 8,084,777 n/f 1.5 1.7 n/f 13.7 28.0
#10 34,950 n/f 4.8 1.4 n/f 6.2 3.1 3,624,957 n/f 1.9 1.1 n/f 4.4 3.3
#11 3,338 n/f 4.8 6.5 n/f 30.1 8.5 82,109 n/f 6.7 11.7 n/f 65.7 23.3
#13 2,072,099 n/f 0.9 1.0 n/f 7.7 3.6 376,786,069 n/f 0.6 1.1 n/f 7.9 5.5
#14 1,419,535 n/f 1.0 1.1 2.5 1.3 1.9 247,317,819 n/f 0.7 1.0 1.3 1.3 2.4

SLOW 1.1 2.1 1.4 12.3 7.3 5.5 0.9 2.1 2.0 15.9 11.7 11.9

Figure 7. Stateless exploration: mean exploration cost to the bug scenario. The last row shows the geometric mean of slowdowns.

B. Answering RQ2

We now look at how stable the BALLERINA speedups

are over basic random for various types of exploration. So

far we have considered CHESS-like, preemption-bounded

exploration [3]. We consider three additional settings: ex-

haustive stateful search with partial-order reduction used by

default in JPF [6], stateless search [21], and parallelized

test execution where the tests are executed on several cores

at once. We chose these settings as they are representative

of what currently available tools like JPF or CHESS do.

For parallelized test execution, we simulate what happens

with four and eight cores, because these are the typical

configurations for the current Intel i7 processors. For space

reasons, we show only the mean values, not full box plots.

Figure 6 shows the results for CHESS-like and exhaustive

JPF explorations. We have discussed the results for CHESS-

like exploration. The results for exhaustive JPF exploration

are similar. The absolute number of transitions required to

find the bug is higher than for CHESS-like exploration,

but BALLERINA still maintains its relative speedup over all

basic random configurations. The average speedup is even

somewhat larger (e.g., 3.3X vs. 3.0X for 2×2). Note that

the Pool#13 bug is found by preemption-bounded explo-

ration but not by exhaustive JPF exploration. This is due

to the interaction of JPF’s partial-order reduction (POR)

and linearizability checking. Because JPF’s POR could also

affect the CHESS-like exploration, we turn off POR for this

exploration; turning POR off for the exhaustive exploration

would result in excessively high JPF runtime. We reported

this behavior to JPF developers, and to the best of our

knowledge, it did not affect any other experiment.

Figure 7 shows the results for stateless exploration based

on re-execution. While JPF checkpoints and restores states

to explore thread interleavings, stateless case considers an

exploration that would re-execute the test to explore various

thread interleavings, e.g., CHESS [3] or ReEx [35] tools

do so. The left half of the table shows the exploration

cost as the number of paths that the tool would need to

execute for various tests to find the bug, while the right half

shows the exploration cost as the number of transitions on

these paths. These measures are commonly used to compare

stateless techniques [35]. Again, exploring tests generated

by BALLERINA is faster than exploring tests generated by

basic random, but the average speedup is smaller than for

stateful explorations. Note that stateless exploration by itself

Bug
BLR (rel. to 1-Core)

Bug
4-Core (Slowdown relative to BLR 4-Core) 8-Core (Slowdown relative to BLR 8-Core)

4-Core 8-Core 2x1 2x2 2x3 3x1 3x2 3x3 2x1 2x2 2x3 3x1 3x2 3x3

#1 3.9 8.7 #1 0.5 0.6 1.0 1.3 3.1 12.8 0.7 0.9 1.6 1.4 5.4 18.8
#2 3.7 7.6 #2 3.8 1.3 1.7 4.0 3.9 5.2 3.5 1.3 2.1 4.1 4.3 4.9
#3 4.1 8.3 #3 n/f 11.3 2.2 30.5 5.2 3.8 n/f 11.0 2.1 32.1 4.0 3.6
#5 4.0 8.2 #5 n/f 3.9 3.2 22.8 7.5 10.0 n/f 4.1 3.2 22.8 7.3 15.9
#6 4.0 7.6 #6 0.9 1.2 1.6 2.3 4.5 14.9 1.0 1.3 2.1 2.0 6.4 21.6
#7 4.5 9.7 #7 n/f 3.0 2.3 11.9 7.1 38.0 n/f 3.4 2.6 13.2 8.1 54.8
#8 4.0 7.8 #8 n/f 3.5 2.0 11.0 7.1 7.3 n/f 2.6 2.1 11.4 6.6 7.0
#9 4.6 9.5 #9 n/f 5.5 3.8 n/f 16.3 31.2 n/f 5.4 4.3 n/f 16.7 33.2
#10 8.3 26.5 #10 n/f 9.3 2.7 n/f 5.7 8.3 n/f 15.3 5.1 n/f 8.2 19.2
#11 4.1 7.0 #11 n/f 6.5 11.7 n/f 39.5 38.4 n/f 5.7 12.1 n/f 38.5 35.5
#12 5.1 10.3 #12 n/f 3.8 4.8 26.9 21.5 12.7 n/f 3.8 4.2 28.2 21.2 10.7
#13 3.7 7.9 #13 n/f 3.1 4.6 n/f 43.6 22.7 n/f 3.2 5.0 n/f 45.9 20.1
#14 4.8 10.8 #14 n/f 5.0 6.0 14.3 7.1 12.7 n/f 5.4 6.4 14.7 6.6 9.7

SPEED 4.4 9.3 SLOW 1.2 3.4 3.0 9.1 9.0 13.2 1.3 3.6 3.4 9.3 9.8 15.0

Figure 8. Parallelized test execution: mean exploration cost to the bug scenario.

Bug
BLR 2x2 2x3 3x2

fa/tb #C
#IR no-C

fa/tb #C
#IR no-C

fa/tb #C
#IR no-C

fa/tb #C
#IR no-C

(abs) (rel) (abs) (rel) (abs) (rel) (abs) (rel)

#1 36 3 3.3 12.3 20 3 3.0 7.7 25 3 3.0 9.4 35 17 2.8 11.7
#2 67 2 1.3 44.9 25 4 1.2 16.1 28 13 4.6 6.6 52 28 3.5 13.4
#3 0 1 1.0 1.0 0 1 1.0 1.0 144 10 1.8 61.5 175 29 4.2 39.7
#5 0 1 1.0 1.0 0 2 1.0 1.0 0 2 1.0 1.0 0 6 1.0 1.0
#6 0 2 1.0 1.0 0.17 7 1.4 0.8 1 9 1.6 1.0 1 19 2.5 0.7
#7 0 1 1.0 1.0 0 2 1.0 1.0 0 2 1.0 1.0 0 6 1.0 1.0
#8 50 4 1.3 37.3 77 8 3.2 21.7 94 31 9.3 8.4 341 73 15.6 23.6
#9 116 5 4.9 14.8 85 3 2.7 17.8 80 6 7.6 7.0 538 17 11.6 45.6
#10 0 2 1.0 1.0 0 2 1.0 1.0 0 4 1.0 1.0 0 9 1.0 1.0
#11 0 1 1.0 1.0 0 1 1.0 1.0 6 2 1.9 2.5 0 2 1.0 1.0
#12 0 1 1.0 1.0 289 7 5.4 47.9 630 15 14.8 48.8 935 50 20.7 51.8
#13 113 3 2.6 34.3 318 7 7.0 19.5 894 14 27.3 24.7 5,830 39 16.2 244.0
#14 47 3 3.1 15.0 122 8 5.5 15.1 241 12 26.4 7.3 288 38 16.1 16.4

SLOW 4.0 4.7 5.4 8.2

Figure 9. Ratio of false alarms and true bugs, # of clusters, # of reports inspected with clustering, improvement over no clustering.

is slower than stateful for our experiments, and Pool#12 does

not even finish in a reasonable time for stateless.

Figure 8 shows the results for exploring the generated

tests in parallel, on four and eight cores. Note that we do

not parallelize exploration of one test at a time but rather

explore in parallel several tests at once. Each test is explored

with a CHESS-like preemption bounding as in Figure 5. The

first part of the table shows the speedup that this parallelized

test execution achieves over execution on one core for tests

generated by BALLERINA. The average speedup is super-

linear (4.4X on 4 cores and 9.3X on eight cores). This is

not surprising for search problems [36], because the search

finishes as soon as one core finds the bug. The second part of

the table shows the slowdown of the tests generated by basic

random compared to the tests generated by BALLERINA,

when run on the same number of cores. Comparing the

average slowdown to the case for one core (Figure 6),

we find that BALLERINA performs even better than basic

random when test execution is parallelized (e.g., for 2×3
the slowdown is 2.6X on one core, 3.0X on four cores, and

3.4X on eight cores). This is important as the availability

of multi-core processors means that test executions in the

future are likely to be parallelized.

Tests generated by BALLERINA find bugs faster than

tests generated by basic random configurations for a

variety of different exploration approaches.

C. Answering RQ3

Since reports of linearizability violations can be false

alarms or true bugs, developers need to inspect a number of

reports before finding a true bug. Figure 9 shows how our

clustering helps with reducing the number of inspections.

For each bug and several test generation configurations

(the results are similar for the configurations not shown),

we tabulate the ratio of false alarms to true bugs before

clustering (’fa/tb’), the number of clusters that our tech-

nique computes, the expected number of inspections with

clustering (computed as the arithmetic mean of 50 random

orderings of reports), and the ratio of the expected number of

inspections without clustering over the expected number of

inspections with clustering. Effectively, the latter ratio shows

the benefit that our clustering provides over the base case

with no clustering, and the last row shows the geometric

mean average of this benefit.

The improvement ranges from 1.0 (when there are no

false alarms and hence the number of inspections is exactly

one both with and without clustering) up to 244.0X (for

Pool#13 and 3×2). Note that the number of inspections with
clustering is never worse than the number of inspections

without clustering for tests generated by BALLERINA.

Our clustering technique reduces the number of in-

spected reports for tests generated by both BALLERINA

and basic random generation, on average 4X-8X.

D. Threats to Validity

Internal threats: We conducted our experiments with

the default settings of JPF (version 6.0). As explained in

Section V-B, we encountered an incompatibility of JPF’s

POR and linearizability checking for Pool#13, but to the

best of our knowledge, it did not affect any other experiment.

However, changing other JPF settings could affect the results

that we obtained.

External threats: The code under test and bugs that we

use are from a variety of sources and diverse in terms

of the statistics shown in Figure 4. However, we cannot

guarantee that they form a representative sample of bugs in

multithreaded Java code. To mitigate the limitation of using

one particular exploration, we evaluated BALLERINA with

four different explorations.

Construct threats: We measure exploration cost with the

number of transitions (and paths for re-execution) instead of

real time. This is common in previous related studies [17],

[34]. We measure inspection effort with the number of

reports which is a proxy for human time. This is common

in previous related studies [24], [27].

Conclusion threats: The number of random seeds (200

for generation and 50 for clustering) that we used may not

be sufficient to accurately characterize real distribution of

these random processes.

VI. RELATED WORK

There is a rich body of work on random test generation

for sequential code [14], [37], [38], including combinations

with static analysis [15], [39], symbolic execution [40], and

search-based techniques [13], [41], [42]. Our BALLERINA

technique utilizes Randoop [14] and modifies it to more

densely cover states of objects for the given CUT. Related

to this, techniques based on adaptive random testing [43]–

[45] use various measures for object distance to generate

more divergent test inputs. However, unlike those projects,

BALLERINA generates tests for multithreaded code.

For finding bug-triggering interleavings in multithreaded

code, numerous techniques have been proposed, including

static [46] and dynamic approaches [47], and their combina-

tion [33], [48]. Randomized thread scheduling and statistical

fault localization have also shown promise in testing parallel

code [17]–[20]. However, all those techniques assume that

the test code is provided and only explore provided tests. In

contrast, BALLERINA automatically generates multithreaded

tests that can expose bugs. BALLERINA also employs search

for linearizability violations, inspired by Line-Up [2].

Environment generation for multithreaded code is related

to generation of test code. For example, Tkachuk and

Rajan [49], [50] automatically generate driver and stub for

the system under test based on formal specification of the

system properties. BALLERINA does not require the user

to explicitly provide formal specifications but uses random

testing to generate driver code and uses linearizability as an

implicit specification for the CUT. BALLERINA also clusters

failures to reduce the number of inspections of false alarms.

Researchers have proposed different techniques for clus-

tering failing runs. Most previous work clusters failures

based on execution profiles from monitored runs. Podgurski

et al. use feature selection to train clusters based on execu-

tion profiles, which are used to group similar failures [24],

[27]. Jones et al. combine fault-localization information with

profiles to cluster failing tests [25]. Yoo et al. incorporate

human expert knowledge into clustering [28]. Zheng et

al. use statistical methods to find super-bug predictors in

multiple faults setting [29]. Different from the previous

work, our clustering technique focuses on grouping failures

of multithreaded tests based on the methods executing in

parallel and the type of failure.

VII. CONCLUSIONS

Testing multithreaded code is becoming more important

but remains challenging and costly. Automated testing can

help to reduce the costs, but most research focuses on

automated exploration of thread interleavings for manually

written test code. We have presented BALLERINA, a novel

technique that automates generation of multithreaded unit

test code. We have also presented a technique for clustering

failures of automatically generated multithreaded tests. The

experiments with 14 bugs show that BALLERINA can trigger

bugs substantially faster than basic random generation, and

that our clustering can greatly reduce the number of test

failures that need to be inspected to find a true bug. Our

experiments exposed three previously unknown bugs, two of

which were already fixed. While random generation showed

promising results, it would be useful to consider a more

guided search for test generation.

ACKNOWLEDGMENTS

We thank Vilas Jagannath for extensive discussions about

this work. This material is based upon work partially

supported by the US National Science Foundation under

Grant Nos. CCF-1012759, CNS-0958199, CCF-0916893,

and CCF-0746856, by Intel under the Illinois-Intel Paral-

lelism Center (I2PC), and by the Swiss National Science

Foundation under grant number 200021-134453.

REFERENCES

[1] T. Ball, S. Burckhardt, K. E. Coons, M. Musuvathi, and
S. Qadeer, “Preemption sealing for efficient concurrency
testing,” in TACAS, 2010.

[2] S. Burckhardt, C. Dern, M. Musuvathi, and R. Tan, “Line-Up:
A complete and automatic linearizability checker,” in PLDI,
2010.

[3] M. Musuvathi and S. Qadeer, “Iterative context bounding for
systematic testing of multithreaded programs,” in PLDI, 2007.

[4] S. Park, S. Lu, and Y. Zhou, “CTrigger: Exposing atomicity
violation bugs from their hiding places,” in ASPLOS, 2009.

[5] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H.
Lee, and S. Lu, “PRES: Probabilistic replay with execution
sketching on multiprocessors,” in SOSP, 2009.

[6] W. Visser, K. Havelund, G. Brat, and S. Park, “Model
checking programs,” ASEJ, 2003.

[7] J. Burnim, T. Elmas, G. C. Necula, and K. Sen, “NDSeq:
Runtime checking for nondeterministic sequential specifica-
tions of parallel correctness,” in PLDI, 2011.

[8] J. Burnim, G. C. Necula, and K. Sen, “Specifying and
checking semantic atomicity for multithreaded programs,” in
ASPLOS, 2011.

[9] J. Burnim and K. Sen, “Asserting and checking determinism
for multithreaded programs,” in ESEC/FSE, 2009.

[10] ——, “DETERMIN: Inferring likely deterministic specifica-
tions of multithreaded programs,” in ICSE, 2010.

[11] S. Lu, J. Tucek, F. Qin, and Y. Zhou, “AVIO: Detecting
atomicity violations via access interleaving invariants,” in
ASPLOS, 2006.

[12] D. Marino, M. Musuvathi, and S. Narayanasamy, “LiteRace:
Effective sampling for lightweight data-race detection,” in
PLDI, 2009.

[13] L. Baresi, P. L. Lanzi, and M. Miraz, “TestFul: An evolution-
ary test approach for Java,” in ICST, 2010.

[14] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-
directed random test generation,” in ICSE, 2007.

[15] S. Zhang, D. Saff, Y. Bu, and M. D. Ernst, “Combined static
and dynamic automated test generation,” in ISSTA, 2011.

[16] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mis-
takes: A comprehensive study on real world concurrency bug
characteristics,” in ASPLOS, 2008.

[17] M. B. Dwyer, S. G. Elbaum, S. Person, and R. Purandare,
“Parallel randomized state-space search,” in ICSE, 2007.

[18] O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur,
“Multithreaded Java program test generation,” IBM Systems
Journal, 2002.

[19] K. Sen, “Race directed random testing of concurrent pro-
grams,” in PLDI, 2008.

[20] ——, “Effective random testing of concurrent programs,” in
ASE, 2007.

[21] M. Musuvathi and S. Qadeer, “Fair stateless model checking,”
in PLDI, 2008.

[22] M. Herlihy and J. M. Wing, “Linearizability: A correctness
condition for concurrent objects,” ACM TOPLAS, 1990.

[23] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and
B. Calder, “Automatically classifying benign and harmful data
races using replay analysis,” in PLDI, 2007.

[24] W. Dickinson, D. Leon, and A. Podgurski, “Finding failures
by cluster analysis of execution profiles,” in ICSE, 2001.

[25] J. A. Jones, M. J. Harrold, and J. F. Bowring, “Debugging in
parallel,” in ISSTA, 2007.

[26] C. Liu, X. Zhang, and J. Han, “A systematic study of failure
proximity,” IEEE TSE, 2008.

[27] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch,
J. Sun, and B. Wang, “Automated support for classifying
software failure reports,” in ICSE, 2003.

[28] S. Yoo, M. Harman, P. Tonella, and A. Susi, “Clustering
test cases to achieve effective and scalable prioritisation
incorporating expert knowledge,” in ISSTA, 2009.

[29] A. X. Zheng, M. I. Jordan, B. Liblit, M. Naik, and A. Aiken,
“Statistical debugging: simultaneous identification of multiple
bugs,” in ICML, 2006.

[30] Apache Software Foundation, “POOL-184,” https://issues.
apache.org/jira/browse/POOL-184.

[31] ——, “POOL-189,” https://issues.apache.org/jira/browse/
POOL-189.

[32] ——, “LOG4J-51783,” https://issues.apache.org/bugzilla/
show bug.cgi?id=51783.

[33] F. Chen, T. F. Şerbănuţă, and G. Roşu, “jPredictor: A predic-
tive runtime analysis tool for Java,” in ICSE, 2008.

[34] M. B. Dwyer, S. Person, and S. G. Elbaum, “Controlling fac-
tors in evaluating path-sensitive error detection techniques,”
in FSE, 2006.

[35] V. Jagannath, Q. Luo, and D. Marinov, “Change-aware pre-
emption prioritization,” in ISSTA, 2011.

[36] V. N. Rao and V. Kumar, “Superlinear speedup in parallel
state-space search,” in FOSTTCS, 1988.

[37] C. Csallner and Y. Smaragdakis, “DSD-Crasher: A hybrid
analysis tool for bug finding,” in ISSTA, 2006.

[38] H. Jaygarl, S. Kim, T. Xie, and C. K. Chang, “OCAT: Object
capture-based automated testing,” in ISSTA, 2010.

[39] S. Thummalapenta, T. Xie, N. Tillmann, J. de Halleux, and
Z. Su, “Synthesizing method sequences for high-coverage
testing,” in OOPSLA, 2011.

[40] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed
automated random testing,” in PLDI, 2005.

[41] J. H. Andrews, T. Menzies, and F. C. H. Li, “Genetic
algorithms for randomized unit testing,” IEEE TSE, 2011.

[42] Z. Xu, Y. Kim, M. Kim, G. Rothermel, and M. B. Cohen,
“Directed test suite augmentation: Techniques and tradeoffs,”
in FSE, 2010.

[43] T. Y. Chen, F.-C. Kuo, R. G. Merkel, and T. H. Tse, “Adaptive
random testing: The ART of test case diversity,” JSS, 2010.

[44] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer, “ARTOO:
Adaptive random testing for object-oriented software,” in
ICSE, 2008.

[45] Y. Lin, X. Tang, Y. Chen, and J. Zhao, “A divergence-oriented
approach to adaptive random testing of Java programs,” in
ASE, 2009.

[46] M. Naik, A. Aiken, and J. Whaley, “Effective static race
detection for Java,” in PLDI, 2006.

[47] C. Flanagan and S. N. Freund, “FastTrack: Efficient and
precise dynamic race detection,” in PLDI, 2009.

[48] R. O’Callahan and J.-D. Choi, “Hybrid dynamic data race
detection,” in PPoPP, 2003.

[49] O. Tkachuk and S. P. Rajan, “Application of automated
environment generation to commercial software,” in ISSTA,
2006.

[50] ——, “Combining environment generation and slicing for
modular software model checking,” in ASE, 2007.

