
187

Reflection-Aware Static Regression Test Selection

AUGUST SHI, University of Illinois at Urbana-Champaign, USA

MILICA HADZI-TANOVIC, University of Illinois at Urbana-Champaign, USA

LINGMING ZHANG, University of Texas at Dallas, USA

DARKO MARINOV, University of Illinois at Urbana-Champaign, USA

OWOLABI LEGUNSEN, University of Illinois at Urbana-Champaign, USA

Regression test selection (RTS) aims to speed up regression testing by rerunning only tests that are affected by
code changes. RTS can be performed using static or dynamic analysis techniques. Our prior study showed
that static and dynamic RTS perform similarly for medium-sized Java projects. However, the results of that
prior study also showed that static RTS can be unsafe, missing to select tests that dynamic RTS selects, and
that reflection was the only cause of unsafety observed among the evaluated projects.

In this paper, we investigate five techniquesÐthree purely static techniques and two hybrid static-dynamic
techniquesÐthat aim to make static RTS safe with respect to reflection. We implement these reflection-aware
(RA) techniques by extending the reflection-unaware (RU) class-level static RTS technique in a tool called
STARTS. To evaluate these RA techniques, we compare their end-to-end times with RU, and with RetestAll,
which reruns all tests after every code change. We also compare safety and precision of the RA techniques
with Ekstazi, a state-of-the-art dynamic RTS technique; precision is a measure of unaffected tests selected.

Our evaluation on 1173 versions of 24 open-source Java projects shows negative results. The RA techniques
improve the safety of RU but at very high costs. The purely static techniques are safe in our experiments but
decrease the precision of RU, with end-to-end time at best 85.8% of RetestAll time, versus 69.1% for RU. One
hybrid static-dynamic technique improves the safety of RU but at high cost, with end-to-end time that is 91.2%
of RetestAll. The other hybrid static-dynamic technique provides better precision, is safer than RU, and incurs
lower end-to-end timeÐ75.8% of RetestAll, but it can still be unsafe in the presence of test-order dependencies.
Our study highlights the challenges involved in making static RTS safe with respect to reflection.

CCS Concepts: · Software and its engineering→ Automated static analysis; Software testing and debugging;
Software evolution.

Additional Key Words and Phrases: regression test selection, reflection, regression testing, static analysis, class

firewall, string analysis

ACM Reference Format:

August Shi, Milica Hadzi-Tanovic, Lingming Zhang, Darko Marinov, and Owolabi Legunsen. 2019. Reflection-
Aware Static Regression Test Selection. Proc. ACM Program. Lang. 3, OOPSLA, Article 187 (October 2019),
29 pages. https://doi.org/10.1145/3360613

1 INTRODUCTION

Regression testing [Yoo and Harman 2012] reruns tests after every code change to check against
regression bugs that break previously working functionality. Regression testing is important during

Authors’ addresses: August Shi, University of Illinois at Urbana-Champaign, USA, awshi2@illinois.edu; Milica Hadzi-Tanovic,

University of Illinois at Urbana-Champaign, USA, milicah2@illinois.edu; Lingming Zhang, University of Texas at Dallas, USA,

lingming.zhang@utdallas.edu; Darko Marinov, University of Illinois at Urbana-Champaign, USA, marinov@illinois.edu;

Owolabi Legunsen, University of Illinois at Urbana-Champaign, USA, legunse2@illinois.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).

2475-1421/2019/10-ART187

https://doi.org/10.1145/3360613

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 187. Publication date: October 2019.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/


187:2 August Shi, Milica Hadzi-Tanovic, Lingming Zhang, Darko Marinov, and Owolabi Legunsen

software evolution. However, running all tests after every changeÐi.e., RetestAllÐcan be expensive
both in terms of disrupting developers’ workflow (developers have to wait for test results) and
requiring machine time (running potentially many tests or long-running tests). Companies, e.g.,
Facebook, Google and Microsoft, publicly reported ever-growing costs of regression testing and
their work to reduce the costs [Elbaum et al. 2014; Esfahani et al. 2016; Gupta et al. 2011; Herzig and
Nagappan 2015; Machalica et al. 2019; Srivastava and Thiagarajan 2002; York 2011; Zhang 2018].

Regression test selection (RTS) [Chen et al. 1994; Gligoric et al. 2015b; Legunsen et al. 2016, 2017;
Machalica et al. 2019; Öqvist et al. 2016; Orso et al. 2004; Ren et al. 2003; Rothermel and Harrold
1993, 1997; Zhang 2018; Zhang et al. 2011] is an approach to reduce regression testing costs by
rerunning only affected tests whose pass/fail outcome may flip as a result of code changes. That is,
RTS saves time that would have been spent on needlessly rerunning tests whose outcome cannot
flip. Generally, an RTS technique first finds the dependencies that each test requires on one program
version. Then, given code changes that result in a new program version, the technique selects, as
affected, all tests for which at least one dependency changed. It is desirable that an RTS technique
be safe [Rothermel and Harrold 1993], i.e., select to rerun all affected tests, so it does not miss to
catch regression bugs. For performance reasons, an RTS technique should be preciseÐit should not
select to rerun tests that are not affected.

RTS can collect dependencies statically or dynamically, and previous research has mostly focused
on dynamic approaches [Gligoric et al. 2015b; Orso et al. 2004; Rothermel and Harrold 1997; Yoo
and Harman 2012; Zhang 2018; Zhang et al. 2011]. Dependencies can also be collected at various
granularity levels. Recently, both Ekstazi [Gligoric et al. 2015a,b] (the state-of-the-art dynamic
RTS technique for Java) and STARTS [Legunsen et al. 2016, 2017] (a purely static RTS technique)
showed that performing RTS at the class level gave better speedup than performing RTS at the
method level. Ekstazi instruments the test code and the code under test to collect class-level test
dependencies while running the tests. Practitioners started to adopt Ekstazi [Gligoric et al. 2015a]
and integrated it in the build systems of some open-source projects, like Apache Camel [Apache
Software Foundation 2019a], Apache Commons Math [Apache Software Foundation 2019b], and
Apache CXF [Apache Software Foundation 2019c].

Despite the recent progress and adoption, dynamic RTS has been known to have limitations
due to its reliance on dynamic test dependency collection [Chen et al. 1994]. For example, in cases
of exceptions or non-exhaustive thread-schedule exploration, dynamic RTS may fail to collect
complete coverage and result in unsafe RTS. The overhead of dynamic dependency collection may
also be prohibitive in resource-constrained settings where dynamic coverage collection can cause
tests to exceed tight time bounds (e.g., real-time systems), or in environments where storing and
updating of coverage information would be too costly (e.g., ultra-large software ecosystems like
those at Facebook, Google and Microsoft). For example, the authors of Ekstazi reported on their
industrial collaboration for applying RTS at Samsung, in which they used static RTS because of the
aforementioned limitations of dynamic RTS [Çelik et al. 2018].
Static RTS does not suffer from these problems of dynamic analysis, because it performs static

analysis that does not require instrumenting the code or running the tests. Static class-level RTS
finds test dependencies statically by over-approximating test dependencies through constructing
and traversing an Inter-type Relation Graph (IRG) [Orso et al. 2004], in which nodes are types (e.g.,
Java classes, interfaces, enums, etc.) and edges represent use or inheritance relationships among
nodes. In our prior study [Legunsen et al. 2016], we showed that static RTS [Kung et al. 1995] can
perform similarly as dynamic RTS at the class level for medium-sized Java projects. However, the
results of that prior study also showed that static RTS was not safe; in a small number of cases, it
missed to select tests that dynamic RTS selected. The only cause of static RTS unsafety that we
observed during the experiments in our prior study [Legunsen et al. 2016] was reflection.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 187. Publication date: October 2019.



Reflection-Aware Static Regression Test Selection 187:3

Reflection is widely used in object-oriented programming languages and allows applications to
examine or modify their runtime behavior [Chiba 2000; Guimarães 1998]. For example, in Java, one
class, A, can pass the name of another class as a string, "B", to some API that creates instances of B,
which can then be used by instances of A at runtime. The Java standard library (JSL) methods for
dynamically creating instances of B from A include Class.forName and Class.newInstance, which
allow creating objects that represent classes from a string and creating instances of those classes,
respectively. Although reflection is a powerful feature that makes code more extensible, it poses
significant challenges for static analysis [Bodden et al. 2011; Landman et al. 2017; Li et al. 2016a,b,
2014, 2015b; Livshits et al. 2015; Smaragdakis et al. 2015; Thies and Bodden 2012]. In particular, for
reflection-unaware (RU) static class-level RTS, the IRG would not contain reflective edges, such as
from A to B. Thus, RU could miss to select some affected test. Furthermore, many Java projects use
reflection either directly in their own code or indirectly through third-party libraries they depend
on [Landman et al. 2017; Li et al. 2016b].
We investigate five reflection-aware (RA) techniques that aim to make static RTS as safe as

dynamic RTS with respect to reflection. Three techniques are purely staticÐNaïve Analysis, String
Analysis, and Border AnalysisÐand the other two are hybrid static-dynamicÐDynamic Analysis and
Per-test Analysis. The purely static techniques over-approximate test dependencies to account for
reflection, while the hybrid static-dynamic techniques find more precise dependencies as they rely
on light-weight dynamic instrumentation to recover reflective edges.

We measure the benefits and costs of these RA techniques relative to RetestAll, and to reflection-
unaware static RTS [Legunsen et al. 2016], henceforth called RU Analysis. We previously imple-
mented RU Analysis in our open-source tool, STARTS [Legunsen et al. 2017; STARTS Team 2018],
and we build the RA techniques on the RU Analysis in STARTS. All the RA techniques will not
select fewer tests than the baseline RU Analysis, as they attempt to make static RTS safer by adding
potential reflective edges. We compare the safety and precision of various static and hybrid tech-
niques against Ekstazi [Gligoric et al. 2015a,b], a state-of-the-art dynamic class-level RTS technique.
We compare the end-to-end time of our techniques against RetestAll and RU Analysis, and we
evaluate the reflection-aware techniques on 1173 versions of 24 open-source Java projects.
Overall, our evaluation shows negative resultsÐcurrent techniques for making static RTS

reflection-aware incur very high costs. Naïve Analysis and String Analysis are completely in-

effective; they make static RTS safe but at the cost of always rerunning all tests after every code
change. These two techniques are slower than RetestAll; they spend/waste time performing analysis,
including of JSL classes. The third purely static RA technique, Border Analysis, can be as safe as
Ekstazi and runs faster than RetestAll in our experiments, but the average reduction in end-to-end
time is rather smallÐ85.8% of RetestAll time. Among hybrid static-dynamic techniques, Dynamic
Analysis is safe but selects many more tests than RU Analysis, 67.0% versus 34.1% of all tests, re-
spectively, and it has end-to-end time that is, on average, 91.2% of RetestAll time. Per-test Analysis
is much more precise than Dynamic Analysis and all purely static RA techniques, selecting 36.9% of
all tests versus the 34.1% that RU Analysis selects. Although Per-test Analysis has better end-to-end
time (75.8% of RetestAll time) than Dynamic Analysis, Per-test Analysis incurs non-negligibly
higher end-to-end time than RU Analysis (69.1% of RetestAll time). More importantly, Per-test
Analysis dependency collection has two issues. A fast collection of dependencies (with all tests run
in one JVM) makes Per-test Analysis still unsafe with respect to reflection when tests have order
dependencies [Gyori et al. 2015; Lam et al. 2019, 2015; Shi et al. 2019; Zhang et al. 2014]. Running
each test in its own JVM to collect dependencies could alleviate the test-order dependency problem,
but it is slower than running all tests in one JVM [Bell and Kaiser 2014; Bell et al. 2015].

Beyond evaluating which tests are selected by various techniques, an additional contribution of
this paper is an evaluation of the test dependencies computed by various techniques. (All techniques

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 187. Publication date: October 2019.



187:4 August Shi, Milica Hadzi-Tanovic, Lingming Zhang, Darko Marinov, and Owolabi Legunsen

consider transitive and not just direct dependencies in the IRG.) Evaluating test dependencies
provides more insights into (potential) test-selection behavior of RTS techniquesÐit can help
understandwhy a technique selects or misses to select a test. No prior study of RTS [Yoo andHarman
2012], including our own recent studies [Legunsen et al. 2016; Zhang 2018; Zhu et al. 2019], evaluated
the computed test dependencies. Evaluating test dependencies can help to understand whether
static RTS was safe in prior studies in the presence of reflection because (1) test dependencies are not
under-approximated by missing reflective edges, or (2) test dependencies are under-approximated,
but actual code changes do not frequently touch dependencies that are only reachable via reflective
edges. In brief, there was no previous evaluation of test dependencies that an RTS technique may
be missing. Our evaluation of test dependencies reveals that with RU Analysis, many tests miss
some dependencies that Ekstazi finds, showing that reflection-unaware static RTS can potentially

miss to select many tests. However, we find RU Analysis actually misses much fewer tests. We
also find that Border Analysis, our best purely static reflection-aware RTS technique, as well as
Dynamic Analysis, which is a hybrid static-dynamic technique, do not miss any test dependency
that Ekstazi finds.
This paper makes the following contributions:

⋆ Reflection-Aware Static RTS.We are the first to investigate techniques that aim to make static
RTS as safe as dynamic RTS with respect to reflection. Two techniques that we evaluateÐBorder
Analysis and Dynamic AnalysisÐare as safe as Ekstazi in our experiments.

⋆ Analysis of RTS at the Level of Dependencies. We present the first analysis of RTS in terms
of test dependencies and not just selected tests. While using RU Analysis leads to many tests
missing some test dependencies, making RU Analysis reflection-aware through Border Analysis
and Dynamic Analysis leads to no test missing any dependency in our experiments.

⋆ Implementation.We implement five reflection-aware static RTS techniques by extending our
publicly available Maven-based tool STARTS [Legunsen et al. 2017; STARTS Team 2018], which
already performs RU Analysis.

⋆ Empirical Study. We present an empirical study of reflection-aware static RTS on 1173 ver-
sions of 24 open-source Java projects. The results are negative, showing that making static RTS
reflection-aware is currently impractical.

2 BACKGROUND

In this section, we provide background on static regression test selection (SRTS) and reflection. We
also show, by means of a motivating example, how the reflection-unaware static RTS technique,
RU Analysis, can be unsafe due to its inability to handle reflection. Recall that an RTS technique is
unsafe if it fails to select affected tests that depend on changed parts of the code.

2.1 Static Regression Test Selection

Researchers have proposed SRTS techniques that track dependencies at different granularity
levels [Badri et al. 2005; Kung et al. 1995; Orso et al. 2004; Ren et al. 2003]. We performed an extensive
prior study of SRTS techniques that track dependencies at both class and method levels [Legunsen
et al. 2016]. In that study, we selected to run tests at the level of test classes as opposed to test
methods (selecting to run all test methods in an affected test class)1 Experimental results from our
prior study [Legunsen et al. 2016] showed that method-level SRTS based on method call graphs is
much more imprecise/unsafe and costly than class-level SRTS based on class-level dependencies.
(Class-level SRTS was better than method-level SRTS for a number of call-graph analyses: CHA,
RTA, 0-CFA, and 0-1-CFA.) Moreover, the class-level SRTS was comparable to the state-of-art

1In the rest of this paper, we say łtestž to mean a test class unless otherwise noted.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 187. Publication date: October 2019.



Reflection-Aware Static Regression Test Selection 187:5

class-level dynamic RTS technique, Ekstazi [Gligoric et al. 2015b], on several medium-sized projects.
Therefore, we focus on evaluating class-level SRTS in the presence of reflection. Class-level SRTS
originates from the firewall notion [Leung and White 1990], which aims to identify code modules
that may be impacted by code changes. Kung et al. [1995] extended the firewall concept to handle
object-oriented language features (e.g., inheritance) and proposed the concept of class firewall. Later
on, Orso et al. [2004] adapted class firewall to the Java language by handling interfaces.

A class firewall computes the set of classes that may be impacted by the changes, thus building
a łfirewallž around the changed classes. Formally, a type (e.g., a class or interface) τ is impacted
by a changed type τc iff τ can transitively reach τc via a sequence of (use or inheritance) edges,
denoted as τc ∈ {τ } ◦ E

∗, where E denotes the set of all edges in the program’s IRG, ∗ denotes the
reflexive and transitive closure, and ◦ denotes the relational image. Then, given a program with a
set of changed types Tc , the class firewall can be defined as any type that can transitively reach a
changed type, i.e., firewall (Tc ) = Tc ◦ (E

−1)∗, where −1 denotes the inverse relation. Given any two
program versions together with the regression test suiteT , after the class firewall computation, the
class-level SRTS directly returns all the test classes within the class firewall as the affected tests,
Ta = T ∩firewall (Tc ). In theory, class-level SRTS should be safe since it selects all tests that could be
impacted by the code changes. However, in practice, like most other static analyses [Livshits et al.
2015], class-level SRTS can be unsafe, specifically if it misses edges. For example, as we showed in
our prior study [Legunsen et al. 2016], reflection-unaware class-level SRTS can miss to select some
affected tests because the IRG does not have edges that can only be reached via reflection.

2.2 Reflection

The main feature of reflection that is relevant to class-level SRTS is the ability to construct instances
of a class from its name or bytecode representation. The name of the class (whose instance is to be
constructed via reflection) can be constructed dynamically without static use of the class name.
The static analysis used in the reflection-unaware class-level SRTS fails to detect the use of classes
constructed through reflection, making reflection-unaware class-level SRTS potentially unsafe.
In Java, the methods in the reflection API that are relevant for class-level SRTS are those that

create Java Class objects either from string input representing the name of the class or from bytecode
that defines the class. We call such Class-creating methods reflection methods. The returned Class

can be used to create instances at runtime. Through manual inspection of the Java standard library
(JSL) reflection API, we identify four reflection methods through which all class-related reflection
usage eventually happens: Class.forName, ClassLoader.loadClass, ClassLoader.findSystemClass,
and ClassLoader.defineClass. The first three reflection methods take a String name and return
the Class represented by that name. The fourth reflection method takes a byte array and returns
the Class defined by that byte array. We find that all other possible Class-related uses of reflection
either eventually invoke these four reflection methods or refer to some Class that is statically
referenced in the code, which static analysis can detect. Therefore, focusing on detecting usages of
these four reflection methods suffices to detect all reflection usages for class-level SRTS.

2.3 Motivating Example

Figure 1 presents a code snippet showing example code and tests. In the example, L is a class
in the JSL; A1, A2, A3, and A4 are classes within the application, and test classes T1, T2, T3, and T4

form the test suite. Suppose that class A4 is changed (marked in a gray background). Using the
reflection-unaware analysis (RU Analysis), i.e., the class firewall technique, we find that the changed
class A4 has test class T4 as its only static dependent because T4.t4 directly creates a new instance
of A4. Figure 2(a) shows the static IRG based on RU Analysis, where T4 would be the only test class
affected by this change, and it is included in the class firewall (gray area in Figure 2(a)). However,

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 187. Publication date: October 2019.



187:6 August Shi, Milica Hadzi-Tanovic, Lingming Zhang, Darko Marinov, and Owolabi Legunsen

1 // JSL code

2 class L {

3 public void p() {} // empty method

4

5 public void m(String s) {

6 // reflection method invocation

7 Class c = Class.forName(s);

8 ...

9 }

10 }

11

12 // source code

13 class A1 extends L {

14 void m1() {

15 m(''A4'');

16 }

17

18 void m1(boolean b) {

19 m(''A'' + getNum(b));

20 ...

21 }

22

23 private String getNum(boolean b) {

24 return b ? ''1'' : ''3'';

25 }

26 }

27

28 class A2 {

29 void m2() {} // empty method

30 }

31

32 class A3 {

33 static void m3() {

34 (new L()).p();

35 }

36 }

37 class A4 {...} // changed code

1 // test code

2 class T1 {

3 @Test

4 void t1() {

5 A1 a1 = new A1();

6 a1.m1();

7 a1.m1(true);

8 }

9 }

10

11 class T2 {

12 @Test

13 void t2() {

14 A2 a2 = new A2();

15 a2.m2();

16 }

17 }

18

19 class T3 {

20 @Test

21 void t3() {

22 A3.m3();

23 }

24 }

25

26 class T4 {

27 @Test

28 void t4() {

29 A4 a4 = new A4();

30 }

31 }

Fig. 1. Example code to illustrate our techniques

selecting only T4 is unsafe, as more tests depend, via reflection, on the changed class A4. In the
example, T1.t1 creates an instance of A1 and invokes A1.m1, which invokes L.m, which in turn uses
a reflection method (Class.forName) to construct an instance of A4. Therefore, T1 also depends on
A4, but since RU Analysis is reflection-unaware, it fails to select T1, and is unsafe.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 187. Publication date: October 2019.



Reflection-Aware Static Regression Test Selection 187:7

L

A1

A3

T1

T3

T2
A2

A4

L

A1

A3

T1

T3

T2
A2

A4

L

A1

A3

T1

T3

T2
A2

A4

L

A1

A3

T1

T3

T2
A2

A4

(e) Dynamic Analysis

(c) String Analysis(b) Naïve Analysis(a) RU Analysis

T4

T4

T4
T4

L

A1

A3

T1

T3

T2
A2

A4

(d) Border Analysis

T4

(f) Per-test Analysis

L

A1

A3

T1

T3

T2
A2

A4

T4

T
1

inheritance

use

refl. use

Fig. 2. Illustration for various reflection-aware analyses

3 REFLECTION-AWARE STATIC REGRESSION TEST SELECTION

We describe the five techniques that we use to augment RU Analysis to become reflection-aware.
Essentially, the statically-constructed IRG used in RU Analysis misses reflective edges. Therefore,
techniques to make SRTS reflection-aware involve recovering potential reflective edges into the
IRG, after which the SRTS algorithm proceeds normally. Recovering missing reflective edges can
be done statically or dynamically.

3.1 Static Reflection Detection

We first describe three purely static reflection-aware techniques that can make SRTS safer with
respect to reflection.

3.1.1 Naïve Analysis. The simplest, but the most imprecise, approach to detecting reflective edges
is what we call Naïve Analysis, which adds edges to the IRG from each class that invokes a reflection
method to all other classes. For ease of presentation, we often refer to edges from a class to all
other classes in the IRG as an edge to the special node, "∗". Figure 1 shows that both A1 and L can

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 187. Publication date: October 2019.



187:8 August Shi, Milica Hadzi-Tanovic, Lingming Zhang, Darko Marinov, and Owolabi Legunsen

invoke the reflection method Class.forName (A1 can do so if either of its overloaded m1 methods is
invoked). Thus, we add to the IRG edges from A1 and L to all other nodes in the graph. The IRG
containing additional reflective edges from Naïve Analysis is shown in Figure 2(b). There, all tests
that reach A1 and L, namely T1 and T3, now also can reach A4, and are thus also in the class firewall
(shown in gray), in addition to T4. However, T3 does not use reflection, does not statically depend
on the changed A4, and need not be selected. In fact, our experiments show that Naïve Analysis
always selects all tests after every change (because test classes depend directly or transitively on
JSL classes, through which they may invoke a reflection method, e.g., java.lang.Class).

3.1.2 String Analysis. String Analysis [Christensen et al. 2003; Grech et al. 2018; Kirkegaard et al.
2004; Li et al. 2015a] is a static analysis technique that can approximate potential target classes in
reflective edges, based on the String-valued class name passed to reflection methods. In Figure 1,
String Analysis can determine that the reflection method call site in class L (line 7) can only receive
the name "A4" from invoking method L.m on line 15 of A1. Also, for the invocation of L.m on
line 19 of A1, String Analysis approximates the received class name to match the regular expression
"A1|A3". As shown in Figure 2(c), String Analysis then adds these reflective edges from L to A4 and
from A1 to A3 to the IRG. A self-edge from A1 to A1 need not be added to the IRG since class firewall
computes a reflexive and transitive closure. Thus, when A4 changes, String Analysis, in addition
to T4, would correctly select T1, which reaches L that can, in turn, reach A4 in the IRG. However,
String Analysis also imprecisely selects T3 because analyzing JSL classes (e.g., L) results in many
commonly-used internal JSL classes reaching client code classes. In this example, although T3 uses
L in a way that cannot lead to invoking the reflection method Class.forName, T3 still gets selected.

In sum, using String Analysis to recover reflective edges can make SRTS safe but also imprecise
because it over-approximates. During our initial experiments, we find that String Analysis incurs
large imprecision because it needs to analyze the internals of the JSL. More specifically, String
Analysis often cannot resolve the exact names of classes used as arguments at reflection method
call sites in the internals of the JSL without also including additional usage context from those call
sites. To illustrate, consider JSL internal class, java.lang.Class, which uses reflection methods to
manipulate the Java class that it represents. Statically, it is not known what the exact class being
manipulated is. Therefore, String Analysis can only determine that java.lang.Class can depend
on any class, i.e., "∗". However, almost all commonly-used classes in Java (e.g., java.lang.String,
java.lang.Integer) utilize methods from java.lang.Class, which are not necessarily reflection
methods or methods that eventually invoke a reflection method. Unfortunately, adding an edge
from java.lang.Class to all other nodes in the IRG causes each class to depend on every other
class, with the result that all test classes are selected after any code change.

3.1.3 Border Analysis. The severe imprecision of String Analysis for recovering reflective edges
is due to the fact that most commonly-used classes in the JSL transitively reach classes that are
connected to "∗" in the IRG. We propose Border Analysis, which avoids analyzing classes in the JSL,
while still aiming to be safe. Our observation is that not all, but only a subset of, methods from
the JSL, when invoked, can eventually invoke a reflection method. We define a border method as a
public method in the JSL that, when invoked, may eventually invoke a reflection method. A class
that invokes a border method, either directly or via third-party library code, may eventually invoke
a reflection method. Therefore, Border Analysis only adds to the IRG additional edges that connect
any non-JSL class that invokes a border method to "∗". Border Analysis takes as input a set of
border methods identified offline a priori and avoids subsequent re-analysis of the JSL internals
during the test selection process. Border methods can be identified automatically or through manual
inspection. In Figure 1, method L.m, which is in the JSL, is a border method, because invoking it
may (in fact, must) eventually invoke the reflection method Class.forName. As shown in Figure 2(d),

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 187. Publication date: October 2019.



Reflection-Aware Static Regression Test Selection 187:9

Border Analysis adds reflective edges to the IRG from A1 to all other classes because A1 is the only
class invoking the identified border method in the example. Thus, Border Analysis precisely selects
tests T1 and T4, without re-analyzing the JSL internals.
In theory, a developer with domain knowledge could manually identify the border methods

specific to their project. However, Border Analysis would be more practical if there are automated
approaches for determining border methods, which do not require manual developer work. As
discussed in Section 2.2, we recognized only four reflection methods in the JSL (Class.forName,
ClassLoader.loadClass, ClassLoader.findSystemClass, and ClassLoader.defineClass) that directly
create classes through reflection. We propose different approaches for finding border methods
which, when invoked, can eventually invoke one of these four reflection methods.

First, we consider a purely static approach to finding all border methods. The main idea is to
statically find out what public JSL methods can eventually invoke any of the aforementioned four
reflection methods. We perform a call-graph analysis using every public method in the JSL as an
entry point, and output, as border methods, public JSL methods that can reach any of the four
reflection methods in the call graph. However, such a static analysis to find border methods can
be very imprecise and result in many more border methods than can eventually invoke reflection
methods at runtime. Our analysis found 55453 such methods (of 124196 public JSL methods)!
Therefore, Border Analysis using all border methods that are obtained from statically analyzing
the JSL can be very imprecise and select almost all tests always, similar to String Analysis. We call
this Border Analysis variant static Border Analysis: it uses, as border methods, the full set of public
methods that are statically computed from the JSL independently of any software project.

Statically analyzing the JSL for all possible border methods is one extreme; it can be too imprecise.
As another extreme, we also investigate four-method Border AnalysisÐBorder Analysis that uses as
border methods only the four reflection methods. Code that invokes any of these four reflection
methods uses reflection. However, using only these four reflection methods as border methods can
lead to unsafety, because it excludes cases where a project does not directly invoke a reflection
method but instead calls a border method that can eventually invoke a reflection method at runtime.
We further propose a heuristic to automatically determine a set of border methods that falls

between the two extremes of static Border Analysis and four-method Border Analysis. Before
rerunning any of our experiments to evaluate Border Analysis, we perform a one-time experiment to
identify what border methods to use for each project. We determine border methods automatically
by instrumenting the execution of all tests in the earliest version of each of the projects in our
experiments to capture and process the call stack at a call site of any of the four reflection methods.
The call stack is processed as follows: we find the last method in the stack from a non-JSL class to
call a method in a JSL class. This method from a JSL class that is called by the last non-JSL method
is returned as a border method. Because we observe that these border methods invoke a reflection
method in at least one calling context, we over-approximate that all border methods detected this
way can eventually invoke a reflection method in all calling contexts. We refer to Border Analysis
that uses such dynamically obtained border methods as dynamic Border Analysis. However, we
acknowledge potential imprecision, because the border methods identified dynamically might only
eventually invoke a reflection method in some, but not all, calling contexts. Note that our collection
of border methods is performed once, offline. As code bases evolve, including changes to the tests
themselves, the changes could be such that existing border methods no longer suffice for safe SRTS.
In such cases, developers need to rerun the analysis to identify current border methods. In brief,
dynamic Border Analysis that uses border methods identified from a version of a project is only
safe to the degree that the border methods are up to date.
Finally, some automatically dynamically-identified border methods for a project are such that

they can only add edges to the IRG that RU Analysis would already find. We therefore also perform

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 187. Publication date: October 2019.



187:10 August Shi, Milica Hadzi-Tanovic, Lingming Zhang, Darko Marinov, and Owolabi Legunsen

a limit study with minimal Border Analysis, a variant of dynamic Border Analysis that uses a
manually identified subset of border methods from dynamic Border Analysis that do not lead to
finding edges that RU Analysis already finds; we refer to this subset of border methods as minimal

border methods. Section 4.4 discusses our manual identification of minimal border methods.

3.2 Hybrid Static-Dynamic Reflection Detection

We describe two hybrid static-dynamic techniques that make SRTS safer with respect to reflection.

3.2.1 Dynamic Analysis. We can obtain reflective edges dynamically as was done in previous work
on reflection analysis for other testing or analysis tasks, e.g., by Bodden et al. [2011] and Thies
and Bodden [2012]; we refer to this technique as Dynamic Analysis. The idea is to execute the
tests while instrumenting only the aforementioned four reflection methods to record the classes
constructed from invocations of the reflection methods. Then, for each invocation of a reflection
method, Dynamic Analysis adds an edge to the IRG from the class that invoked the reflection
method to the class constructed by the reflection method.
Instrumenting the reflection methods during test executions for the example in Figure 1 helps

discover that test T1 executes class L, which uses reflection to target class A4. Test T1 also executes
class A1 that uses reflection to target class A1. After adding both recovered edges to the IRG, shown
in Figure 2(e), SRTS determines that T1, T3, and T4 should be selected when A4 changes. Dynamic
Analysis is a hybrid static-dynamic RTS technique, and it can lead to more precise test selection
than Naïve Analysis or String Analysis. Dynamic Analysis uses a very lightweight instrumentation;
it only instruments call sites of the four reflection methods. However, Dynamic Analysis still suffers
some imprecision because it does not keep track of the test classes during whose execution each
invocation of a reflection method occurred. In the example from Figure 1, Dynamic Analysis finds
only from executing T1 that there is a reflective edge from L to A4, but the recovered edge from L to
A4 is added to the IRG on which reachability for all tests is computed. Therefore, when SRTS finds
that T3 can reach L, Dynamic Analysis imprecisely determines that T3 can also reach A4.

3.2.2 Per-test Analysis. Per-test Analysis improves the precision of Dynamic Analysis. Dynamic
Analysis is imprecise because it combines reflective edges recovered during the execution of all test
classes together in the same IRG, leading certain test classes to have spurious paths to some changed
class in the IRG. In other words, once a reflective edge recovered by Dynamic Analysis is added to
the IRG, it is no longer possible to distinguish the test class whose execution necessitated the edge.
Thus, the transitive closure of the augmented IRG may now include unnecessary dependencies for
other test classes. Per-test Analysis reduces the imprecision of Dynamic Analysis by only adding
reflective edges to the IRG when computing dependencies for the test class during whose execution
those reflective edges were recovered. Reflective edges recovered while executing each test class
are only used to find dependencies for that test classÐthese edges are not added to the same IRG
that is used for computing dependencies for all tests. In Figure 2(e), recall that Dynamic Analysis
selects to rerun T1, T3, and T4, because it added the reflective edges recovered from executing all
tests to the IRG. On the other hand, Per-test Analysis does not have the edge from L to A4 in the IRG
when computing the dependencies for T3, but it adds this edge to the IRG only when computing
dependencies for T1 (Figure 2(f) labels the reflective edge with the test that necessitates that edge).
The result is that Per-test Analysis does not imprecisely select T3 when A4 changes.

One might expect Per-test Analysis to be safe because it seemingly adds the right reflective edges
for each test as needed; however, it is possible for Per-test Analysis to miss to select tests due to
test-order dependencies [Gyori et al. 2015; Lam et al. 2019, 2015; Shi et al. 2019; Zhang et al. 2014].
Consider the example code in Figure 3. The Server class contains a static field, sessClz, of type
Class. Field sessClz is initialized in the static constructor, using Class.forName. The two test classes

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 187. Publication date: October 2019.



Reflection-Aware Static Regression Test Selection 187:11

1 class Server {

2

3 static Class sessClz;

4

5 static {

6 try {

7 sessClz = Class.forName("SessionImpl");

8 } catch (Exception ex) {

9 ...

10 }

11 }

12

13 public static Session createSession()

14 throws Exception {

15 return (Session)sessClz.newInstance();

16 }

17 }

1 class T1 {

2

3 void t1()

4 throws Exception {

5 Session sess =

6 Server.createSession();

7 ...

8 }

9 }

10

11 class T2 {

12

13 void t2()

14 throws Exception {

15 Session sess =

16 Server.createSession();

17 ...

18 }

19 }

Fig. 3. Example showing that Per-test Analysis can be unsafe

T1 and T2 both call the createSession static method from Server that uses the static field sessClz to
reflectively create a new instance of type SessionImpl. Statically, there is a use edge from T1 and T2

to Server and Session. When tests are run using Per-test Analysis, assume T1 is run first. During T1

execution, Server is referenced and the static constructor is invoked. At this time, Per-test Analysis
records the reflective edge from Server to SessionImpl, due to Class.forName. However, when T2 is
run afterwards, Server’s static constructor is not invoked, as Server was already used in T1, and
both tests are run in the same JVM. Therefore, Per-test Analysis would not record the reflective
edge for T2. While both tests eventually end up using an instance of SessionImpl due to calling
createSession, only T1 would have the reflective edge. If SessionImpl were to change, Per-test
Analysis would not select to run T2, even though T2 uses SessionImpl. While this examples assumes
that T1 runs first, the situation is dual if T2 runs first: T2, but not T1, would have the reflective
edge from Server to SessionImpl. One way for both tests to receive the same reflective edge would
be to run each test in a separate JVM, but using a separate JVM for individual test executions is
costly [Bell and Kaiser 2014]. Another way would be to use a much more involved runtime data-flow
analysis that could track dependencies even when all tests are run in the same JVM [Bell et al. 2015;
Gambi et al. 2018], but would add even more overhead, and our results show that Per-test Analysis
already has a higher end-to-end time than RU Analysis, relative to RetestAll.

4 IMPLEMENTATION

We implement all five reflection-aware techniques by extending our open-source Maven plugin for
RU Analysis, STARTS [STARTS Team 2018]. We describe the STARTS plugin that we extend, and
we provide details about how we extend STARTS to implement the reflection-aware techniques.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 187. Publication date: October 2019.



187:12 August Shi, Milica Hadzi-Tanovic, Lingming Zhang, Darko Marinov, and Owolabi Legunsen

4.1 RU Analysis in STARTS

STARTS [Legunsen et al. 2017] performs RU Analysis by implementing the class firewall technique
described in Section 2.1. It works in three main steps: (1) Change Computation: STARTS uses
the bytecode comparison feature from Ekstazi [Gligoric et al. 2015b] to compute, as changed, only
bytecode files where some non-debug-related information changed; (2) Graph Construction:

STARTS uses jdeps [Oracle 2018] to quickly parse all the bytecode from the project code and its
third-party libraries to discover dependency relationships among classes in the project. STARTS
then uses these dependencies to construct the IRG; (3) Graph Traversal: Given the IRG and
the nodes that changed since the last version, STARTS finds, as affected tests, test classes whose
IRG nodes can transitively reach changed nodes. For each reflection-aware technique, we merely
extend the graph construction step to recover and add reflective edges to the constructed IRG. Each
technique uses a different approach for recovering reflective edges, as described in detail below. We
also modified the graph traversal step to include logic for considering the special node "∗", needed
by the purely static reflection-aware techniques. The meaning of "∗" is that if a test reaches "∗" in
the IRG, that test is selected to be rerun if any class changes.
Note that for RU Analysis, it is unnecessary to track any classes in the JSL or in third-party

libraries, and we do not do so. It is assumed that code in both the JSL and in third-party libraries
do not change, and so they would not affect RTS selection. Further, as we showed in our prior
study [Legunsen et al. 2016], excluding libraries from the analysis of a class-level SRTS cannot
introduce non-reflection related safety issues. However, for reflection-aware techniques, it is
necessary to consider both the JSL and third-party libraries, as the JSL and the third-party libraries
can use reflection to refer back to classes in the project code that calls them.

4.2 Naïve Analysis

For Naïve Analysis, after creating the initial IRG, STARTS uses ASM [OW2 Consortium 2018]
to parse all classes, including those in the JSL and third-party libraries, to statically find uses of
the reflection methods: Class.forName, ClassLoader.loadClass, ClassLoader.findSystemClass, and
ClassLoader.defineClass. Classes that use reflection methods get edges to "∗" in the IRG.

4.3 String Analysis

For String Analysis, we use the JSA tool [Christensen et al. 2003], to analyze reflection call sites in
both the application code for each project and in the external libraries; all classes that could be
loaded into the JVM during test execution need to be analyzed. All Java projects load the same JSL
classes. Therefore, to speed up String Analysis experiments, we run JSA offline, only once a priori
(before performing experiments) for all JSL classes and third-party, non-JSL classes. We cache the
reflective edges recovered by JSA to be reused during String Analysis experiments. Finally, we
extend STARTS to reuse edges during String Analysis experiments for each project, during which
STARTS runs JSA only on classes in the project.

4.4 Border Analysis

For static Border Analysis, border methods are all public JSL methods that can statically reach one
of the four reflection methods, obtained from our project-independent CHA call-graph analysis of
the JSL. Our call-graph analysis uses every public JSL method as an entry point and returns the
public methods that reach any of the four reflection methods as border methods. For four-method
Border Analysis, the border methods are only the four reflection methods. Dynamic Border Analysis
dynamically collects border methods by processing dynamic traces during test executions.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 187. Publication date: October 2019.



Reflection-Aware Static Regression Test Selection 187:13

To collect border methods for dynamic Border Analysis, we execute the tests in the initial version
of each project with a Java Agent attached to the JVM in which the tests are executed. The Java
Agent instruments the four reflection methods, and analyzes the stack trace at each reflection
method invocation to determine the border methodÐthe first public JSL method invoked in a
trace in which one of the four reflection methods is eventually invoked (Section 3.1.3). The Java
Agent outputs the collected border methods in a ShutdownHook, which is invoked during JVM
shutdown, after all tests have been executed. In our experiments, we collect border methods per
experimental subject, using the oldest version among those that we selected. The border methods
from each project are then reused in the experiments for all subsequent versions of that project. This
automated way of collecting border methods may not detect all possible border methods, because
it is limited by test coverage in the initial version. Further, developers may change the code and
tests in the future, modifying coverage substantially enough to require update of border methods.
However, we note that the initial automated collection of border methods is sufficient for safe SRTS,
until developers make such substantial changes. At that point the developers can collect border
methods again. Developers could also update the border methods periodically during off-peak
periods, e.g., overnight or during weekends. Collecting border methods in this automated way is
relatively fast as the instrumentation is light and only requires running the tests once. However,
we still do not want to collect the border methods as developers are performing regression testing
and want to quickly see what tests should be run based on the changes made. Therefore, in our
experiments, dynamic collection of border methods is run offline, and not during regression testing.

Minimal Border Analysis requires further manual filtering of the automatically-collected border
methods to create a set of minimal border methods. The goal is to filter out reflective edges that
unnecessarily connect classes to "∗" when RU Analysis can already determine the concrete nodes
involved. We select the minimal border methods in an attempt to reduce the imprecision that can
result from using the larger set, at the risk of potentially being more unsafe. We keep only border
methods that we think will always create reflective edges that RU Analysis does not find. Two
co-authors manually inspected and selected minimal border methods, using the border methods
collected for dynamic Border Analysis as a starting point. We divided the subject programs into
two groups, each of which was assigned to one co-author for inspection. Each co-author then
double-checked the other’s selections to ensure that there was sufficient justification for removing a
method from the set of full border methods. An example border method that is not a minimal border
method is java.lang.Enum.valueOf; it uses reflection to find the Class of its String argument, but
merely connects an Enum to its declared valuesÐa dependency that RU Analysis already finds.
In all Border Analysis variants, the selected border methods are passed as input to STARTS,

which uses the border methods as follows. First, STARTS creates an initial IRG. Then, for each class
in the project, STARTS uses ASM to statically find invocations of border methods. Next, for any
class that STARTS finds to invoke a border method, STARTS creates an edge from that class to "∗".
Finally, STARTS adds these recovered reflective edges to the initial IRG, and uses the augmented
IRG for RTS. Edges between internal JSL classes are not added to the IRG for Border Analysis.

4.5 Dynamic Analysis

To recover reflective edges in Dynamic Analysis, STARTS performs very lightweight instrumenta-
tion during test execution in each version. The instrumentation is similar to that used for finding
border methods (Section 4.4), except that the instrumentation for Dynamic Analysis records the
Class returned from an invocation of one of the four reflection methods (Section 2.2). Once STARTS
discovers a Class being returned from the invocation of a reflection method, STARTS records a
reflective edge from the calling class to the returned Class. STARTS writes all reflective edges
collected during test execution to disk in a ShutdownHook, invoked on JVM shutdown after executing

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 187. Publication date: October 2019.



187:14 August Shi, Milica Hadzi-Tanovic, Lingming Zhang, Darko Marinov, and Owolabi Legunsen

all tests. Initially, on the first version, STARTS runs all tests and collects reflective edges from
running all tests. In the next version, STARTS uses the stored edges to augment the initial IRG that
it constructs, resulting in the final IRG used for RTS. In this next version, STARTS only instruments
the execution of the selected tests and augments the existing reflective edges with those collected
from that run, in preparation for the version after that. Dynamic Analysis has the benefit that there
are no edges to "∗" in the recovered reflective edgesÐthe exact Class returned from invocations
of reflection methods are known at runtime. The instrumentation for Dynamic Analysis is also
more lightweight than the one used in Ekstazi [Gligoric et al. 2015b]Ðit only instruments the four
reflection methods and not all classes.

4.6 Per-test Analysis

For Per-test Analysis, STARTS collects reflective edges as in Dynamic Analysis. However, instead
of writing out all the reflective edges when the JVM shuts down, STARTS associates the reflective
edges with the test that executes the reflection method. STARTS uses a custom JUnit RunListener

that detects when tests start and end. At the end of each test execution, the listener writes all the
reflective edges collected up until then to a file associated with that test, and then it clears out
all the collected reflective edges in preparation for executing the next test. After collecting edges
per test, STARTS reads in the file and for each test adds only the reflective edges for that test to
the initial IRG before traversing the augmented IRG to find dependencies for that test. As with
Dynamic Analysis, STARTS only collects reflective edges for selected tests.

5 EVALUATION

We evaluate whether reflection-aware SRTS techniques can be safe (and still be faster than RetestAll).
We address two research questions on the safety and precision of reflection-aware SRTS techniques:

• RQ1: How safe and precise is reflection-aware SRTS test selection, compared with Ekstazi?
• RQ2: How safe and precise is SRTS test-dependency computation, compared with Ekstazi?

Answering RQ1 and RQ2 (Sections 5.2 and 5.3), we find that Border Analysis and Dynamic Analysis
are as safe as Ekstazi in our experiments. We then proceed to address these research questions
related to how much faster SRTS techniques are relative to RetestAll:

• RQ3: How many tests does reflection-aware SRTS select, relative to RetestAll and RU Analysis?
• RQ4:What is the end-to-end time of reflection-aware SRTS relative to RetestAll and RUAnalysis?

Finally, we analyze the size of the IRG computed by SRTS:

• RQ5:What are the sizes of the IRG constructed by RU Analysis and reflection-aware SRTS?

We do not show any detailed results for Naïve Analysis and String Analysis, because we find them
to be too imprecise and often slower than RetestAll (Section 3.1.2).

5.1 Experimental Setup

Evaluation Subjects: We evaluate all RTS techniques on 1173 versions of 24 open-source, Maven-
based, Java projects selected from GitHub. The projects are a mix of 12 projects from our prior
work [Legunsen et al. 2016] (selected because the tests run longer than 15s, on average, across
all versions), and 12 additional projects that use reflection. We select these additional projects
because they contain classes that directly invoke Class.forName, and because we can compile and
successfully run the tests in at least 20 versions of these projects without any of our analyses in
their most recent versions. We start with the most recent 500 versions from each project and select
the project if we can obtain 20ś50 versions where we can compile and run the tests. In exploring
the most recent 500 versions, we stop either after obtaining 50 versions, or after we try all the 500

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 187. Publication date: October 2019.



Reflection-Aware Static Regression Test Selection 187:15

Table 1. Summary of all projects

ID Project SLUG SHAs All Tests RTA[s]

P1 apache/commons-email 50 17.4 14.0
P2 apache/commons-codec 50 52.0 15.4
P3 apache/incubator-fluo 50 25.1 23.2
P4 apache/commons-compress 50 118.3 20.9
P5 square/retrofit 50 49.6 24.3
P6 apache/commons-collections 50 160.0 25.3
P7 apache/commons-lang 50 147.7 27.9
P8 apache/commons-imaging 50 72.6 30.3
P9 robovm/robovm 50 32.2 43.1
P10 ninjaframework/ninja 50 103.7 44.4
P11 graphhopper/graphhopper 50 128.5 43.0
P12 google/guice 50 131.8 60.9
P13 apache/opennlp 50 169.3 66.4
P14 apache/commons-io 50 99.4 80.9
P15 apache/commons-math 50 446.3 84.8
P16 brettwooldridge/HikariCP 50 30.3 108.6
P17 addthis/stream-lib 50 24.1 115.1
P18 undertow-io/undertow 50 231.7 171.7
P19 openmrs/OpenMrs 50 269.4 169.0
P20 opentripplanner/OpenTripPlanner 50 136.1 224.7
P21 Activiti/Activiti 50 494.5 292.1
P22 apache/accumulo 23 342.2 291.4
P23 apache/commons-pool 50 20.0 301.1
P24 aws/aws-sdk-java 50 173.4 397.9

Avg 48.9 144.8 111.5

versions. We do not consider versions past the most recent 500 as we believe it unlikely that they
would be successful if we did not obtain enough versions among the most recent 500 versions.
To answer the RQs in more detail, we split the 24 projects in our study into two groups: (i) 11
small projects, for which the end-to-end time of running all the tests is between 15s and 60s on
average, and (ii) 13 big projects, for which the end-to-end time of running all the tests is longer
than 60s, on average. Note that for RTS evaluation, the end-to-end time of running tests is a more
important factor than the size of the codebase. Table 1 summarizes statistics about each of the
projects in our experiments, showing for each project a project ID (which we use to reference each
project in subsequent tables and plots), the project SLUG (useful for finding the project’s GitHub
repository), the number of versions/SHAs used in our experiments, the average number of tests
run by RetestAll across all versions, and the average time to run RetestAll across all versions. The
running times of these projects are representative of those commonly used in recent RTS research,
which also used some of the same subjects, e.g., Çelik et al. [2017]; Dini et al. [2016]; Gligoric et al.
[2015b]; Öqvist et al. [2016]; Shi et al. [2015]; Wang et al. [2018]; Zhang [2018].
Running Experiments:We perform all experiments involving SRTS, both reflection-aware and
reflection-unaware, using STARTS [STARTS Team 2018] (Section 4). For dynamic RTS comparison,
necessary only for RQ1, we use Ekstazi [Gligoric et al. 2015a,b]. We automate the run of tests across
the selected versions of all projects in our study. All timing experiments are performed on Amazon

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 187. Publication date: October 2019.



187:16 August Shi, Milica Hadzi-Tanovic, Lingming Zhang, Darko Marinov, and Owolabi Legunsen

Table 2. Average violations across projects; Tests Selected Diff is diff in tests selected, Dep Diff is diff in
dependencies found

ID
Tests Selected Diff (%) Dep Diff (%)

X -RU RU -X X -Bd Bd -X X -Bs Bs -X X -D D-X X -P P -X X -RU X -Bd X -Bs
P1 0.0 1.7 0.0 27.9 0.0 29.9 0.0 31.9 0.0 5.8 17.2 0.0 0.0
P2 0.0 5.8 0.0 44.2 0.0 50.2 0.0 44.2 0.0 5.8 0.0 0.0 0.0
P3 0.0 46.7 0.0 61.9 0.0 63.1 0.0 60.2 0.0 46.7 25.9 0.0 0.0
P4 0.0 31.7 0.0 59.7 0.0 64.2 0.0 62.2 0.0 32.0 1.1 0.0 0.0
P5 0.0 16.2 0.0 26.2 0.0 26.2 0.0 25.9 0.0 21.5 6.2 0.0 0.0
P6 0.0 21.2 0.0 50.6 0.0 50.8 0.0 50.8 0.0 24.3 0.6 0.0 0.0
P7 0.0 20.5 0.0 60.8 0.0 61.5 0.0 59.5 0.0 21.7 0.7 0.0 0.0
P8 0.0 30.6 0.0 47.6 0.0 49.9 0.0 49.9 0.0 30.6 0.0 0.0 0.0
P9 0.0 42.2 0.0 59.5 0.0 59.5 0.0 57.5 0.0 42.2 3.1 0.0 0.0
P10 36.1 20.9 0.0 59.6 0.0 61.3 0.0 61.1 6.9 23.9 45.8 0.0 0.0
P11 0.0 46.9 0.0 81.2 0.0 82.3 0.0 54.5 0.0 47.3 10.1 0.0 0.0
P12 0.0 14.1 0.0 32.0 0.0 32.0 0.0 29.4 0.0 20.8 12.4 0.0 0.0
P13 0.0 36.4 0.0 81.4 0.0 90.4 0.0 74.4 0.0 36.7 2.9 0.0 0.0
P14 0.0 12.6 0.0 39.5 0.0 51.0 0.0 51.0 0.0 17.0 0.0 0.0 0.0
P15 0.0 13.7 0.0 34.5 0.0 34.6 0.0 34.6 0.0 13.8 4.9 0.0 0.0
P16 0.1 13.4 0.0 21.3 0.0 25.4 2.0 24.8 17.8 9.0 79.3 0.0 0.0
P17 0.0 17.2 0.0 73.7 0.0 78.1 0.0 74.2 0.0 21.1 0.0 0.0 0.0
P18 7.7 35.7 0.4 50.0 0.0 51.0 0.5 49.7 4.1 37.7 99.6 0.0 0.0
P19 21.4 24.2 0.0 69.6 0.0 69.8 0.0 69.7 15.7 38.7 74.6 0.0 0.0
P20 0.0 52.0 0.0 66.8 0.0 68.5 0.0 68.5 0.0 52.5 36.2 0.0 0.0
P21 0.0 31.7 0.0 39.6 0.0 39.6 0.0 37.2 0.0 31.8 85.7 0.0 0.0
P22 0.6 58.9 0.0 81.5 0.0 81.7 0.0 86.8 0.0 86.5 35.8 0.0 0.0
P23 0.0 17.3 0.0 31.0 0.4 40.1 0.0 38.6 0.0 21.5 55.0 0.0 0.0
P24 73.3 19.9 71.2 24.2 71.2 24.4 72.8 22.3 73.2 20.0 32.6 0.0 0.0

Avg 5.8 26.3 3.0 51.0 3.0 53.6 3.1 50.8 4.9 29.5 26.2 0.0 0.0

EC2 łm5.xlargež instances (four 2.5 GHz Intel Xeon Platinum 8175M processors, 16 GB of RAM,
100GB of SSD storage) running Ubuntu 16.04.03 and Oracle Java 1.8.0_144-b01.

5.2 RQ1: Test-Level Safety and Precision

Table 2 shows the comparison of the test-level safety and precision of RU Analysis and the reflection-
aware SRTS techniques, compared with Ekstazi. A technique is safe if it selects to rerun all affected
tests and precise if it selects to rerun only the affected tests. In the absence of a ground truth for
RTS safety and precision, we compare the safety violations and precision violations of SRTS against
Ekstazi, as we defined in our prior work [Legunsen et al. 2016]: łLet E be the set of tests selected by
Ekstazi andT be the set of tests selected by another technique on some version. Safety, respectively
precision, violations are computed as |E \T |/|E ∪T |, respectively |T \ E |/|E ∪T |, and measure how
much a technique is less safe, respectively precise, than Ekstazi; lower percentages are better. We
use the union of tests selected by both Ekstazi and the technique to avoid errors due to division
by zero where Ekstazi does not select any test but an SRTS technique selects some tests. When
both select to run no tests, the value recorded is zero, as there is no safety or precision violation
for such a case.ž2 In Table 2 (and all later tables), we represent Ekstazi as X , RU Analysis as RU ,
dynamic Border Analysis as Bd , static Border Analysis as Bs , Dynamic Analysis as D, and Per-test
Analysis as P . We do not show detailed results for four-method Border Analysis and minimal
Border Analysis; their results are similar to dynamic Border Analysis. Columns X -RU , X -Bd , X -Bs ,
X -D, and X -P show the safety violations of the SRTS techniques (compared with Ekstazi). Columns
RU -X , Bd -X , Bs -X , D-X , and P-X show the precision violations.

2Using just |E | as the denominator can make precision violations go over 100%; the same applies for computing safety

violations using just |T |. Alternatively, if we use |E \T |/ |E | for safety violations and |T \ E |/ |T | for precision violations,

there could be different sets of versions that are valid; some may only have |E | being 0 while others have only |T | being 0.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 187. Publication date: October 2019.



Reflection-Aware Static Regression Test Selection 187:17

Concerning safety violations, theX -RU column in Table 2 shows that RU Analysis has an average
safety violation of 5.8% across all projects. RU Analysis is reflection-unaware, missing to select
some affected tests and therefore unsafe relative to Ekstazi. For all variants of Border Analysis, the
average safety violations across all projects are the same, 3.0%. Dynamic Analysis appears unsafe
as well. However, our inspection shows that these reflection-aware techniques are as safe as Ekstazi,
although it would appear from Table 2 that the SRTS techniques are unsafe.
For the aws-sdk-java project (P24), our manual inspection shows that the safety violations in

project are actually caused by imprecision in Ekstazi. More specifically, these classes do not contain
any test methods of their own but only contain nested test classes that, in turn, contain test methods.
Ekstazi does not currently track the JUnit runner for such test classes (org.junit.experimental.r
unners.Enclosed) and always selects to run these test classes, even when no code changes. (We
reported this issue to the Ekstazi developers.) Note that this imprecision in Ekstazi makes RU
Analysis appear less safe than it actually is in our experiments.

For the commons-pool project (P23), only static Border Analysis appears unsafe. We find that it
seems unsafe only in one version, where the test-running process timed out and not all selected tests
were run. However, the tests that we report as affected in this paper are those that are rerunÐthese
are the tests whose test-execution time we also measure. In P23, static Border Analysis is actually
safe; it statically selects all affected testsÐif a timeout had not happened, static Border Analysis
would have run all tests that Ekstazi also runs, just as the other Border Analysis variants do.

For project undertow (P18), again, we find dynamic Border Analysis to be safe, even though it
appears unsafe in Table 2. Our manual inspection shows that in one version of P18, during the
Ekstazi run, automatic code generation produces bytecode files that are different from the previous
version, so Ekstazi correctly selects to rerun tests that depend on the auto-generated files. However,
during the dynamic Border Analysis run, the automatically generated bytecode files are the same
as in the previous version, so no tests that depend on the auto-generated files are selected. The
bytecode auto-generation process can be non-deterministic (the generated files can have different
contents even with no changes to any developer-written code), so the two techniques simply did
not start with the same set of changed files; this should not be considered a safety violation for
dynamic Border Analysis. Finally, although dynamic Border Analysis is as safe as Ekstazi in our
experiments, in general, code changes can cause it to become unsafe, necessitating dynamic Border
Analysis to update its border methods to become safe again.

Per-test Analysis is safer than RU Analysis, but more unsafe than other reflection-aware tech-
niques (4.9% safety violations). However, as mentioned in Section 3.2.2, violations are expected
given the way the collection of reflective edges works. For example, in our inspection of the ninja
project (P10), we find a case of safety violation due to the use of dependency injection and singletons.
For the version pair, (6c952f,116521), the only change is to a class CookieEncryption, which is both
an injected dependency and a singleton. We find that the reflective edge is recorded against the
first test class that is run and that this edge happens through the dependency injection library that
reaches CookieEncryption. However, all subsequent tests do not record the reflective edge, because
the singleton is already instantiated so there is no need to re-instantiate it via reflection. Thus,
Per-test Analysis safety violations in this version pair are all due to missing test classes which use
CookieEncryption, but did not have the reflective edge recorded, like our example in Section 3.2.2.

Precision violations are higher for reflection-aware SRTS than for reflection-unaware RU Analy-
sis, showing that reflection-awareness amplifies the inherent imprecision of SRTS. In particular,
reflection-awareness leads to selecting many more tests: where RU Analysis has an average preci-
sion violation of 26.3%, dynamic Border Analysis has 51.0%, static Border Analysis has 53.6%, and
Dynamic Analysis has 50.8%. Although reflection-aware SRTS improves test-level safety issues
of RU Analysis, it also incurs a high cost due to the increased imprecision. In contrast, Per-test

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 187. Publication date: October 2019.



187:18 August Shi, Milica Hadzi-Tanovic, Lingming Zhang, Darko Marinov, and Owolabi Legunsen

Analysis has an average precision violation of 29.5%, which is close to that of RU Analysis. However,
Per-test Analysis incurs more safety violations than the other reflection-aware SRTS techniques.

5.3 RQ2: Dependency-Level Safety and Precision

At the dependency level, safety violation is the percentage of all tests for which there is a non-
zero number of dependencies computed by Ekstazi but not by an SRTS technique. (At the test
level, we consider the percentage of only selected tests.) Table 2Ðthe Dep Diff (%) columnÐshows
the dependency-level safety violations of RU Analysis and the purely static reflection-aware RTS
techniques (the Border Analysis variants). Once again, we do not show four-method Border Analysis
and minimal Border Analysis as their results are similar to dynamic Border Analysis. Under the Dep
Diff (%) column, X -RU , X -Bd , and X -Bs show the average percentage of all tests for which Ekstazi
finds some dependency that RU Analysis, dynamic Border Analysis, and static Border Analysis do
not find, respectively. For example, the 26.2% average violation for X -RU means that 26.2% of tests
have at least one dependency that Ekstazi finds but RU Analysis does not find.

As shown in Table 2, there are only four (out of 24) projects where RU Analysis does not have a
safety violation at the dependency level. For all other projects, RU Analysis misses dependencies
for a large percentage of tests, up to 99.6% of all tests (in undertow, P18) missing at least one
dependency that Ekstazi finds. In contrast with what we reported before [Legunsen et al. 2016], it
is clear that reflection-unawareness can potentially lead to many more affected tests being missed
during RTS, showing how unsafe RU Analysis can be. On the other hand, Table 2 shows that, at the
dependency level, dynamic Border Analysis and static Border Analysis are as safe as Ekstazi in our
experiments. This result demonstrates how the reflective edges recovered in Border Analysis help
by over-approximating the test dependencies, which leads to safe RTS in our experiments (again,
note that dynamic Border Analysis may become unsafe at some point if the code and tests change
enough to require a new set of border methods).

5.4 RQ3: Selection Rates

Figure 4 shows the average percentage of tests selected by the different RTS techniques in our
study. For each project, the figure shows bars representing the average percentage of RetestAll
tests selected by each technique. Each bar represents an average across all versions in each project.
In the figure, we show the selection rates for RU Analysis, dynamic Border Analysis, static Border
Analysis, Dynamic Analysis, and Per-test Analysis. We do not show results for four-method Border
Analysis and minimal Border Analysis; their results are similar to dynamic Border Analysis.

The results in Figure 4 show that reflection-awareness for SRTS comes at the cost of selecting
more tests than RU Analysis, which selects on average 34.1% ± 20.4% (µ ±σ , i.e., average ± standard
deviation) of all tests, and RU Analysis is already more imprecise than Ekstazi (Table 2). Overall,
on average, four-method Border Analysis selects 52.2% ± 24.6%, minimal Border Analysis selects
55.1% ± 23.1%, dynamic Border Analysis selects 57.1% ± 23.9%, static Border Analysis selects 68.8%
± 20.1%, and Dynamic Analysis selects 67.0% ± 20.1% of all tests. Of the Border Analysis variants,
four-method Border Analysis performs the best in terms of selection percentages. On the other hand,
static Border Analysis on average selects the most number of tests among all reflection-aware SRTS
techniques, showing how an imprecise set of border methods can adversely affect test selection.
Finally, Per-test Analysis selects tests at a rate, 36.9% ± 24.7%, that is closest to the selection rate of
RU Analysis, but Per-test Analysis can be unsafe due to test-order dependencies.

5.5 RQ4: Time Savings from Reflection-aware SRTS

We compute for each project the average percentage of RetestAll time each technique takes across
all versions. This percentage for each technique is computed based on the end-to-end RTS timeÐthe

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 187. Publication date: October 2019.



Reflection-Aware Static Regression Test Selection 187:19

Fig. 4. Average percentage of tests selected

time to compile, compute changes, analyze dependencies to find affected tests, execute the selected
tests, and update the test dependencies for the test selection on the next version. We compute two
variants of this percentage: (1) the percentage of time taken for an łonlinež mode, which takes
into consideration all the components of RTS time, and (2) the percentage of time taken for an
łofflinež mode, which does not take into consideration the time for updating the test dependencies;
the reasoning is that updating test dependencies for the next run can happen offline, after the

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 187. Publication date: October 2019.



187:20 August Shi, Milica Hadzi-Tanovic, Lingming Zhang, Darko Marinov, and Owolabi Legunsen

Fig. 5. Average percentage of RetestAll time for RTS in łonline modež

developers see the results of the tests after the current run, so updating test dependencies need not
be on the developers’ critical path. Figure 5 shows the percentage of time taken by each technique
for each project in the łonlinež mode, while Figure 6 shows the same but for the łofflinež mode.
Each bar shows for a technique the average percentage of RetestAll time the technique takes across
all versions for a project. Once again, we do not show all Border Analysis variants because they
have very similar times, so we only show for dynamic Border Analysis and static Border Analysis.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 187. Publication date: October 2019.



Reflection-Aware Static Regression Test Selection 187:21

Fig. 6. Average percentage of RetestAll time for RTS in łoffline modež

In the case of Figure 5, for the sake of presentation, we limit the figure to show only the bars up to
200%. For the three bars that go beyond this limit, namely for Dynamic Analysis of projects P3,
P5, and P10, we also show the actual percentage above the bars. The red line in Figures 5 and 6
represent the 100% mark to help show how well a technique performs with respect to RetestAll;
bars that go over this line indicate that a technique performs worse than RetestAll.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 187. Publication date: October 2019.



187:22 August Shi, Milica Hadzi-Tanovic, Lingming Zhang, Darko Marinov, and Owolabi Legunsen

Table 3. Breakdowns of time for RTS techniques. A is analysis time, E is test execution time, G is graph
computation time, and C is project compilation time

ID
RU Bd D P

A E G C A E G C A E G C A E G C
P1 0.9 21.9 3.3 73.8 2.6 27.7 4.0 65.7 2.6 18.5 17.1 61.8 2.9 23.7 4.7 68.7
P2 1.2 11.3 4.1 83.3 1.2 24.7 4.2 69.9 1.1 18.7 18.2 62.0 1.5 10.9 5.8 81.8
P3 1.1 13.6 4.7 80.6 8.1 10.5 27.1 54.3 7.2 6.7 43.3 42.8 9.3 9.0 24.7 56.9
P4 1.2 28.3 4.8 65.6 1.7 40.0 5.7 52.6 1.9 28.5 25.0 44.5 2.1 26.4 10.0 61.6
P5 2.1 40.7 5.3 51.9 9.0 34.5 12.6 43.8 7.0 14.6 50.7 27.7 10.7 34.0 13.1 42.1
P6 1.4 21.4 3.8 73.5 1.4 33.1 3.6 61.9 2.1 26.3 15.6 55.9 1.7 20.4 6.8 71.2
P7 1.6 17.2 4.6 76.6 1.5 38.8 4.3 55.4 2.0 30.1 18.0 49.9 1.9 16.2 10.6 71.3
P8 0.7 45.6 3.3 50.4 0.6 51.7 3.4 44.3 0.6 40.9 16.7 41.8 0.7 44.4 4.6 50.2
P9 0.9 7.1 4.6 87.4 2.3 8.9 7.3 81.4 1.3 8.2 13.5 77.0 1.3 7.1 6.9 84.7
P10 1.8 40.8 6.4 51.0 9.1 40.1 21.8 28.9 7.5 23.4 53.3 15.8 10.0 37.3 29.1 23.6
P11 1.8 28.3 3.9 66.0 5.0 30.6 11.9 52.5 4.9 16.9 31.0 47.2 5.1 26.7 9.0 59.3
P12 1.9 35.2 5.4 57.5 5.2 32.3 9.0 53.5 4.3 23.8 30.6 41.3 4.9 35.2 9.5 50.4
P13 1.0 34.6 4.8 59.5 0.8 69.8 5.5 24.0 1.1 50.9 17.4 30.6 1.4 33.2 8.8 56.6
P14 0.9 40.5 2.6 56.0 0.9 43.8 2.8 52.5 0.8 49.8 7.8 41.6 1.0 40.1 3.5 55.4
P15 2.4 19.6 1.8 76.3 2.1 32.1 1.4 64.4 4.1 28.3 6.2 61.4 2.4 17.7 6.7 73.3
P16 0.1 90.8 1.0 8.1 1.1 88.0 2.7 8.1 1.4 81.9 10.6 6.0 3.3 74.5 4.5 17.7
P17 0.6 65.3 3.0 31.2 1.0 83.5 1.6 14.0 1.2 75.6 7.1 16.0 1.6 61.9 11.3 25.1
P18 0.6 81.5 2.9 14.9 1.1 84.1 4.4 10.4 1.6 69.1 19.3 9.9 1.4 74.1 11.9 12.6
P19 1.3 45.4 3.8 49.6 3.5 70.9 7.9 17.6 4.6 46.7 34.5 14.2 5.9 29.6 41.8 22.7
P20 0.4 87.9 1.0 10.8 1.8 86.3 3.7 8.2 2.3 53.4 7.3 37.0 2.1 74.9 13.8 9.2
P21 2.4 49.0 1.4 47.1 5.8 50.4 4.0 39.7 11.6 41.6 12.2 34.5 7.8 42.9 9.8 39.4
P22 2.3 29.2 6.8 61.7 7.1 26.3 17.7 48.9 4.6 19.7 21.2 54.5 5.1 20.9 13.6 60.4
P23 0.4 64.7 0.3 34.6 0.5 66.9 0.3 32.3 0.6 61.4 1.9 36.1 0.6 64.7 0.3 34.5
P24 0.3 8.5 0.3 91.0 0.8 9.8 0.5 88.9 1.5 9.2 2.2 87.1 0.9 8.4 0.8 90.0

Avg 1.2 38.7 3.5 56.6 3.1 45.2 7.0 44.7 3.3 35.2 20.0 41.5 3.6 34.8 10.9 50.8

For small projects, we find that SRTS does not save as much time compared to big projects
relative to RetestAll and that small projects do not benefit as much from RTS as big projects. The
savings from SRTS are greater for the big projects. For example, considering only the small projects,
the average łofflinež percentage of RetestAll time taken by dynamic Border Analysis is 92.5% ±
15.2% (once again, we express variance between projects in the form of µ ±σ ), while for big projects
the average łofflinež percentage is 80.2% ± 23.1%.

Overall, considering all projects, the purely static reflection-aware SRTS techniques (the Border
Analysis variants) are on average faster than RetestAll, but not by much, e.g., 85.8% ± 21.7% of
RetestAll time for dynamic Border Analysis (in the łofflinež mode). Note that these time savings are
all for unit tests in the projects, as Ekstazi and STARTS are currently implemented to only handle
unit tests run through Maven Surefire. If these tools support RTS for integration tests, which are
generally run through Maven Failsafe, we believe the time savings can be even greater. Integration
tests generally run longer and our results show that bigger projects with longer-running tests have
better time savings (five of our subjects have Failsafe integration tests). Per-test Analysis performs
the best out of all reflection-aware techniques, running on average 75.8% ± 24.5% of RetestAll time
due to selecting fewer tests. RU Analysis is the fastest overall, taking on average 69.1% ± 19.7%
of RetestAll time (compared with 65.5% ± 25.9% for Ekstazi), but is reflection-unaware. Therefore,
while RU Analysis remains similar to Ekstazi in terms of end-to-end time, the current approaches
for adding reflection-awareness to static RTS makes it less useful in practice.

5.5.1 Breakdown of Time. Table 3 shows the breakdown of the time it takes for each RTS technique
to run. For space reasons, we only show breakdowns for dynamic Border Analysis as a representative
of the Border Analysis variants, as they all have similar breakdown times. The table shows the
percentage of the time it takes for each technique in the A phase, which is the analysis time to
decide what tests to select, the E phase, which is the execution time for running the selected tests,
the G phase, which is the IRG computation time, including collecting and updating dependencies

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 187. Publication date: October 2019.



Reflection-Aware Static Regression Test Selection 187:23

as well as performing the reachability analysis on the IRG, and the C phase, which is the remaining
time in the end-to-end total time, mainly used for compilation. The total sum of the times in these
phases sum up to the łonlinež mode time presented in Section 5.5, and the łofflinež mode time there
is the sum of the times in all phases except the G phase.

In Table 3, the A phase is quite fast in general across all techniques. The G phase is also relatively
quick, though it is larger for the hybrid static-dynamic techniquesÐDynamic Analysis and Per-test
Analysis. The fact that a larger percentage of the time is in the G phase for the hybrid static-dynamic
techniques suggests that these techniques have larger graphs to process, or for Per-test Analysis,
it suggests that the time to process a separate graph per test is fairly expensive. However, the
E percentage for running the selected tests is still larger than the percentages for the other two
phases, particularly prominent for the big, longer-running projects. The large percentage of time
for executing selected tests suggests that imprecision is still a major factor; these techniques could
be sped up if they can (quickly) select fewer tests to run. As discussed more in Section 6, one way to
improve the precision of reflection-aware RTS techniques is to consider a hybrid class-and-method
static RTS approach, as was recently done in the HyRTS approach for dynamic RTS [Zhang 2018].

One final thing to note is how the C phase actually takes up a large percentage of the end-to-end
times. In particular, we see for the small projects that the C phase takes up the largest percentage
of the time, even greater than the time to execute selected tests. Even for the big projects, the
C phase time is comparable to the time for executing tests. Since such a large percentage of the
time is dedicated to compilation, improving on compilation may be key to improving the overall
end-to-end time developers see for regression testing.

5.6 RQ5: Dependency Graph Sizes

As an internal measure of the complexity of the projects and the different SRTS techniques, we
compute the number of nodes and edges in the IRGs constructed for each SRTS technique. The
size of the graphs can affect the time needed by each technique to determine what tests should
be selected after code changes. The IRGs constructed by RU Analysis have, on average across all
projects, 5054.1 nodes and 50891.7 edges. RU Analysis graphs contain nodes from the program’s
classes but not classes from the third-party libraries that the program depends on. Adding reflective
edges to this base IRG increases the number of nodes reachable from the tests in the IRG, causing
reflection-aware SRTS techniques to explore more edges and reach more classes. Dynamic Analysis
adds the largest number of extra nodes and edges, having 227882.8 and 2602026.2, respectively, on
average. These large numbers are expected, because Dynamic Analysis tracks the internals of the
JSL and therefore finds many classes that are reachable through reflection. Border Analysis IRGs
on average range from 45296.4 nodes and 499909.7 edges (four-method Border Analysis) to 45357.4
nodes and 517270.6 edges (static Border Analysis). The trend in the sizes of the IRGs correlates
with the selection rates of the various RTS techniques, showing that techniques with fewer/more
nodes and edges in their IRGs select fewer/more tests to run.

IRG sizes for the different Border Analysis variants are essentially the same, a trend that is also
correlated with the fact that all the variants have about the same test-selection rates and end-to-end
running times. However, all Border Analysis variants still have many more nodes than RU Analysis.
This is due to optimizations in the implementation. For RU Analysis, only the classes statically
reachable by the tests need to be checked after every change to see what tests should be selected;
no other changes can lead to more affected tests in RU Analysis. With Border Analysis, because
there can be edges to "∗", all classes, not just those reachable by the tests, need to be tracked, so the
graph size includes many more nodes. The effect of tracking all classes, not just those reachable by
the tests, is more pronounced in multi-module Maven projects where graphs for some modules
often need to be built and analyzed after code changes for Border Analysis but not RU Analysis.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 187. Publication date: October 2019.



187:24 August Shi, Milica Hadzi-Tanovic, Lingming Zhang, Darko Marinov, and Owolabi Legunsen

6 DISCUSSION AND FUTURE WORK

Safety vs. Cost Tradeoffs of Reflection-Aware SRTS: Overall, our evaluation shows negative
resultsÐcurrent techniques to make SRTS safe with respect to reflection come at very high costs that
make SRTS less practical. These techniques either are still unsafe or make SRTS too costly for saving
time in regression testing. For developers who want SRTS safe with respect to reflection, based
on our negative results, future work would need to explore completely new kinds of techniques
to make SRTS not just safe but also practical. However, our results show potential tradeoffs of
different techniques in terms of safety and cost. If developers are willing to accept some unsafety
to lower the cost, they may choose the technique that best suits their purposes.

While RTS research has traditionally focused only on safe techniques, several teams in industry
have recently proposed unsafe RTS techniques that give acceptable tradeoffs in their settings. For
example, Machalica et al. [2019] at Facebook recently proposed an unsafe RTS technique that
selects to run only tests that a machine-learning model, trained on historical test failures and
historical code changes, predicts as likely to fail for the current code changes. Çelik et al. [2018]
also developed an unsafe static RTS technique in their recent collaboration with Samsung because
real-time constraints of embedded software being tested prevented using dynamic RTS. Memon et al.
[2017] evaluated at Google an unsafe RTS technique that selects tests based only on dependencies
close to the code changes and not based on all transitive dependencies. Also at Google, Elbaum
et al. [2014] proposed an unsafe RTS technique that selects to rerun only tests that have failed in a
predefined failure window, tests that have not been executed in a predefined execution window,
or tests that are new. These examples show that developers may be willing to accept unsafe RTS
techniques if they offer a good tradeoff between cost and detection of regression bugs. Interesting
future work would be to empirically compare the unsafe SRTS techniques from this paper with the
other emerging unsafe RTS techniques.
Other Sources of SRTS Unsafety: Although we only investigate safety of SRTS due to reflection
in this paper, there are many other potential sources of SRTS unsafety, including changes to
non-code files (e.g., resource files loaded via file I/O operations), native methods, projects with
multiple programming-languages/runtimes, distributed or service-oriented applications, etc. In
addition, order-dependent tests [Lam et al. 2015; Zhang et al. 2014] are an issue with RTS in general,
not just SRTS. For example, a dynamic RTS technique like Ekstazi would also have issues with
order-dependent tests because dependencies may be wrongly associated with tests depending on
the order in which the tests are run. Order-dependent tests are a problem for Per-test Analysis
presented in Section 5.2. Recent work started addressing some of these sources of unsafety for
dynamic RTS [Çelik et al. 2017]; future work could explore handling these safety issues for SRTS.
Bad Testing Practices: Some projects have problems in test suites that stem from bad testing
practices, such as order-dependent tests or tests that pollute shared state [Gyori et al. 2015]. These
problems can hinder RTS in general and SRTS in particular. For example, if a test suite has no
order-dependent tests, the safety problems that we observe for Per-test Analysis would not manifest.
Our specific experiences with SRTS and general recommendations from others [Greiler et al. 2013;
Huo and Clause 2014; Palomba and Zaidman 2017; Spadini et al. 2018; Tufano et al. 2015] about
negative effects of these bad testing practices prompt us to strongly recommend developers to
avoid such bad practices in the future. If test suites already have order-dependent tests, developers
should use existing techniques to detect and/or remove such tests [Bell and Kaiser 2014; Bell et al.
2015; Gambi et al. 2018; Gyori et al. 2015; Lam et al. 2019, 2015; Shi et al. 2019; Zhang et al. 2014].
Combining Class-Level and Method-Level SRTS: Zhang [2018] proposed HyRTS, which com-
bines class-level and method-level granularity for dynamic RTS. A similar approach for static RTS
may help improve precision of SRTS and alleviate some of the costs of handling reflection for

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 187. Publication date: October 2019.



Reflection-Aware Static Regression Test Selection 187:25

reflection-aware SRTS. Specifically, it would be interesting to explore how the current RU Analysis
for SRTS can also be improved by incorporating analysis at a more fine-grained level. Our prior
work [Legunsen et al. 2016] found that SRTS based on class dependencies was more effective than
SRTS based on method-level dependencies, and hence we evaluated only class-level SRTS in this
paper. However, SRTS based on hybrid class-and-method dependencies may help improve the
precision of SRTS without making SRTS more unsafe than it already is. Analyzing reflection for
methods poses additional challenges due to Java’s rich reflection API. We leave investigating this
hybrid approach for SRTS as future work.

7 THREATS TO VALIDITY

The main threat to internal validity lies in the implementation of our reflection-aware analyses. To
reduce this threat, we build our analyses on top of a publicly available static RTS tool, STARTS.
Furthermore, we use mature frameworks and libraries to build our reflection-aware analyses, such
as the JSA string analysis framework. To further reduce this threat, we plan to contribute our
analyses to the STARTS tool so that users can validate, refine, and build on our implementation.

The main threat to external validity lies in the subjects we use in our study. To reduce this threat,
we use 1173 versions from 24 open-source projects, including 12 projects with longer test-running
times from our prior static RTS study [Legunsen et al. 2016] and 12 additional projects that use
reflection heavily. However, our experimental results may still not generalize to other projects.
Further reducing this threat requires evaluating our techniques onmore and larger projects. Another
threat is that some of our subjects may contain flaky tests that can pass and fail on the same version
of the code. However, the results we present are consistent over many runs of the experiments.
The main threat to construct validity lies in the metrics we use in evaluating the studied tech-

niques. To reduce this threat, we rely on widely-used RTS metrics, namely test-selection rates and
percentage of RetestAll time for testing. For measuring safety and precision, we compare against
Ekstazi, a state-of-the-art dynamic RTS tool, as we previously did [Legunsen et al. 2016].

8 RELATED WORK

Dynamic RTS techniques have been intensively studied in the literature. Rothermel and Harrold
[1993, 1997] proposed one of the first dynamic RTS techniques for C programs based on basic-block-
level analysis. Harrold et al. [2001] and Orso et al. [2004] later proposed to handle object-oriented
features and adapt basic-block-level RTS for Java programs. In recent years, researchers have
started to investigate coarser-grained dynamic RTS analyses due to the increasing software size.
For example, Ren et al. [2004] and Zhang et al. [2011] studied method-level dynamic RTS. Gligoric
et al. [2015b] proposed the class-level dynamic RTS technique, Ekstazi, and demonstrated that
Ekstazi can have even shorter end-to-end testing time than existing method-level dynamic RTS
due to the lower costs with its coarse-grained analysis.

Static RTS techniques [Kung et al. 1995; Ren et al. 2003] have been proposed in the past but were
not as well studied as dynamic RTS techniques, and their effectiveness and efficiency were largely
unexplored before our prior study [Legunsen et al. 2016], where we evaluated the effectiveness of
static RTS and compared it against dynamic RTS (i.e., Ekstazi). The experiments showed static RTS
to be comparable to dynamic RTS. However, there were cases where static RTS was unsafe and
failed to select some tests that Ekstazi selects; these cases were all due to reflection. In this work, we
focus on reflection and its influence on static RTS. We propose techniques to handle reflection in
static RTS, by statically analyzing strings or border methods, or by dynamically collecting reflective
edges. While we find that making static RTS reflection-aware helps with safety issues, it comes
with the cost of very high imprecision and not too much savings in testing time.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 187. Publication date: October 2019.



187:26 August Shi, Milica Hadzi-Tanovic, Lingming Zhang, Darko Marinov, and Owolabi Legunsen

Zhu et al. [2019] recently proposed a framework, RTSCheck, that systematically checks for
bugs in RTS tools. Specifically, they evaluated RTSCheck on both Ekstazi and STARTS, and they
found several bugs. Similar to how we previously [Legunsen et al. 2016] compared different SRTS
techniques, including STARTS, with Ekstazi, RTSCheck compared tests selected by different RTS
tools with the goal of finding bugs in the tools. Furthermore, RTSCheck supports automatically
generating programs and changes to more easily expose differences in tests selected, in addition to
using developers’ changes in open-source projects. Our safety and precision analysis also involves
analyzing differences in tests selected due to developers’ changes in open-source projects. However,
our overall goal in this work is to reduce the safety problems of static RTS caused by reflection,
and we also investigate differences in the dependencies computed by different RTS techniques. By
analyzing differences in dependencies, we can discover potential safety violations without relying
on having actual changes that trigger differences in selection.

Since the time we evaluated and released STARTS, there have been other projects that build on
or use STARTS. Thus, there is a growing body of work that could benefit from safety (and precision)
improvements of SRTS. The aforementioned work on RTSCheck [Zhu et al. 2019] used STARTS
as one of the RTS tools checked. Chen and Zhang [2018] studied the use of STARTS for reducing
the costs of mutation testing. We recently used STARTS as a central component of techniques for
evolution-aware runtime verification [Legunsen et al. 2015]. We [Legunsen et al. 2019] also used
STARTS for change-impact analysis when adapting runtime verification to the context of software
evolution by focusing runtime verification and its users on affected parts of code. We compared the
class-level RTS in STARTS with the module-level RTS commonly used in large software ecosystems,
e.g., at Facebook, Google and Microsoft [Gyori et al. 2018]. We found that STARTS can reduce the
test-selection rate in those ecosystems by 10x. Several researchers [Hadzi-Tanovic 2018; Karlsson
2019; Lundsten 2019; Yilmaz 2019] recently published theses where STARTS played a role. In
particular, Hadzi-Tanovic [2018] published some of our initial results on reflection-aware static RTS.
Karlsson [2019] evaluated the safety, performance, and precision impact on RU Analysis of limiting
the transitive closure computation on the IRG to fixed depths, instead of using the full transitive
closure. Lundsten [2019] described a preliminary comparison of STARTS with a machine-learning
based RTS approach inspired by Machalica et al. [2019]. Yilmaz [2019] compared STARTS with an
information-retrieval based RTS approach.

Many researchers studied the impact of reflection in modern programming languages on static
analysis [Barros et al. 2015; Bodden et al. 2011; Li et al. 2016a,b, 2014, 2015b; Livshits et al. 2015;
Smaragdakis et al. 2015; Thies and Bodden 2012]. However, none of the existing studies investigated
the impacts of reflection in the context of RTS. In other words, we are the first to address problems
caused by reflection in terms of making static RTS unsafe. The most related previous work [Bodden
et al. 2011; Thies and Bodden 2012] studied how to perform static analysis and refactoring in the
presence of reflection. Bodden et al. [2011] proposed instrumenting reflection sites to dynamically
record when classes invoke reflection and the classes they depend on through reflection. We adopt
the same in our Dynamic Analysis and Per-test Analysis, except we apply it to SRTS.

9 CONCLUSIONS

We evaluate five reflection-aware RTS techniquesÐNaïve Analysis, String Analysis, Border Analysis,
Dynamic Analysis, and Per-test Analysis. We compare the end-to-end times of these techniques
against reflection-unaware static RTS technique, RU Analysis. We also evaluate their relative safety
against a dynamic RTS technique, Ekstazi. We obtain mainly negative results that provide valuable
knowledge for other researchers looking into safer static RTS. Specifically, our experimental results
demonstrate that making RTS safer with respect to reflection is costly and can make static RTS
less practical. Border Analysis is the best purely static reflection-aware RTS technique, but its

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 187. Publication date: October 2019.



Reflection-Aware Static Regression Test Selection 187:27

end-to-end time is only on average 85.8% of RetestAll time, compared with 69.1% for RU analysis.
Per-test Analysis provides the best time savings among the reflection-aware techniques at 75.8% of
RetestAll time, but Per-test Analysis is unsafe in the presence of test-order dependencies. We also
perform the first detailed safety/precision analysis at the test dependency level, which shows that
RU Analysis could be even more unsafe in practice. Overall, our results show the current challenges
to making static RTS reflection-aware.

ACKNOWLEDGMENTS

We thank David Craig, Alex Gyori, Farah Hariri, and Sasa Misailovic for discussions about this
work. We are grateful to the anonymous reviewers for their comments and feedback; we used
their words in framing the conclusions. This work was partially supported by NSF grants CCF-
1421503, CCF-1566589, CNS-1646305, CNS-1740916, CCF-1763788, and CCF-1763906. We gratefully
acknowledge support for research on regression testing from Microsoft and Qualcomm.

REFERENCES

Apache Software Foundation. 2019a. Apache Camel. (2019). http://camel.apache.org/.

Apache Software Foundation. 2019b. Apache Commons Math. (2019). https://commons.apache.org/proper/commons-math/.

Apache Software Foundation. 2019c. Apache CXF. (2019). https://cxf.apache.org/.

Linda Badri, Mourad Badri, and Daniel St-Yves. 2005. Supporting predictive change impact analysis: A control call graph

based technique. In APSEC. 167ś175.

Paulo Barros, René Just, Suzanne Millstein, Paul Vines, Werner Dietl, Marcelo d’Amorim, and Michael D. Ernst. 2015. Static

analysis of implicit control flow: Resolving Java reflection and Android intents. In ASE. 669ś679.

Jonathan Bell and Gail Kaiser. 2014. Unit test virtualization with VMVM. In ICSE. 550ś561.

Jonathan Bell, Gail Kaiser, Eric Melski, and Mohan Dattatreya. 2015. Efficient dependency detection for safe Java test

acceleration. In ESEC/FSE. 770ś781.

Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira Mezini. 2011. Taming reflection: Aiding static analysis in

the presence of reflection and custom class loaders. In ICSE. 241ś250.

Ahmet Çelik, Young Chul Lee, and Milos Gligoric. 2018. Regression test selection for TizenRT. In FSE Industry Track.

845ś850.

Ahmet Çelik, Marko Vasic, Aleksandar Milicevic, and Milos Gligoric. 2017. Regression test selection across JVM boundaries.

In ESEC/FSE. 809ś820.

Lingchao Chen and Lingming Zhang. 2018. Speeding up mutation testing via regression test selection: An extensive study.

In ICST. 58ś69.

Yih-Farn Chen, David S. Rosenblum, and Kiem-Phong Vo. 1994. TestTube: A system for selective regression testing. In ICSE.

211ś220.

Shigeru Chiba. 2000. Load-time structural reflection in Java. In ECOOP. 313ś336.

Aske Simon Christensen, Anders Mùller, and Michael I. Schwartzbach. 2003. Precise analysis of string expressions. In SAS.

1ś18.

Nima Dini, Allison Sullivan, Milos Gligoric, and Gregg Rothermel. 2016. The effect of test suite type on regression test

selection. In ISSRE. 47ś58.

Sebastian Elbaum, Gregg Rothermel, and John Penix. 2014. Techniques for improving regression testing in continuous

integration development environments. In FSE. 235ś245.

Hamed Esfahani, Jonas Fietz, Qi Ke, Alexei Kolomiets, Erica Lan, Erik Mavrinac, Wolfram Schulte, Newton Sanches, and

Srikanth Kandula. 2016. CloudBuild: Microsoft’s distributed and caching build service. In ICSE SEIP. 11ś20.

Alessio Gambi, Jonathan Bell, and Andreas Zeller. 2018. Practical test dependency detection. In ICST. 1ś11.

Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015a. Ekstazi: Lightweight test selection. In ICSE Demo. 713ś716.

Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015b. Practical regression test selection with dynamic file dependencies.

In ISSTA. 211ś222.

Neville Grech, George Kastrinis, and Yannis Smaragdakis. 2018. Efficient reflection string analysis via graph coloring. In

ECOOP. 1ś25.

Michaela Greiler, Arie van Deursen, and Margaret-Anne Storey. 2013. Automated detection of test fixture strategies and

smells. In ICST. 322ś331.

José de Oliveira Guimarães. 1998. Reflection for statically typed languages. In ECOOP. 440ś461.

Pooja Gupta, Mark Ivey, and John Penix. 2011. Testing at the speed and scale of Google. (Jun 2011). http://goo.gl/2B5cyl.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 187. Publication date: October 2019.



187:28 August Shi, Milica Hadzi-Tanovic, Lingming Zhang, Darko Marinov, and Owolabi Legunsen

Alex Gyori, Owolabi Legunsen, Farah Hariri, and Darko Marinov. 2018. Evaluating regression test selection opportunities

in a very large open-source ecosystem. In ISSRE. 112ś122.

Alex Gyori, August Shi, Farah Hariri, and Darko Marinov. 2015. Reliable testing: Detecting state-polluting tests to prevent

test dependency. In ISSTA. 223ś233.

Milica Hadzi-Tanovic. 2018. Reflection-aware static regression test selection. Master’s thesis. University of Illinois at

Urbana-Champaign, USA.

Mary JeanHarrold, James A. Jones, Tongyu Li, Donglin Liang, Alessandro Orso, Maikel Pennings, Saurabh Sinha, S. Alexander

Spoon, and Ashish Gujarathi. 2001. Regression test selection for Java software. In OOPSLA. 312ś326.

Kim Herzig and Nachi Nagappan. 2015. Empirically detecting false test alarms using association rules. In ICSE. 39ś48.

Chen Huo and James Clause. 2014. Improving oracle quality by detecting brittle assertions and unused inputs in tests. In

ISSTA. 621ś631.

Henrik Karlsson. 2019. Limiting transitive closure for static regression test selection approaches. Master’s thesis. KTH Royal

Institute of Technology, Sweden.

Christian Kirkegaard, Anders Moller, and Michael I. Schwartzbach. 2004. Static analysis of XML transformations in Java.

TSE 30, 3 (2004), 181ś192.

David Chenho Kung, Jerry Gao, Pei Hsia, Jeremy Lin, and Yasufumi Toyoshima. 1995. Class firewall, test order, and regression

testing of object-oriented programs. JOOP 8, 2 (1995), 51ś65.

Wing Lam, Reed Oei, August Shi, Darko Marinov, and Tao Xie. 2019. iDFlakies: A framework for detecting and partially

classifying flaky tests. In ICST. 312ś322.

Wing Lam, Sai Zhang, and Michael D. Ernst. 2015. When tests collide: Evaluating and coping with the impact of test dependence.

Technical Report. University of Washington CSE Dept.

Davy Landman, Alexander Serebrenik, and Jurgen J. Vinju. 2017. Challenges for static analysis of Java reflection: Literature

review and empirical study. In ICSE. 507ś518.

Owolabi Legunsen, Farah Hariri, August Shi, Yafeng Lu, Lingming Zhang, and Darko Marinov. 2016. An extensive study of

static regression test selection in modern software evolution. In FSE. 583ś594.

Owolabi Legunsen, Darko Marinov, and Grigore Roşu. 2015. Evolution-aware monitoring-oriented programming. In ICSE

NIER. 615ś618.

Owolabi Legunsen, August Shi, and Darko Marinov. 2017. STARTS: STAtic Regression Test Selection. In ASE. 949ś954.

Owolabi Legunsen, Yi Zhang, Milica Hadzi-Tanovic, Grigore Roşu, and DarkoMarinov. 2019. Techniques for evolution-aware

runtime verification. In ICST. 300ś311.

Hareton K.N. Leung and Lee White. 1990. A study of integration testing and software regression at the integration level. In

ICSM. 290ś301.

Ding Li, Yingjun Lyu, Mian Wan, and William G.J. Halfond. 2015a. String analysis for Java and Android applications. In

ESEC/FSE. 661ś672.

Li Li, Tegawendé F Bissyandé, Damien Octeau, and Jacques Klein. 2016a. Droidra: Taming reflection to support whole-

program analysis of Android apps. In ISSTA. 318ś329.

Li Li, Tegawendé F Bissyandé, Damien Octeau, and Jacques Klein. 2016b. Reflection-aware static analysis of Android apps.

In ASE. 756ś761.

Yue Li, Tian Tan, Yulei Sui, and Jingling Xue. 2014. Self-inferencing reflection resolution for Java. In ECOOP. 27ś53.

Yue Li, Tian Tan, and Jingling Xue. 2015b. Effective soundness-guided reflection analysis. In SAS. 162ś180.

Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondrej Lhoták, José Nelson Amaral, Bor-Yuh Evan Chang, Samuel Z

Guyer, Uday P Khedker, Anders Mùller, and Dimitrios Vardoulakis. 2015. In defense of soundiness: A manifesto. CACM

58, 2 (2015), 44ś46.

Erik Lundsten. 2019. EALRTS: A predictive regression test selection tool. Master’s thesis. KTH Royal Institute of Technology,

Sweden.

Mateusz Machalica, Alex Samylkin, Meredith Porth, and Satish Chandra. 2019. Predictive test selection. In ICSE SEIP.

91ś100.

Atif M. Memon, Zebao Gao, Bao N. Nguyen, Sanjeev Dhanda, Eric Nickell, Rob Siemborski, and John Micco. 2017. Taming

Google-scale continuous testing. In ICSE-SEIP. 233ś242.

Jesper Öqvist, Görel Hedin, and Boris Magnusson. 2016. Extraction-based regression test selection. In PPPJ. 1ś10.

Oracle. 2018. jdeps. (2018). https://docs.oracle.com/javase/8/docs/technotes/tools/unix/jdeps.html.

Alessandro Orso, Nanjuan Shi, and Mary Jean Harrold. 2004. Scaling regression testing to large software systems. In FSE.

241ś251.

OW2 Consortium. 2018. ASM. (2018). http://asm.ow2.org/.

Fabio Palomba and Andy Zaidman. 2017. Does refactoring of test smells induce fixing flaky tests?. In ICSME. 1ś12.

Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G Ryder, and Ophelia Chesley. 2004. Chianti: A tool for change impact analysis

of Java programs. In ACM Sigplan Notices, Vol. 39. 432ś448.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 187. Publication date: October 2019.



Reflection-Aware Static Regression Test Selection 187:29

Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G Ryder, Ophelia Chesley, and Julian Dolby. 2003. Chianti: A prototype change

impact analysis tool for Java. Technical Report DCS-TR-533. Rutgers University CS Dept.

Gregg Rothermel and Mary Jean Harrold. 1993. A safe, efficient algorithm for regression test selection. In ICSM. 358ś367.

Gregg Rothermel and Mary Jean Harrold. 1997. A safe, efficient regression test selection technique. TOSEM 6, 2 (1997),

173ś210.

August Shi, Wing Lam, Reed Oei, Tao Xie, and Darko Marinov. 2019. iFixFlakies: A framework for automatically fixing

order-dependent flaky tests. In ESEC/FSE. 545ś555.

August Shi, Tifany Yung, Alex Gyori, and Darko Marinov. 2015. Comparing and combining test-suite reduction and

regression test selection. In ESEC/FSE. 237ś247.

Yannis Smaragdakis, George Balatsouras, George Kastrinis, and Martin Bravenboer. 2015. More sound static handling of

Java reflection. In APLAS. 485ś503.

Davide Spadini, Fabio Palomba, Andy Zaidman, Magiel Bruntink, and Alberto Bacchelli. 2018. On the relation of test smells

to software code quality. In ICSME. 1ś12.

Amitabh Srivastava and Jay Thiagarajan. 2002. Effectively prioritizing tests in development environment. In ISSTA. 97ś106.

STARTS Team. 2018. STARTS webpage. (2018). https://github.com/TestingResearchIllinois/starts.

Andreas Thies and Eric Bodden. 2012. RefaFlex: Safer refactorings for reflective Java programs. In ISSTA. 1ś11.

Michele Tufano, Fabio Palomba, Gabriele Bavota, Rocco Oliveto, Massimiliano Di Penta, Andrea De Lucia, and Denys

Poshyvanyk. 2015. When and why your code starts to smell bad. In ICSE. 403ś414.

Kaiyuan Wang, Chenguang Zhu, Ahmet Çelik, Jongwook Kim, Don Batory, and Milos Gligoric. 2018. Towards refactoring-

aware regression test selection. In ICSE. 233ś244.

Ugur Yilmaz. 2019. A method for selecting regression test cases based on software changes and software faults. Master’s thesis.

Hacettepe University, Turkey.

Shin Yoo and Mark Harman. 2012. Regression testing minimization, selection and prioritization: A survey. STVR 22, 2

(2012), 67ś120.

Nathan York. 2011. Tools for continuous integration at Google scale. (Jan 2011). https://goo.gl/Gqj7uL.

Lingming Zhang. 2018. Hybrid regression test selection. In ICSE. 199ś209.

Lingming Zhang, Miryung Kim, and Sarfraz Khurshid. 2011. Localizing failure-inducing program edits based on spectrum

information. In ICSM. 23ś32.

Sai Zhang, Darioush Jalali, Jochen Wuttke, Kivanç Muşlu, Wing Lam, Michael D. Ernst, and David Notkin. 2014. Empirically

revisiting the test independence assumption. In ISSTA. 385ś396.

Chenguang Zhu, Owolabi Legunsen, August Shi, and Milos Gligoric. 2019. A framework for checking regression test

selection tools. In ICSE. 430ś441.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 187. Publication date: October 2019.


	Abstract
	1 Introduction
	2 Background
	2.1 Static Regression Test Selection
	2.2 Reflection
	2.3 Motivating Example

	3 Reflection-aware Static Regression Test Selection
	3.1 Static Reflection Detection
	3.2 Hybrid Static-Dynamic Reflection Detection

	4 Implementation
	4.1 RU Analysis in STARTS
	4.2 Naïve Analysis
	4.3 String Analysis
	4.4 Border Analysis
	4.5 Dynamic Analysis
	4.6 Per-test Analysis

	5 Evaluation
	5.1 Experimental Setup
	5.2 RQ1: Test-Level Safety and Precision
	5.3 RQ2: Dependency-Level Safety and Precision
	5.4 RQ3: Selection Rates
	5.5 RQ4: Time Savings from Reflection-aware SRTS
	5.6 RQ5: Dependency Graph Sizes

	6 Discussion and Future Work
	7 Threats to Validity
	8 Related Work
	9 Conclusions
	References

