
Evaluating Test-Suite Reduction in Real Software Evolution
August Shi

University of Illinois

Urbana, IL, USA

awshi2@illinois.edu

Alex Gyori

University of Illinois

Urbana, IL, USA

gyori@illinois.edu

Suleman Mahmood

University of Illinois

Urbana, IL, USA

msm6@illinois.edu

Peiyuan Zhao

University of Illinois

Urbana, IL, USA

pzhao12@illinois.edu

Darko Marinov

University of Illinois

Urbana, IL, USA

marinov@illinois.edu

ABSTRACT

Test-suite reduction (TSR) speeds up regression testing by removing

redundant tests from the test suite, thus running fewer tests in the

future builds. To decide whether to use TSR or not, a developer

needs someway to predict howwell the reduced test suite will detect

real faults in the future compared to the original test suite. Prior

research evaluated the cost of TSR using only program versions

with seeded faults, but such evaluations do not explicitly predict

the effectiveness of the reduced test suite in future builds.

We perform the first extensive study of TSR using real test fail-

ures in (failed) builds that occurred for real code changes. We ana-

lyze 1478 failed builds from 32 GitHub projects that run their tests

on Travis. Each failed build can have multiple faults, so we propose

a family of mappings from test failures to faults. We use these map-

pings to compute Failed-Build Detection Loss (FBDL), the percentage

of failed builds where the reduced test suite misses to detect all the

faults detected by the original test suite. We find that FBDL can

be up to 52.2%, which is higher than suggested by traditional TSR

metrics. Moreover, traditional TSR metrics are not good predictors

of FBDL, making it difficult for developers to decide whether to use

reduced test suites.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging; Software evolution;

KEYWORDS

Test-suite reduction, regression testing, continuous integration

ACM Reference Format:

August Shi, Alex Gyori, Suleman Mahmood, Peiyuan Zhao, and Darko

Marinov. 2018. Evaluating Test-Suite Reduction in Real Software Evolution.

In Proceedings of 27th ACM SIGSOFT International Symposium on Software

Testing and Analysis (ISSTA’18). ACM, New York, NY, USA, 11 pages. https:

//doi.org/10.1145/3213846.3213875

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5699-2/18/07. . . $15.00

https://doi.org/10.1145/3213846.3213875

1 INTRODUCTION

Regression testing is the act of retesting modified software. Devel-

opers use regression testing to quickly detect code changes that

introduce bugs in their code. Regression testing is commonly done

on continuous integration (CI) servers in the cloud. For example,

when a developer pushes some code changes to GitHub, Travis can

run a build in the cloud. If the build fails due to test failures, the

developer inspects the failures to find the faults that need to be

fixed. Regression testing is beneficial and widely practiced, but it

can be costly, because many tests run on every code change, and

changes occur very frequently [48]. In addition to time, there is a

monetary cost in utilizing the cloud resources [36].

Researchers investigated speeding up regression testing through

test-suite reduction (TSR) [18, 22, 24, 33, 34, 38, 44, 56, 66, 67, 69].

TSR identifies a subset of tests in the test suite that are redundant

with respect to the remaining tests. The remaining, non-redundant

tests are the reduced test suite, which is run instead of the original

test suite for future builds [56]. Running the smaller, reduced test

suite instead of the original test suite leads to faster builds in the

future. While TSR can be performed manually [51], researchers

have proposed many automated TSR techniques that systematically

construct reduced test suites; Yoo andHarman [66] survey 83 papers

on TSR published before 2011.

While TSR can provide great benefits, there are costs in using

TSR. One cost is the time needed to perform TSR, but this cost is

relatively small because TSR can be performed at a noncritical point

of development, and the time to perform TSR is amortized over all

future uses of the reduced test suite [56]. Amore important cost, and

the only one we consider in this paper, is that the reduced test suite

may miss to detect faults in future builds that the original test suite

could detect. When a build fails, the reduced test suite should ideally

detect all the faults in the build (a failed build may have multiple

faults) that the original test suite could detect, so the developers can

debug and fix all the faults before rerunning the build. We define

Failed-Build Detection Loss (FBDL) as the percentage of failed builds

where the reduced test suite misses to detect all the faults that the

original test suite detects. Before using TSR, the developer must

decide whether the benefit from using a reduced test suite is worth

the cost of missed future faults [56].

Since two decades ago, when Wong et al. [62] and Rothermel

et al. [56] evaluated the fault-detection effectiveness reduction of

TSR using program versions with seeded faults, all evaluations of

TSR [66] (1) used seeded faults or mutants, (2) used only one fault

84

https://doi.org/10.1145/3213846.3213875
https://doi.org/10.1145/3213846.3213875
https://doi.org/10.1145/3213846.3213875

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands A. Shi, A. Gyori, S. Mahmood, P. Zhao, and D. Marinov

seeded for each faulty version, and (3) ignored new tests added to

the test suite during software evolution. It is unknown how TSR

performs for real software evolution. Developers have no practical

guidance to make cost-benefit decisions about TSR, and researchers

have no real data for improving TSR. We present the first study of

TSR on real software evolution; our study (1) uses real test failures

from the CI builds of open-source projects, (2) considers multiple

faults per failed build, and (3) accounts for new tests added during

software evolution.

More precisely, we use the following experimental procedure

to evaluate the cost and benefit of TSR. First, we collect historical

failed build logs for several projects and determine which tests

failed in which build. Then, for a reduced tests suite computed

at an earlier reduction point, we measure FBDL using the future

failed builds relative to that point. One challenge in using real test

failures from historical build logs is to map the test failures to the

faults they detect. The mapping can range from each test failure

detecting a unique fault to all test failures detecting the same single

fault [56]. Prior studies do not encounter this challenge: they create

faulty versions by starting from a version on which all tests pass

and seeding one fault such that all test failures on the faulty version

map to the one seeded fault [55]. However, we use real failed builds

from CI that can encompass relatively large code changes (e.g.,

multiple Git commits for one push), so a faulty version (i.e., a failed

build) can have multiple faults. We propose Failure-to-Fault Map

(FFMap), a family of mappings from test failures to faults.

Our first set of experiments measure FBDL of TSR from histori-

cal builds. However, a developer needs the reduced test suite for

future builds and thus needs to predict FBDL. Our second set of

experiments measures how well the FBDL in future builds can be

predicted. As predictors, we evaluate two traditional TSR metrics

that can be collected at the reduction point [66], size reduction and

test-requirements loss. Past studies measured test-requirements

loss implicitly as a proxy for TSR effectiveness in the future. We are

the first to explicitly evaluate these metrics to predict the quality of

a reduced test suite for future, failed builds.

We present the first extensive study evaluating (1) the FBDL of

TSR in real-world software evolution and (2) the power of various

TSR metrics to predict the FBDL of TSR. No prior research has

studied TSR with respect to real code changes and builds. One

key challenge was to obtain a dataset with the build logs from

many projects. While some companies have such logs [25, 61],

most open-source projects did not have them readily available.

However, increasingly many open-source projects on GitHub [7],

the most popular hosting platform for open-source projects [14,

17, 19, 20], utilize Travis [11] to run tests. The usage of Travis [37]

allows creating such a dataset [16]. We analyze 1478 failed builds

(from a total of 27461 builds) from Travis for 32 GitHub projects

written in Java and using the Maven build system. For each project,

we first create reduced test suites using several TSR techniques

from the literature at multiple reduction points and compute the

FBDL of each reduced test suite for each mapping from FFMap. We

then compute the predictor metrics for each reduced test suite and

evaluate how well they predict FBDL.

The results show that FBDL is quite high, up to 52.2%, using

the most “pessimistic” mapping of failures to faults from FFMap.

Moreover, we find that the traditional metrics used to evaluate TSR

are not good predictors of FBDL; the low correlation between these

metrics and FBDL suggests that a developer cannot trust these

metrics to predict FBDL. Because the traditional TSR metrics are

not good predictors, we propose a new predictor, historical FBDL

computed on historical failed build logs to predict the FBDL of

future failed builds; while the historical FBDL is a better predictor

than the other predictors, it is still not a good predictor.

This paper makes the following contributions:

• Empirical Study:We perform the first extensive study of

TSR using real historical builds and test failures.

• Novel Mappings:We propose FFMap, a family of mappings

from test failures to faults, for evaluating FBDL.

• New Predictor: We propose historical FBDL as a predic-

tor of future FBDL, which performs better than traditional

metrics computed for the reduced test suite.

In sum, our results confirm important concerns about TSR [56,

57, 66]. Developers need to exercise great caution when deciding to

use TSR, because the FBDL of reduced test suites can be high, and

the available predictors of FBDL are not very effective. While our

proposed historical FBDL predictor performs better than the others,

it is still not highly reliable. Researchers considering TSR need to

develop (1) TSR techniques that have lower FBDL, (2) TSR tech-

niques that result in reduced test suites that are more predictable,

and/or (3) new predictors that can more reliably predict the FBDL

of the reduced test suites in future builds. On a positive note, TSR

has the potential to be useful. We find that a large percentage of

tests never failed: performing an “oracular” TSR that is aware of

all the failed tests in the future, we could have a reduced test suite

consisting only of future failed tests, whose size is on average only

∼20% of the original test-suite size, yet misses no regression fault

in future builds.

2 EXAMPLE

We present one example that illustrates how developers would ap-

ply TSR in their project and how to evaluate the effectiveness of the

reduced test suite. Consider the caelum/vraptor4 GitHub project,

“A web MVC action-based framework [. . .] for fast and maintain-

able Java development” [5]. This project uses Travis, a cloud-based

continuous-integration system, to build and run tests for every

push [12]. Through our large-scale study, we identified 1939 build

logs for this project from Travis, and 124 of those were failed builds.

Intuitively, when developers of caelum/vraptor4 consider whether

to apply TSR, they would need to consider the trade-off between the

benefit of removing some number of tests and the cost of missing

future faults due to removing the tests.

Assume the developer chooses the commit b2437ab1 [1] as the

reduction point for performing TSR. At this reduction point, the

original test suite had 753 tests
1
. Coverage-based TSR using the

Greedy algorithm [24, 40] finds that 419 of those tests are redundant

and can be removed, so only 334 are kept in the reduced test suite,

giving a test-suite size reduction of 44.4% (the ratio of tests from

the original test suite kept in the reduced test suite).

Given a reduced test suite and its corresponding original test

suite, we categorize each failed test in a future failed build based on

1
The term test refers to either a test method or a test class; we discuss later how the

PIT tool produces information at the level of test methods or classes.

85

Evaluating Test-Suite Reduction in Real Software Evolution ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

its presence or not in the reduced test suite. Failed tests that were

removed can lead to missed faults. For example, the failed build

for the commit f810dd0d has only one failed test, but this failed

test would have been removed had TSR been applied on the earlier

commit b2437ab1, and thus the build would have not failed; in this

case, TSR would have definitely been a miss-build, as the developer

would not see any failure that indicates a fault. As another example,

the failed build for the commit 10668287 has five failed tests, but all

five failed tests would have been kept had TSR been applied, and

thus the build not only would have still failed but also would have

reported the same failed tests as when the original test suite had

been run; in this case, TSR would have definitely revealed the fault.

In general, however, checking whether the failures from a re-

duced test suite miss a fault in a failed build is challenging because

failed builds can have a mix of failed tests that are removed or kept.

For example, the build number 303 [2] for the commit 021d10b7 [3]

has nine failed tests, one kept and eight removed by TSR. Because

one of the failed tests would have been kept, this build would have

failed even if TSR had been applied. While it is positive that the

build would have failed, it can be negative that the build would

have had only one failed test rather than nine. In general, two or

more dynamic test failures may map to either one, same static fault

in the code, or they may map to several different faults. Ideally,

we would like to determine whether the developers applying TSR

and seeing only a subset of failures would still be able to find all

the faults. However, it is rather challenging to determine whether

multiple test failures map to the same fault.

In this particular example, our manual inspection shows that all

nine failures are actually due to the same fault. The code had some

encoding hardcoded to UTF-8, and the commit 021d10b7 [3] changed

the code to get the encoding from the web.xml configuration file.

This change broke all nine tests with a NullPointerException; had

the developers seen any of the nine failures, they would have likely

fixed their code to correct all failures. In fact, all nine tests stopped

failing after just one-line change [4].

Manual inspection of failures is extremely costly and error-prone,

so we use automated heuristics to categorize failed builds based

on how likely developers would have fixed the code even without

seeing the failures from the removed tests. We propose FFMap,

a family of mappings from test failures to faults, based on the

proximity of removed and kept failed tests. We describe these map-

pings in more detail in Section 3. For example, one of the map-

pings maps test failures in the same test class to the same fault.

In our example, all nine test methods are from the same test class,

DefaultParametersControlTest, and indeed fail due to the same

fault. With such a mapping, we say that TSR would not miss any

fault for that failed build.

3 FAILED-BUILD DETECTION LOSS (FBDL)

We describe how we measure Failed-Build Detection Loss (FBDL) for

a reduced test suite. Given a reduced test suite from some reduction

point, the goal is to find the percentage of future failed builds where

the reduced test suite does not detect all the faults that the original

test suite detected; the reduced test suite cannot detect more faults

than the original test suite detects, and we do not assume that the

original test suite detects all faults in the code. We call a failed build

a miss-build if the reduced test suite does not detect all the faults

the original test suite detects. If F is the set of all future failed builds

after a reduction point, and Fr is the subset of F where the reduced

test suite detects all the faults that the original test suite detects,

then we define FBDL as (|F | − |Fr |)/|F | ∗ 100.
Given a reduced test suite, we want to find which of the future

failed builds are in Fr , using test failures from historical build logs.

Wong et al. [62] and Rothermel et al. [56] defined a similar metric,

but their experiments constructed faulty versions of the program,

each seeded with one fault. The set of all such faulty versions is

the set F , and having one fault per version makes it easy to map

test failures to the faults (all test failures map to the same fault).

However, in real-world evolution, a program version can have

multiple faults, and mapping test failures to faults is much harder,

which in turn makes defining Fr harder as well.

3.1 Failure-to-Fault Map

We develop a family of mappings from test failures to faults, called

Failure-to-Fault Map (FFMap). The different mappings are based on

heuristics for how likely certain groupings of failed tests are due to

the same fault. The first mapping, FFMapS , is the most “optimistic”

and maps every test failure to the same fault, so any test failure

detects all the faults
2
. This mapping is the same one used in seminal

experiments of TSR [56, 62]. The second mapping, FFMapP , maps

failed tests from the same (Java) package to the same fault(s). The

third mapping, FFMapC , maps failed tests from the same class to the

same fault(s). The final mapping, FFMapU , is the most “pessimistic”

mapping and maps each test failure to its own unique fault, so all

test failures are needed to detect all faults. Rothermel et al. [56]

also mention potentially using this mapping for TSR evaluations,

but they ultimately did not use it as their experiments are such that

there was one seeded fault per program version.

3.2 Classifying Failed Builds

Using the different FFMap mappings, we define which failed builds

are considered a miss-build. Given a reduced test suite from some

reduction point, we find every failed build after that point, classify

its failed tests, and finally classify the entire failed build based on

its failed tests. We assume that whenever the original test suite

passed, then the reduced test suite would have also passed. This

assumption can break due to test-order dependencies [15, 64] or

other causes of flakiness [46, 48], but it does hold in a vast majority

of cases [64].

With respect to a reduced test suite (and its corresponding origi-

nal test suite) from an early, passed commit, we give a classification

for each failed test from a future, failed build. Each failed test is

classified as: (1) Removed: the test existed in the original test suite

but was not in the reduced test suite; (2) Kept: the test existed in the

original test suite and was kept in the reduced test suite; (3) New:

the test did not exist in the original test suite and is newly added

between the reduction point and the failed build. We assume the

test suite evolves by adding all new tests into the reduced test suite,

and we consider such new test failures.

2
When a failed build is due to only one fault, as is commonly evaluated in prior TSR

studies that used one seeded fault per version, FFMapS is the correct mapping.

86

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands A. Shi, A. Gyori, S. Mahmood, P. Zhao, and D. Marinov

Table 1: Build classification based on failed tests

Failed Tests

Build

DefMiss In-between Hit NewOnly

#Removed >0 >0 0 0

#Kept 0 >0 0 >0 >0 0

#New 0 0 >0 >0 X >0

Based on the classification of failed tests in a failed build, we

classify the failed build into one of the six classifications: DefMiss,

LikelyMiss, SamePack, SameCl,Hit, andNewOnly (listed in order

of “badness”). Table 1 shows how we classify entire builds based

on the number of Removed, Kept, and New tests. We present the

build classifications in the order that is the easiest to understand.

DefMiss Builds. A DefMiss build is one in which the reduced

test suite definitely cannot detect all the fault(s) that the original

test suite would detect, no matter what FFMap mapping is used.

We classify a build as DefMiss if all of the failed tests are Removed,

i.e., the only tests that fail are tests that would have been removed

from the reduced test suite, so the build would have not even failed

if using the reduced test suite.

Hit Builds. In contrast to a DefMiss build where the reduced test

suite fails to detect any fault, a Hit build is one where the reduced

test suite detects all the faults that the original test suite would

detect, no matter what FFMap mapping is used. We classify a build

as Hit if none of the failed tests are classified as Removed and at

least one failed test is classified as Kept. The number of New tests

does not matter.

NewOnly Builds. We classify a build as NewOnly if all the failed

tests are classified as New. In these builds, neither the reduced test

suite nor the original test suite detect any fault. If the reduced test

suite is modified such that all new tests are added into the reduced

test suite, a NewOnly build would not be a miss-build.

“In Between” Builds. When a build has a mix of Removed and

Kept/New tests, it is less clear if the failed build is a miss-build or

not. While the reduced test suite would have failed on the build,

at least one failed test would have been removed, so we cannot

easily establish whether the reduced test suite would have detected

all the faults. These builds can be miss-builds based on which

FFMap mapping is used. We classify such builds into three separate

(sub)classifications. A build is SameCl if each Removed test is from

the same class as some Kept/New test. The intuition is that failed

tests from the same class likely detect the same fault (as illustrated

in Section 2). A build is SamePack if it is not SameCl but each

Removed test is from the same package as some Kept/New test.

The reasoning is similar as for SameCl. All remaining builds are

LikelyMiss, i.e., at least one failed Removed test does not share the

same package (thus not the same class) as any Kept/New test.

3.3 Computing FBDL

With the failed builds classified, we compute which of those failed

builds are miss-builds based on the FFMap mapping used. FBDL

values for mappings FFMapS , FFMapP , FFMapC , and FFMapU are

called FBDLS , FBDLP , FBDLC , and FBDLU , respectively.

For FBDLS , a miss-build is a failed build classified as DefMiss,

because the reduced test suite does not contain any of the failed

tests in that build. For FBDLP , a miss-build is a failed build classified

as DefMiss or LikelyMiss, because the reduced test suite removed

failed tests from different packages. For FBDLC , a miss-build is

a failed build classified as DefMiss, LikelyMiss, or SamePack,

because the reduced test suite removed failed tests from different

classes. Finally, for FBDLU , a miss-build is a failed build classified

as DefMiss, LikelyMiss, SamePack, or SameCl (i.e., only failed

builds classified as Hit or NewOnly are not miss-builds), because

at least one failed test is in the reduced test suite.

4 METHODOLOGY

For our evaluation of TSR, we need to obtain a dataset of projects,

passed builds where we can apply TSR, and failed builds that we can

use to compute the FBDL of the reduced test suites.We then evaluate

if there are good predictors of FBDL. We model our experimental

setup for evaluating TSR in a manner that simulates the approach

by which developers could use TSR (Section 2).

4.1 Projects and Failures

To determine what projects to use for our experimental evaluation,

we started with the dataset provided by TravisTorrent [16]. This

dataset includes a large number of build logs harvested from Travis

for a variety of projects from GitHub. We filtered the TravisTorrent

dataset to obtain a set of Java projects that use Maven. We focus

on projects that use Maven because we rely on the PIT mutation

testing tool [10] (Section 4.3) to obtain code coverage and mutation

results. As in previous research for coverage-based TSR, we use

mutants to measure the loss of reduced test suites as a part of our

evaluation. We also use mutants as a different test-requirement for

mutant-based TSR (Section 4.3). We decided to use PIT because it

is robust and increasingly used in research [21, 28, 30, 45, 58, 59].

We aim to analyze projects with a non-trivial number of failed

builds, because we want a representative sample of failed builds

per project. A small number of failed builds would lead to only a

few possible values for FBDL (e.g., if a project has only one failed

build, then the FBDL is either 0% or 100%). We found projects that

have over 20 failed builds that Travis marks as either “failed” or

“errored” (because both kinds can have failed tests) and at least one

passed build. We considered only the builds that are either a pull

request for the master branch or a direct push into that branch. We

focused on the master branch because (1) missing failures on it is

the most problematic for the project, (2) the master branch has a

linear history, so we can precisely determine whether a reduced

test suite from some reduction point could have been propagated

to a build at another point, and (3) the master branch is more likely

to have commits available for reproducing runs. We obtained 144

projects that satisfy these requirements.

4.2 Reduction Points

We attempted to rerun old builds, going back to commits from 2013.

While we need not rerun the failed builds (because TSR can be

evaluated from failed tests, which can be determined from logs

as described in Section 4.4), we do need to rerun some passed

builds to performTSR and evaluate test-requirements loss. However,

reproducing old builds (even just compiling the code) is challenging

formany reasons (e.g., changing Java version,missing dependencies,

different environment). We created a Docker [6] image similar to

the one used by Travis [13]. (Travis does not make public their

actual Docker image.) We aimed for multiple reduction points for

87

Evaluating Test-Suite Reduction in Real Software Evolution ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

each project so we can study (1) the effects of newly added tests on

the results and (2) whether the distance from the reduction point

to the failed build affects the FBDL.

We first tried to reproduce a very early passed build for each

project. Specifically, for each of the initially selected 144 projects,

we found from the TravisTorrent dataset the earliest 10 passed

builds whose commits could still be checked out from the GitHub

repository. We checked out these commits and tried to reproduce

the passed build by building the project in our Docker image using

the commands specified in the project’s .travis.yml file. For the

earliest passed build of those 10 builds, we used its commit as a

candidate point for TSR. If none of the earliest 10 builds for a project

passed, we excluded that project. We were left with 51 projects.

For each of these 51 projects, we further searched for more

commits on which we could reproduce passed builds to use as

candidate points for TSR. Travis has many passed builds for each

project. Ideally, we would evaluate TSR using all the passed builds,

but given limited time and resources, we did not try them all. We

searched for the builds that ran right before a failed build. Selecting

these builds as reduction points and then evaluating FBDL on all

the failed builds after each point gives us (1) a diverse range of

commit distances from the reduction point to the failed build and

(2) a diverse number of newly added tests. Specifically, for each

failed build, we took up to 3 passed builds (whose commits can

be checked out) right before that failed build. Each reproducible

passed build provided a candidate point.

We aimed to analyze TSR for test suites with a non-trivial number

of tests. We chose 10 test methods (as reported by Surefire) as

the threshold. We excluded the reduction points with fewer tests,

obtaining 875 candidate reduction points for 51 projects.

4.3 Test-Suite Reduction

For each commit that is a candidate reduction point, we attempted

to perform TSR. We used PIT [10] to obtain coverage matrices that

map individual tests to lines they cover. PIT most often reports

this mapping from test methods to lines covered, but in some cases

(e.g., when a test class has a @BeforeClass annotation), PIT can

only map the test classes to lines covered (e.g., for the test class

GraphHopperServletIT in graphhopper/graphhopper). When we

refer to a test in a test suite, we mean either the test method or the

test class that PIT reports as tests. For each project, we counted the

number of these tests reported by PIT.

For some commits, PIT failed to collect coverage, either crashing

altogether or having some test fail while collecting coverage even

though it passed without collecting coverage (e.g., the test may

be flaky [46, 48]). We filtered such commits from further analysis.

Moreover, if PIT reported fewer than 10 tests in the original test

suite for some commit, we filtered those commits.

For the remaining commits, we first performed coverage-based

TSR. Following the traditional TSR literature [24, 66], we imple-

mented four different TSR algorithms: Greedy [40], GE [22], GRE [23],

and HGS [34]. These four algorithms are widely used in prior work

on TSR [58, 59, 66, 67, 69]. All four algorithms start from an empty

reduced test suite and incrementally add tests from the original

test suite into the reduced test suite based on different heuristics,

resulting in a (smaller) reduced test suite that still satisfies all the

test-requirements satisfied by the original test suite. We applied

each algorithm with the line-coverage information on each reduc-

tion point to create coverage-based reduced test suites. We excluded

any reduced test suite that was the same as the original test suite.

If we excluded all reduction points for a project, then we removed

the project. We obtained 32 projects with 321 reduction points.

We also used PIT to collect what tests kill which mutants. We

used all 16 mutation operators available in PIT, including the exper-

imental ones [9]. Because mutation testing can be expensive, we

limited PIT to run mutation testing up to 12 hours per reduction

point. PIT times out or crashes on 95 reduction points, and we ex-

cluded them from any further analysis that involves mutants, which

can result in excluding even entire projects from some analyses.

We computed mutant-detection loss as traditionally done to evalu-

ate coverage-based TSR at the reduction point [56, 57]. Moreover,

we applied mutant-based TSR [49, 58] to construct reduced test

suites that kill all mutants as the original test suites. We performed

mutant-based TSR also using the same four TSR algorithms.

4.4 Extracting Failed Tests

We did not collect test failures by rerunning failed builds because

rerunning old builds is challenging, as mentioned for passed builds.

From the logs of failed builds, we needed to extract the names of

the failed tests. For each build, the TravisTorrent dataset already

provides the names of some failed tests extracted from the build logs.

However, our sampling found that the test names in TravisTorrent

were often not properly extracted. We patched the TravisTorrent

analyzer for finding failed tests to extract the fully qualified test

names more correctly. This extraction requires the complete textual

logs for each build, and we harvested these build logs ourselves

from Travis. We harvested all the logs since the first build of each

project on Travis. Sometimes the build failed such that no failed

test is reported in the log, e.g., the build failed in the compilation

phase. For our further analysis, we only considered the failed builds

where the failed test names are in the log. As a result, the analysis

for some projects includes fewer than 20 failed builds.

A seemingly trivial but actually tricky aspect when extracting

failed test names is to match the names of tests from the reduction

point and the failed build. PIT provides tests that are sometimes test

methods and sometimes test classes. Likewise, the reported failed

tests from the Travis build logs are sometimes test methods and

sometimes test classes. Our matching is as follows. If the failed test

is a test method, then it matches either the exact same name or the

test class of the test method in the original test suite. If the failed

test is a test class, then it matches either the exact same name or

any test method from the same class in the original test suite. If the

matching finds the name, the test is Removed or Kept; otherwise,

it is New. We do not consider test renames as they are not frequent

in test evolution [51], and method renames are hard to track in

general [52, 60]. Note that when a failed test in a future build has

the same name as a test at the reduction point, the developer may

have actually modified the test body between the reduction point

and the failed build.

4.5 Predicting FBDL

Wewant to evaluate the predictive power of traditional TSR metrics

that can be generated at the reduction point. We utilize a linear

88

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands A. Shi, A. Gyori, S. Mahmood, P. Zhao, and D. Marinov

Table 2: Statistics about the projects used in our evaluation; µ ± σ values are across all algorithms (Greedy, GE, GRE, HGS)

ID GitHub Slug #Builds Avg #Failed #Red. Orig. Coverage-Based Mutation-Based

Total Failed Test Units Points Size Red. Size Mut. Loss Red. Size Cov. Loss

P1 addthis/stream-lib 184 11 1.5 8 106.6 48.1% ± 1.6% 3.1% ± 0.3% 61.9% ± 1.0% 0.3% ± 0.0%

P2 azagniotov/stubby4j 886 13 3.0 9 50.1 45.2% ± 3.2% 2.8% ± 1.3% 49.2% ± 2.7% 2.5% ± 2.4%

P3 caelum/vraptor4 1939 124 4.4 7 770.6 44.1% ± 0.4% 6.5% ± 0.8% 51.1% ± 1.0% 7.1% ± 2.1%

P4 dynjs/dynjs 383 18 264.0 10 798.3 34.6% ± 0.8% t/o t/o t/o

P5 FasterXML/jackson-core 580 23 2.3 20 274.4 67.5% ± 3.1% 1.8% ± 0.3% 76.9% ± 2.3% 0.3% ± 0.1%

P6 google/auto 595 33 2.8 3 27.3 65.3% ± 2.1% 0.6% ± 0.4% 63.2% ± 5.1% 8.2% ± 5.5%

P7 google/truth 419 34 10.4 3 222.7 53.3% ± 3.1% 3.3% ± 0.6% 57.0% ± 3.3% 1.6% ± 1.8%

P8 graphhopper/graphhopper 2269 117 18.3 33 686.0 23.7% ± 1.7% t/o t/o t/o

P9 HubSpot/jinjava 398 6 1.7 16 307.1 41.2% ± 0.5% 4.9% ± 1.1% 53.4% ± 0.7% 1.0% ± 1.0%

P10 iluwatar/java-desig... 1537 16 2.2 1 52.0 96.2% ± 0.0% 0.8% ± 0.0% 96.2% ± 0.0% 0.9% ± 0.0%

P11 jOOQ/jOOQ 1993 88 5.8 34 29.2 69.0% ± 2.4% 0.0% ± 0.0% 69.1% ± 2.5% 0.0% ± 0.0%

P12 jsonld-java/jsonld-... 290 17 2.1 3 45.7 21.4% ± 7.9% t/o t/o t/o

P13 kongchen/swagger-ma... 511 87 3.0 2 22.0 31.8% ± 0.0% 3.0% ± 0.3% 47.7% ± 2.4% 0.0% ± 0.0%

P14 ktoso/maven-git-com... 349 34 7.5 8 39.0 42.7% ± 4.3% 4.2% ± 1.3% 49.9% ± 5.3% 6.6% ± 1.7%

P15 larsga/Duke 146 15 2.6 8 640.4 34.1% ± 1.2% 6.9% ± 0.5% 48.3% ± 0.6% 0.4% ± 0.1%

P16 lviggiano/owner 582 19 4.8 25 216.7 34.5% ± 1.0% 4.5% ± 1.0% 38.0% ± 1.4% 7.0% ± 5.4%

P17 mgodave/barge 184 40 3.1 4 27.5 42.6% ± 3.4% 1.7% ± 0.2% 55.4% ± 2.5% 0.3% ± 0.6%

P18 myui/hivemall 671 50 6.9 9 85.2 57.7% ± 2.5% t/o t/o t/o

P19 notnoop/java-apns 229 75 8.5 5 99.8 33.5% ± 1.0% 6.2% ± 2.1% 39.3% ± 0.6% 9.8% ± 1.8%

P20 nurkiewicz/spring-d... 101 13 53.5 1 34.0 30.9% ± 1.7% 1.4% ± 1.2% 32.4% ± 0.0% 0.0% ± 0.0%

P21 perwendel/spark 862 55 11.9 13 16.5 82.1% ± 2.5% 0.0% ± 0.0% 75.5% ± 2.0% 0.3% ± 0.1%

P22 rackerlabs/blueflood 2296 300 4.7 3 121.0 54.8% ± 1.0% 4.7% ± 0.5% 62.6% ± 0.9% 1.0% ± 0.4%

P23 redline-smalltalk/r... 228 19 2.4 3 112.3 74.5% ± 1.5% 2.9% ± 1.7% 76.8% ± 4.2% 2.2% ± 1.1%

P24 relayrides/pushy 738 30 5.6 4 47.2 66.7% ± 2.8% 0.8% ± 0.6% 68.6% ± 3.9% 0.3% ± 0.1%

P25 sanity/quickml 643 52 1.5 14 37.1 63.0% ± 6.4% 4.5% ± 2.4% 83.3% ± 2.2% 2.4% ± 1.8%

P26 scobal/seyren 453 21 13.4 3 23.3 41.0% ± 5.6% 0.9% ± 0.5% 37.5% ± 5.5% 3.4% ± 1.3%

P27 spotify/cassandra-reaper 382 21 3.7 5 20.8 68.9% ± 3.0% 0.7% ± 0.5% 77.4% ± 3.3% 0.1% ± 0.2%

P28 square/dagger 758 13 31.7 7 116.7 38.5% ± 2.3% 3.5% ± 0.7% 49.3% ± 1.9% 1.6% ± 0.6%

P29 square/wire 1404 32 11.5 2 73.0 52.5% ± 5.4% 1.1% ± 0.3% 62.0% ± 11.3% 1.4% ± 1.6%

P30 tananaev/traccar 2960 44 2.8 36 131.5 93.7% ± 2.5% 0.7% ± 0.6% 96.0% ± 1.1% 0.2% ± 0.2%

P31 twilio/twilio-java 431 13 1.5 6 88.5 73.6% ± 4.3% 0.7% ± 0.5% 72.7% ± 4.3% 1.7% ± 1.1%

P32 weld/core 2060 45 4.8 16 280.6 35.6% ± 2.2% t/o t/o t/o

Overall (Sum or Average) 27461 1478 504.2 321 175.1 51.9% 2.7% 61.1% 2.2%

regression model to see if there is a linear correlation between the

predictor and FBDL. The linear regression model outputs an R2

value, ranging from 0 to 1, and we are looking for an R2 value larger
than 0.7, showing strong linear correlation [31]. The p-value then
shows statistical significance (the lower the better).

In case the predictor is not linearly correlated with FBDL, we

also evaluate using Kendall-τb rank correlation, which outputs a τb
value ranging from -1 to 1, where a negative value indicates negative

correlation and a positive value indicates positive correlation. The

higher the absolute value, the better the correlation, and we are

again looking for an absolute value greater than 0.7, showing strong

correlation [31]. There is also a p-value for statistical significance.

4.6 Summary of Analyzed Projects

Table 2 shows a summary of the 32 projects: the short ID to be

used later, the GitHub user/repo “slug”, the total number of builds,

the number of failed builds, the average number of failed tests

per failed build, the number of reduction points, the average size

(i.e., the number of tests) of the test suite at the reduction points,

the reduced test-suite size (relative to the original test-suite size)

for coverage-based TSR using four TSR algorithms, the mutant-

detection loss of the coverage-based reduced test suites, the reduced

test-suite size for mutant-based TSR using four TSR algorithms,

and the coverage loss of the mutant-based reduced test suites. The

tabulated mean±std.dev. values are across all reduction points and

all four algorithms. The cells with “t/o” mark the cases where PIT

did not complete mutation testing. The overall summary numbers

are: (1) the average size reduction (“Red.Size %”), 51.9% and 61.1%

for coverage- and mutant-based TSR, respectively, indicate that

almost half of the tests are redundant with respect to those criteria;

and (2) the average mutant-detection loss, 2.7%, shows that, at the

reduction points, coverage-based TSR results in only slightly fewer

mutants killed than the original test suite; likewise, the average

coverage loss, 2.2%, shows that mutant-based TSR results in very

little coverage loss compared to the original test suite.

5 RESULTS AND ANALYSIS

Our evaluation aims to answer the following research questions:

RQ1 What is the FBDL of TSR in real software evaluation?

RQ2 How well can the FBDL of TSR be predicted?

RQ3 How does distance from TSR reduction point affect FBDL?

The goal of RQ1 is to measure the FBDL of TSR, which has not

been done before for real-world software evolution. The goal of

RQ2 is to see whether that FBDL can be predicted well: if the FBDL

is high but can be predicted, the developer can still make a cost-

benefit analysis about using the reduced test suite. The goal of RQ3

is related to prediction: if a longer distance from a reduction point

leads to worse FBDL, the developer can make an informed decision

to stop using the reduced test suite.

5.1 RQ1: FBDL

Figures 1 and 2 show FBDLS , FBDLP , FBDLC , and FBDLU for each

project using coverage-based Greedy TSR and mutant-based HGS

TSR, respectively. For each project, we compute eachmetric for each

reduction point and then average (using arithmetic mean) across

all reduction points; the Avg column shows the averages across

89

Evaluating Test-Suite Reduction in Real Software Evolution ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

0

20

40

60

80

100

A
v
e
ra

g
e
 F

B
D

L FBDLS FBDLP FBDLC FBDLU
P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
9

P
1
0

P
1
1

P
1
2

P
1
3

P
1
4

P
1
5

P
1
6

P
1
7

P
1
8

P
1
9

P
2
0

P
2
1

P
2
2

P
2
3

P
2
4

P
2
5

P
2
6

P
2
7

P
2
8

P
2
9

P
3
0

P
3
1

P
3
2

A
v
g

Project ID

0

20

40

60

80

100

A
v
e
ra

g
e
 F

B
D

L

Figure 1: Average FBDL when including (top) and excluding (bottom) NewOnly (Coverage + Greedy)

0

20

40

60

80

100

A
v
e
ra

g
e
 F

B
D

L

N
o
 D

a
t
a

N
o
 D

a
t
a

N
o
 D

a
t
a

N
o
 D

a
t
a

N
o
 D

a
t
a

FBDLS FBDLP FBDLC FBDLU

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
9

P
1
0

P
1
1

P
1
2

P
1
3

P
1
4

P
1
5

P
1
6

P
1
7

P
1
8

P
1
9

P
2
0

P
2
1

P
2
2

P
2
3

P
2
4

P
2
5

P
2
6

P
2
7

P
2
8

P
2
9

P
3
0

P
3
1

P
3
2

A
v
g

Project ID

0

20

40

60

80

100

A
v
e
ra

g
e
 F

B
D

L

N
o
 D

a
ta

N
o
 D

a
ta

N
o
 D

a
ta

N
o
 D

a
ta

N
o
 D

a
ta

Figure 2: Average FBDL when including (top) and excluding (bottom) NewOnly (Mutants + HGS)

all projects. The bars overlap the metric values for each project,

as FBDL cannot decrease going from FBDLS to FBDLU . The top,

respectively bottom, half of each figure shows FBDL computed

including, respectively excluding, NewOnly builds.

For example, for P3 in Figure 1 the FBDL percentages of FBDLS ,

FBDLP , FBDLC , and FBDLU are 1.4%, 1.4%, 1.4%, and 50.5%, respec-

tively. Excluding the NewOnly builds, the percentages are 2.2%,

2.2%, 2.2%, and 75.2%, respectively. For this case, test-suite size re-

duction (average of 44.2% kept; Table 2 shows 44.1% average over

all four algorithms) may be worth it as FBDLS , FBDLP , and FBDLC
are rather low. However, if the developer believes that each test

failure detects a unique fault, then based on FBDLU , the reduction

may not be worth it.

Figure 2 shows the breakdown per project for mutant-based

TSR and has no data for five projects because PIT could not collect

mutation testing results for those projects (Section 4.3). In P3, the

percentages of FBDLS , FBDLP , FBDLC , and FBDLU are 0.5%, 2.0%,

2.6%, and 49.7%, respectively. Excluding NewOnly, the percentages

are 0.7%, 2.9%, 3.8%, and 73.9%, respectively. The developer may

reach similar conclusions on whether or not to use the mutant-

based reduced test suite for P3 as with the coverage-based one.

The two figures show the results for only one of four TSR al-

gorithms for each criterion, coverage- and mutant-based. The dis-

tributions are visually similar for the same TSR criterion for the

other three TSR algorithms (not shown for space reasons). Table 3

shows the overall averages for each FBDL for all TSR algorithms,

computed excluding NewOnly builds. This table allows comparing

Table 3: Averages of FBDL for different TSR techniques

Technique FBDLS FBDLP FBDLC FBDLU

C
o
v

Greedy 26.1% 27.4% 28.9% 52.2%

GE 21.3% 22.8% 29.1% 45.2%

GRE 23.6% 24.8% 30.6% 47.2%

HGS 22.6% 23.6% 29.1% 48.5%

M
u
t

Greedy 13.1% 14.7% 15.5% 36.2%

GE 10.5% 12.0% 12.8% 34.3%

GRE 12.2% 13.7% 14.8% 36.0%

HGS 12.1% 13.2% 14.3% 35.5%

percentages across the two criteria, as the percentages are aver-

aged across the builds that are in common between coverage- and

mutant-based TSR techniques. (Recall from Section 4.3 that PIT

fails to produce mutation testing results for 95 reduction points.)

We use a statistical analysis to compare each pair of algorithms

for the same criterion, e.g., comparing coverage-based Greedy and

coverage-based HGS. Because different FBDL are computed based

on the classification of individual failed builds, we focus on compar-

ing those classifications. Specifically, we use the Student’s paired

t-test to compare the ratio of builds classified in the same category,

e.g., DefMiss. We find that the p-value ranges from 0.12 to 0.99 for

coverage-based TSR, and from 0.25 to 0.94 for mutant-based TSR.

Such highp-values fail to reject the null hypothesis that the reduced
test suites from any pair of algorithms for the same criterion are

from the same distribution for any failed build classification. While

failing to reject the null hypothesis does not imply accepting it, all

four algorithms likely behave the same for the same TSR criterion.

90

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands A. Shi, A. Gyori, S. Mahmood, P. Zhao, and D. Marinov

20 40 60 80 100

Kept %

0

20

40

60

80

100

F
B

D
L
U

Figure 3: Size reduction vs. FBDLU (Cov Greedy)

We further compare the four TSR algorithms by viewing the

classification of failed builds as a multiclass classification [8] and

computing the accuracy/overlap of classifications for each pair of

algorithms for each project. The average overlap across all projects

and all pairs of algorithms ranges from 0.87 to 0.94 for coverage-

based TSR and from 0.95 to 0.98 for mutant-based TSR. Because

the overlap of failed builds that are classified the same between

algorithms using the same criterion is so high, we show detailed

classification results for only one representative TSR algorithm,

Greedy for coverage (Figure 1) and HGS for mutants (Figure 2).

Later analyses we show are only for those two TSR techniques.

We finally evaluate the correlation between pairs of FBDL vari-

ants (for the same TSR criterion and algorithm) using Kendall-τb
rank correlation for each reduced test suite. The correlation among

FBDLS , FBDLP , and FBDLC is rather high, with τb ranging from

0.69 to 0.98, all with p < 0.0001. However, FBDLU is not as corre-

lated with the other FBDL values, with τb ranging from 0.29 to 0.80,

with most less than 0.6, all with p < 0.0001.

A1: In sum, the FBDL cost of TSR is rather high, with a lower

bound of 9.5% (based on FBDLS) and an upper bound of 52.2%

(based on FBDLU and excluding NewOnly builds).

5.2 RQ2: Predicting FBDL

We evaluate the predictive power of three metrics that can be mea-

sured on the reduced test suite when it is created: two metrics

traditionally used for reduced test suites [66] and one new met-

ric we propose based on historical FBDL. To focus evaluation on

predicting FBDL due to tests removed from the original test suite,

we exclude NewOnly builds; their failed tests did not exist at the

reduction point and could not have been removed.

5.2.1 Test-Suite Size Reduction. Researchers commonly estimate

the benefit of TSR by measuring the size of the reduced test suite

relative to the size of the original test suite: the smaller the reduced

test suite, the faster the build would be when using the reduced test

suite. We evaluate size reduction as a predictor of FBDL. Intuitively,

the more tests are kept in the reduced test suite, the less likely the

reduced test suite results in a miss-build.

Figure 3 shows a scatter plot relating the size reduction and the

FBDLU for each coverage-based Greedy reduced test suite.We show

the prediction for FBDLU because size reduction predicts FBDLU
the best. The plot includes the linear regression line. R2 = 0.45, with

p < 0.0001, suggests a weak linear fit; τb = −0.41, with p < 0.0001,

0 1 2 3 4 5 6 7 8

Mutant-detection Loss

0

20

40

60

80

100

F
B

D
L
U

Figure 4: Mutant-detection loss vs. FBDLU (Cov Greedy)

suggests a weak negative correlation. For the other FBDL variants,

R2 ranges from 0.04 to 0.23, all with p < 0.001, and τb ranges from

-0.23 to -0.34, all with p < 0.0001.

There are similar trends for mutant-based TSR. For mutant-based

HGS reduced test suites, we see size reduction predicts FBDLU
the best; R2 = 0.26, with p < 0.0001, suggests a weak linear fit;

τb = −0.40, with p < 0.0001, suggests a weak negative correlation.

For the other FBDL variants, the R2 values are the same, 0.00, but

with very high p-values. The τb values range from -0.10 to -0.14,

all with rather high p-values. Overall, these results show that size

reduction at the reduction point does not correlate well with future

FBDL and cannot well predict FBDL.

We also compare size reduction and FBDL within individual

projects that have more than 5 reduced test suites (to ensure enough

data points to draw any conclusions on correlations). We check if

any project results in strong correlations, i.e., R2 value or τb value

greater than 0.7 [31]. For all coverage-based TSR, only one project,

P18, results in R2 > 0.7, with p = 0.0030, for predicting both FBDLS
and FBDLP . For mutant-based TSR, only one project, P5, results

in R2 > 0.7, with p = 0.0002, for predicting FBDLS , FBDLP , and

FBDLC . For τb values, no project results in an absolute value greater

than 0.7, for either coverage- or mutant-based TSR. Even per project,

size reduction and FBDL do not strongly correlate.

5.2.2 Test-requirements Loss. Researchers commonly measure

the effectiveness of reduced test suites at the reduction point with

test-requirements loss [66]. We evaluate test-requirements loss as a

predictor of FBDL.We use mutant-detection loss for coverage-based

TSR and coverage loss for mutant-based TSR.

Our experiments show rather low test-requirements loss, with

average 2.7% across all projects for coverage-based TSR and 2.2%

for mutant-based TSR; similar low percentages were reported in

recent TSR studies [21, 58, 67]. Such low percentages suggest that

the reduced test suites may not miss many faults. However, we find

the average FBDLS , the most “optimistic” FBDL metric (Section 3.3)

to be much higher than the average test-requirements loss. While

the test-requirements loss is not equal to FBDL, it may still be a

good predictor. Intuitively, the higher the test-requirements loss,

the more likely the reduced test suite results in a miss-build.

Figure 4 shows a scatter plot relating the mutant-detection loss

and the FBDLU for each coverage-based Greedy reduced test suite

where we could measure mutation score. We show the prediction

for FBDLU because mutation-detection loss predicts FBDLU the

91

Evaluating Test-Suite Reduction in Real Software Evolution ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

best. The plot includes the linear regression line. R2 = 0.25, with

p < 0.0001, suggests a weak linear fit; τb = 0.28, with p < 0.0001,

suggests a weak positive correlation. For the other FBDL variants,

R2 ranges from 0.02 to 0.03. For τb , the values are all the same, -0.04.

For other variants, the p-values are all rather high.
There are similar trends for mutant-based TSR. For mutant-based

HGS reduced test suites, we see coverage-loss predicts FBDLU the

best. R2 = 0.14, with p < 0.0001, suggests a weak linear correlation;

τb = 0.18, with p < 0.001, suggests a weak positive correlation. For

the other FBDL variants, the R2 values are the same, 0.00, but with

very high p-values. The τb values range from 0.11 to 0.19 (where

correlating with FBDLP has a higher τb value than with FBDLU ,

but has lower R2 value); the highest p-value is 0.0687.
We also analyze if test-requirements loss is a good predictor on

a per-project basis, considering only projects with more than 5

reduced test suites. When correlating mutant-detection loss with

FBDL, only one project, P14, has R2 > 0.7, but only for predicting

FBDLP and FBDLC , with p = 0.0207. Two projects have τb > 0.7,

with the highest p-value being 0.0207. When correlating coverage

loss with mutant-based TSR, two projects result in R2 > 0.7, with

the highest p-value being 0.0570. No project has a good τb .
Overall, test-requirements loss is not a good predictor of FBDL

for either coverage- or mutant-based TSR.

5.2.3 Combining Both Traditional Metrics. Test-requirements

loss controlled for size reduction might result in a good predictor

of FBDL. We create a linear model to correlate FBDL with a lin-

ear combination of test-requirements loss and size reduction. For

coverage-based Greedy reduced test suites, mutant-detection loss

and size reduction together predict FBDLU the best; R2 = 0.42

(higher than before), with p < 0.0001. For mutant-based HGS re-

duced test suites, coverage loss and size reduction together predict

FBDLU the best; R2 = 0.27 (higher than before), with p < 0.0001.

The correlations are still not strong. Even a more complex model

that accounts for interaction of size and test-requirements loss does

not predict FBDL well.

5.2.4 Historical FBDL. We propose to use historical FBDL to

predict the future FBDL. The scenario is that a developer applies

TSR at a past point and measures the FBDL that would have been

obtained from that point until the current version; the developer

then uses this historical FBDL to predict the FBDL of the same

reduced test suite for future builds. (Note that this scenario does not

re-reduce the test suite at the current point but reuses the exact same

test suite from the past.) We simulate this scenario for each reduced

test suite. We first find all the failed builds after the reduction point,

then find the middle build among those failed builds, and finally

compute the historical FBDL before the middle build and future

FBDL after the middle build. We then compute correlation between

historical and future FBDL.

Figure 5 shows a scatter plot relating the historical FBDLC and

the future FBDLC for each coverage-based Greedy reduced test

suite. We show the prediction for FBDLC because it is predicted the

best. The plot includes the linear regression line. R2 = 0.57, with

p < 0.0001, suggests a weak linear fit; τb = 0.64, with p < 0.0001,

suggests a weak positive correlation. For the other FBDL variants,

R2 ranges from 0.42 to 0.56, all with p < 0.0001, and τb ranges from

0 20 40 60 80 100

Historical FBDLC

0

20

40

60

80

100

F
u
tu

re
 F

B
D

L
C

Figure 5: Historical vs. future FBDLC (Cov Greedy)

0.40 to 0.62, all with p < 0.0001. For coverage-based TSR, historical

FBDL is a stronger predictor than other metrics.

There are similar trends for mutant-based TSR. For mutant-based

HGS reduced test suites, R2 = 0.55, with p < 0.001, suggests a weak

linear fit; τb = 0.65, with p < 0.001, suggests a weak positive

correlation. For the other FBDL variants, the R2 ranges from 0.48

to 0.50, all with p < 0.0001, and τb range from 0.59 to 0.67, all with

p < 0.0001 (FBDLP and FBDLC are predicted with better τb values

than FBDLS , but have smaller R2 values). For mutant-based TSR,

historical FBDL is again a stronger predictor than other metrics.

Per project, coverage-based Greedy reduced test suites for 6

projects achieve R2 > 0.7, with the highest p-value being 0.0073; 5

projects achieve an absolute τb greater than 0.7, with the highest

p-value being 0.0042. However, two of these projects have a negative
correlation, i.e., τb < −0.7. Mutant-based HGS reduced test suites

for 4 projects have R2 > 0.7, with the highest p-value 0.0038; 2

projects achieve τb > 0.7, with the highest p-value being 0.0565.

Overall, per project, historical FBDL is a better predictor of future

FBDL than other metrics, though still for only a subset of projects.

A2: In sum, we find that the two traditionally used metrics (size

reduction and test-requirements loss) are not good predictors of

FBDL. Historical FBDL is a much better predictor of future FBDL

but still not strong in most cases.

5.3 RQ3: Impact of Evolution

Although we found no good predictor for FBDL at the reduction

point, some correlation may still exist between FBDL and the dis-

tance (measured in terms of the number of builds) from the reduc-

tion point to the failed builds. Intuitively, a reduced test suite results

in more miss-builds at a larger distance from the reduction point;

if so, it could lead to some actionable insight, e.g., the developers

can switch back to the original test suite after some time.

We analyze the relationship between the number of builds since

reduction and FBDL. Each project is analyzed separately. All builds

for a project are split into 10 bins with about the same number of

builds per bin. (Projects that have a different number of builds end

up with different bin sizes.) For each bin, we calculate the ratio of

miss-builds out of failed builds in that bin, excluding NewOnly

builds. We also compute a best fit line through the 10 points given

by the ratios. The slope of this line represents a simple measure of

trend in FBDL with the number of builds since reduction. A positive

slope is increasing FBDL, and a negative slope is decreasing FBDL.

92

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands A. Shi, A. Gyori, S. Mahmood, P. Zhao, and D. Marinov

One may expect the slope to be positive for most of the projects,

i.e., the farther the builds are from the reduction point, the more

likely to have missed builds. However, the results do not show

this to be the case. For example, evaluating FBDLU (which is the

best predicted out of all the FBDL variants) using coverage-based

Greedy TSR had 9 projects with negative slopes, 8 with slope 0,

and 11 with positive slopes. (4 projects did not have enough failed

builds to calculate a slope.) For the projects that have a non-zero

slope, we also calculated R2 and p-values. The R2 values have a

median of 0.28 and p-values have a median of 0.1421. The generally

low R2 values and high p-values suggest that the increasing and

decreasing patterns are not strong for individual projects as well.

Visual inspection also showed that plots have varying patterns, not

only for coverage-based Greedy TSR but for all other techniques.

A3: FBDL does not correlate well with the distances from the

reduction point, showing yet again that TSR is quite unpredictable.

6 THREATS TO VALIDITY

Our study has internal, external, and construct threats to the va-

lidity of our results. Our results may not generalize beyond the

projects we evaluated. To reduce this risk, we use a diverse set of

projects. Our results are based on our choice of reduction points

for TSR, so a different choice may lead to different FBDL values.

We reduce this risk by choosing reduction points diverse in both

commit distances to failed builds and numbers of newly added tests.

Different TSR algorithms guided by different criteria may result

in different reduced test suites. We evaluate four widely-used TSR

algorithms with two widely-used criteria.

We introduce a new metric FBDL based on mapping test failures

to faults. Some of the projects in our study have a small number

of flaky tests [46], which may affect our study by introducing false

failures; we believe that they did not affect our key findings. We

have spent substantial engineering effort trying to make the runs

more reproducible using Docker, starting from the Travis Docker

image [13]. Test suites may have test-order dependencies [15, 32,

43, 64, 68]. TSR inherently assumes that test suites do not have test-

order dependencies [43], and our experiments assume the same.

A specific question concerning our study is whether the soft-

ware project history when using TSR would look as it does when it

likely did not use TSR. (Only 8 of 321 reduction points had origi-

nal test suites that were smaller than those in the prior reduction

point, likely because developers manually removed some tests.) If

developers actually kept only the reduced test suite at some point,

their behavior in the future could differ from what we see in the

code repository and the build logs that used the original test suite.

In theory, developers could have a completely different behavior,

e.g., making different code changes or testing those changes at

different times. More likely, the developers could have modified

the test suites differently. For example, the developers may have

added more or fewer new tests than we see currently; in the limit,

a novice developer may be unaware that TSR was performed and

could manually write tests similar to those that were removed.

7 RELATEDWORK

Test-suite reduction (TSR) is a well-studied research topic [66].

Researchers have proposed various ways to create reduced test

suites [18, 21, 23, 24, 27, 29, 33, 34, 38, 41, 44, 47, 65, 66, 69] and to

evaluate the effectiveness of TSR techniques [56, 57, 62, 63, 67]. All

these studies used either seeded faults or mutants to evaluate fault-

detection effectiveness. We find that FBDL for a reduced test suite is

much higher than its mutant-detection loss. Our definition of fault-

detection effectiveness follows the approach from Wong et al. [62]

and Rothermel et al. [56]; while they measured the percentage of

seeded faults detected by the original test suite that the reduced test

suite does not detect, we measure the percentage of failed builds

where the reduced test suite does not detect all the faults. Since their

experiments had one seeded fault per faulty program version, their

evaluation matches our FBDLS , where all test failures are mapped

to the same fault. However, we have multiple mappings from test

failures to faults in FFMap, allowing us to consider multiple faults

in a build at a time, which is required when using test failures from

real-world software evolution.

In our prior work [58], we studied the effects of software evolu-

tion on TSR. We measured the mutant-detection loss of the reduced

test suite at the early, passed version where TSR is performed and

the mutant-detection loss at a future, passed version. We found

that the loss remains roughly the same, indicating TSR may be

predictable. In this work, we also evaluate the effects of software

evolution on TSR, but not through mutant-detection loss and rather

through missed failed builds based on historical project build logs.

Moreover, we evaluate whether the traditional loss metrics are good

predictors of the missed failed builds. Unlike in our prior work, we

found that TSR is unpredictable and can lead to a large percentage

of missed failed builds in the future. There has been other work on

prediction in the context of regression testing, but for regression

test selection [35, 53, 54] as opposed to TSR.

Mutation testing is commonly used in research to evaluate the

quality of testing [39]. Researchers have reported strong correla-

tions betweenmutants and real faults [42] and have utilizedmutants

to generate tests [26, 50] and evaluate testing techniques [30, 45, 58,

59]. Our work finds that mutation testing is not a good predictor of

FBDL for reduced test suites.

8 CONCLUSIONS

Automated TSR is more risky than suggested by prior research. TSR

was proposed over two decades ago but since its inception it has

been evaluated primarily with mutants or seeded faults. We present

the first study that evaluates the cost of TSR using real test failures.

Our analysis shows that FBDL can go up to 52.2%, much higher than

the mutant-detection loss. Developers who are considering current

TSR techniques should use FBDL to weigh whether the reduced test-

suite size warrants the risk of missing faults. Real builds, however,

do have potential for safe(r) TSR, so researchers could develop

novel TSR techniques that either miss fewer failed builds or at least

provide more predictable FBDL. Researchers should use FBDL to

evaluate the quality of newly proposed TSR techniques.

ACKNOWLEDGMENTS

We thank David Craig, the attendees of the Software Engineering

seminar, and the anonymous reviewers for their feedback on earlier

paper drafts. This work was partially supported by the NSF grants

CCF-1409423, CCF-1421503, and CNS-1646305. Suleman Mahmood

was partially supported by the Sohaib and Sara Abassi Fellowship.

93

Evaluating Test-Suite Reduction in Real Software Evolution ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

REFERENCES

[1] [n. d.]. https://github.com/caelum/vraptor4/commit/b2437ab1.

[2] [n. d.]. https://travis-ci.org/caelum/vraptor4/builds/15235447.

[3] [n. d.]. https://github.com/caelum/vraptor4/commit/021d10b7.

[4] [n. d.]. https://github.com/caelum/vraptor4/commit/49742a2d.

[5] [n. d.]. A web MVC action-based framework. https://github.com/caelum/

vraptor4.

[6] [n. d.]. Docker. https://www.docker.com/.

[7] [n. d.]. GitHub. https://github.com/.

[8] [n. d.]. Multiclass classification. https://en.wikipedia.org/wiki/Multiclass_

classification.

[9] [n. d.]. PIT Mutation Operators. http://pitest.org/quickstart/mutators/.

[10] [n. d.]. Real World Mutation Testing. http://pitest.org.

[11] [n. d.]. Travis-CI. https://travis-ci.org/.

[12] [n. d.]. Travis CI caelum/vraptor4 Builds. https://travis-ci.org/caelum/vraptor4.

[13] [n. d.]. Travis Docker Image. https://hub.docker.com/r/travisci/.

[14] Abdulkareem Alali, Huzefa Kagdi, and Jonathan I. Maletic. 2008. What’s a Typical

Commit? A Characterization of Open Source Software Repositories. In ICPC.

182–191.

[15] Jonathan Bell, Gail Kaiser, Eric Melski, and Mohan Dattatreya. 2015. Efficient

Dependency Detection for Safe Java Test Acceleration. In FSE. 770–781.

[16] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. TravisTorrent: Synthe-

sizing Travis CI and GitHub for Full-Stack Research on Continuous Integration.

In MSR. 447–450.

[17] Christian Bird, Peter C. Rigby, Earl T. Barr, David J. Hamilton, Daniel M. German,

and Prem Devanbu. 2009. The Promises and Perils of Mining Git. In MSR. 1–10.

[18] Jennifer Black, Emanuel Melachrinoudis, and David Kaeli. 2004. Bi-Criteria

Models for All-Uses Test Suite Reduction. In ICSE. 106–115.

[19] Hudson Borges, Andre Hora, and Marco Tulio Valente. 2016. Predicting the

Popularity of GitHub Repositories. In PROMISE. 9:1–9:10.

[20] Caius Brindescu, Mihai Codoban, Sergii Shmarkatiuk, and Danny Dig. 2014.

How Do Centralized and Distributed Version Control Systems Impact Software

Changes?. In ICSE. 322–333.

[21] Junjie Chen, Yanwei Bai, Dan Hao, Lingming Zhang, Lu Zhang, and Bing Xie.

2017. How Do Assertions Impact Coverage-Based Test-Suite Reduction?. In ICST.

418–423.

[22] T. Y. Chen and M. F. Lau. 1995. Heuristics Towards the Optimization of the Size

of a Test Suite. In SQM. 415–424.

[23] T. Y. Chen and M. F. Lau. 1998. A New Heuristic for Test Suite Reduction. IST 40,

5-6 (1998), 347–354.

[24] T. Y. Chen and M. F. Lau. 1998. A Simulation Study on Some Heuristics for Test

Suite Reduction. IST 40, 13 (1998), 777–787.

[25] Sebastian Elbaum, Gregg Rothermel, and John Penix. 2014. Techniques for Improv-

ing Regression Testing in Continuous Integration Development Environments.

In FSE. 235–245.

[26] Gordon Fraser and Andreas Zeller. 2010. Mutation-Driven Generation of Unit

Tests and Oracles. In ISSTA. 147–158.

[27] Jingyao Geng, Zheng Li, Ruilian Zhao, and Junxia Guo. 2016. Search Based Test

Suite Minimization for Fault Detection and Localization: A Co-driven Method.

In SBSE. 34–48.

[28] Rahul Gopinath, Carlos Jensen, and Alex Groce. 2014. Code Coverage for Suite

Evaluation for Developers. In ICSE. 72–82.

[29] Arnaud Gotlieb and Dusica Marijan. 2014. FLOWER: Optimal Test Suite Reduc-

tion As a Network Maximum Flow. In ISSTA. 171–180.

[30] Alex Groce, Mohammed Amin Alipour, Chaoqiang Zhang, Yang Chen, and John

Regehr. 2014. Cause Reduction for Quick Testing. In ICST. 243–252.

[31] J. P. Guilford. 1956. Fundamental Statistics in Psychology and Education.

[32] Alex Gyori, August Shi, Farah Hariri, and Darko Marinov. 2015. Reliable Testing:

Detecting State-Polluting Tests to Prevent Test Dependency. In ISSTA. 223–233.

[33] Dan Hao, Lu Zhang, Xingxia Wu, Hong Mei, and Gregg Rothermel. 2012. On-

Demand Test Suite Reduction. In ICSE. 738–748.

[34] Mary Jean Harrold, Rajiv Gupta, and Mary Lou Soffa. 1993. A Methodology for

Controlling the Size of a Test Suite. TOSEM 2, 3 (1993), 270–285.

[35] Mary Jean Harrold, David Rosenblum, Gregg Rothermel, and Elaine Weyuker.

2001. Empirical Studies of a Prediction Model for Regression Test Selection. TSE

27, 3 (2001), 248–263.

[36] Kim Herzig, Michaela Greiler, Jacek Czerwonka, and Brendan Murphy. 2015. The

Art of Testing Less without Sacrificing Quality. In ICSE. 483–493.

[37] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig.

2016. Usage, Costs, and Benefits of Continuous Integration in Open-Source

Projects. In ASE. 426–437.

[38] Dennis Jeffrey and Neelam Gupta. 2007. Improving Fault Detection Capability by

Selectively Retaining Test Cases During Test Suite Reduction. TSE 33, 2 (2007),

108–123.

[39] Yue Jia and Mark Harman. 2011. An Analysis and Survey of the Development of

Mutation Testing. TSE 37, 5 (2011), 649–678.

[40] David S. Johnson. 1974. Approximation Algorithms for Combinatorial Problems.

JCSS (1974), 256–278.

[41] James A. Jones and Mary Jean Harrold. 2001. Test-Suite Reduction and Prioriti-

zation for Modified Condition/Decision Coverage. In ICSM. 92–102.

[42] René Just, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid Holmes, and

Gordon Fraser. 2014. Are Mutants a Valid Substitute for Real Faults in Software

Testing?. In FSE. 654–665.

[43] Wing Lam, Sai Zhang, and Michael D. Ernst. 2015. When Tests Collide: Evaluating

and Coping with the Impact of Test Dependence. Technical Report UW-CSE-15-03-

01. University of Washington, CSE.

[44] Jun-Wei Lin and Chin-Yu Huang. 2009. Analysis of Test Suite Reduction with

Enhanced Tie-breaking Techniques. IST 51, 4 (2009), 679–690.

[45] Yafeng Lu, Yiling Lou, Shiyang Cheng, Lingming Zhang, Dan Hao, Yangfan

Zhou, and Lu Zhang. 2016. How Does Regression Test Prioritization Perform in

Real-world Software Evolution?. In ICSE. 535–546.

[46] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An

Empirical Analysis of Flaky Tests. In FSE. 643–653.

[47] Xue-ying Ma, Bin-kui Sheng, and Cheng-qing Ye. 2005. Test-Suite Reduction

Using Genetic Algorithm. In APPT. 253–262.

[48] Atif Memon, Zebao Gao, Bao Nguyen, Sanjeev Dhanda, Eric Nickell, Rob Siem-

borski, and John Micco. 2017. Taming Google-Scale Continuous Testing. In

ICSE-SEIP. 233–242.

[49] A Jefferson Offutt, Jie Pan, and Jeffrey M Voas. 1995. Procedures for Reducing

the Size of Coverage-based Test Sets. In ICTCS. 111–123.

[50] Mike Papadakis and Nicos Malevris. 2010. Automatic Mutation Test Case Gener-

ation via Dynamic Symbolic Execution. In ISSRE. 121–130.

[51] Leandro Sales Pinto, Saurabh Sinha, and Alessandro Orso. 2012. Understanding

Myths and Realities of Test-Suite Evolution. In FSE. 33:1–33:11.

[52] Napol Rachatasumrit and Miryung Kim. 2012. An Empirical Investigation into

the Impact of Refactoring on Regression Testing. In ICSM. 357–366.

[53] David S. Rosenblum and Elaine J.Weyuker. 1996. Predicting the Cost-effectiveness

of Regression Testing Strategies. In FSE. 118–126.

[54] David S. Rosenblum and Elaine J. Weyuker. 1997. Using Coverage Information to

Predict the Cost-Effectiveness of Regression Testing Strategies. TSE 23, 3 (1997),

146–156.

[55] Gregg Rothermel, Sebastian Elbaum, Alexey Malishevsky, Praveen Kallakuri, and

Brian Davia. 2002. The Impact of Test Suite Granularity on the Cost-effectiveness

of Regression Testing. In ICSE. 130–140.

[56] Gregg Rothermel, Mary Jean Harrold, Jeffery Ostrin, and Christie Hong. 1998. An

Empirical Study of the Effects of Minimization on the Fault Detection Capabilities

of Test Suites. In ICSM. 34–43.

[57] Gregg Rothermel, Mary Jean Harrold, Jeffery von Ronne, and Christie Hong.

2002. Empirical Studies of Test-Suite Reduction. STVR 12, 4 (2002), 219–249.

[58] August Shi, Alex Gyori, Milos Gligoric, Andrey Zaytsev, and Darko Marinov.

2014. Balancing Trade-offs in Test-Suite Reduction. In FSE. 246–256.

[59] August Shi, Tifany Yung, Alex Gyori, and Darko Marinov. 2015. Comparing

and Combining Test-Suite Reduction and Regression Test Selection. In ESEC/FSE.

237–247.

[60] Gustavo Soares, Bruno Catao, Catuxe Varjao, Solon Aguiar, Rohit Gheyi, and

Tiago Massoni. 2011. Analyzing Refactorings on Software Repositories. In SBES.

164–173.

[61] Amitabh Srivastava and Jay Thiagarajan. 2002. Effectively Prioritizing Tests in

Development Environment. In ISSTA. 97–106.

[62] W. Eric Wong, Joseph R. Horgan, Saul London, and Aditya P. Mathur. 1995. Effect

of Test Set Minimization on Fault Detection Effectiveness. In ICSE. 41–50.

[63] W. Eric Wong, Joseph R. Horgan, Aditya P. Mathur, and Alberto Pasquini. 1997.

Test Set Size Minimization and Fault Detection Effectiveness: A Case Study in a

Space Application. In COMPSAC. 522–529.

[64] Jochen Wuttke, Kıvanç Muşlu, Sai Zhang, and David Notkin. 2013. Test Depen-

dence: Theory and Manifestation. Technical Report UW-CSE-13-07-02. University

of Washington, CSE.

[65] Shin Yoo and Mark Harman. 2007. Pareto Efficient Multi-Objective Test Case

Selection. In ISSTA. 140–150.

[66] Shin Yoo and Mark Harman. 2012. Regression Testing Minimization, Selection

and Prioritization: A Survey. STVR 22, 2 (2012), 67–120.

[67] Lingming Zhang, Darko Marinov, Lu Zhang, and Sarfraz Khurshid. 2011. An

Empirical Study of JUnit Test-Suite Reduction. In ISSRE. 170–179.

[68] Sai Zhang, Darioush Jalali, Jochen Wuttke, Kıvanç Muşlu, Wing Lam, Michael D.

Ernst, and David Notkin. 2014. Empirically Revisiting the Test Independence

Assumption. In ISSTA. 385–396.

[69] Hao Zhong, Lu Zhang, and Hong Mei. 2008. An Experimental Study of Four

Typical Test Suite Reduction Techniques. IST 50, 6 (2008), 534–546.

94

https://github.com/caelum/vraptor4/commit/b2437ab1
https://travis-ci.org/caelum/vraptor4/builds/15235447
https://github.com/caelum/vraptor4/commit/021d10b7
https://github.com/caelum/vraptor4/commit/49742a2d
https://github.com/caelum/vraptor4
https://github.com/caelum/vraptor4
https://www.docker.com/
https://github.com/
https://en.wikipedia.org/wiki/Multiclass_classification
https://en.wikipedia.org/wiki/Multiclass_classification
http://pitest.org/quickstart/mutators/
http://pitest.org
https://travis-ci.org/
https://travis-ci.org/caelum/vraptor4
https://hub.docker.com/r/travisci/

	Abstract
	1 Introduction
	2 Example
	3 Failed-Build Detection Loss (FBDL)
	3.1 Failure-to-Fault Map
	3.2 Classifying Failed Builds
	3.3 Computing FBDL

	4 Methodology
	4.1 Projects and Failures
	4.2 Reduction Points
	4.3 Test-Suite Reduction
	4.4 Extracting Failed Tests
	4.5 Predicting FBDL
	4.6 Summary of Analyzed Projects

	5 Results and Analysis
	5.1 RQ1: FBDL
	5.2 RQ2: Predicting FBDL
	5.3 RQ3: Impact of Evolution

	6 Threats to Validity
	7 Related Work
	8 Conclusions
	Acknowledgments
	References

