
Lightweight Data-flow Analysis for Execution-driven Constraint Solving

Junaid Haroon Siddiqui
University of Texas at Austin

Austin, TX 78712
Email: jsiddiqui@utexas.edu

Darko Marinov
University of Illinois at Urbana-Champaign

Urbana, IL 61801
Email: marinov@illinois.edu

Sarfraz Khurshid
University of Texas at Austin

Austin, TX 78712
Email: khurshid@ece.utexas.edu

Abstract—Constraint-based testing is a methodology for
finding bugs in code, which has been successfully used for
testing real systems. A key element of the methodology is
generation of test inputs from input constraints, i.e., properties
of desired inputs, which is performed by solving the constraints.
We present a novel approach to optimize input generation from
imperative constraints, i.e., constraints written as predicates in
an imperative language. A well known technique for solving
such constraints is execution-driven monitoring, where the
given predicate is executed on candidate inputs to filter and
prune invalid inputs, and generate valid ones. Our insight
is that a lightweight static data-flow analysis of the given
imperative constraint can enable more efficient solving. This
paper describes an approach that embodies our insight and
evaluates it using a suite of well-studied subject constraints. The
experimental results show our approach provides substantial
speedup over previous work.

Keywords-Constraint-based testing, static data-flow analysis,
multi-value comparisons

I. INTRODUCTION

Constraint-based testing [5], [6], [13], [17], [21] is a
methodology for finding bugs in code. A common appli-
cation of the methodology is for black-box testing, for
example, using input constraints, i.e., desired properties of
inputs, and oracle constraints, i.e., expected properties of
outputs and their relationship to inputs. However, constraint-
based testing is also applicable for white-box testing, e.g.,
using symbolic execution [5], [17] where input constraints
can be derived from program paths.

When used for black-box testing or for testing programs
that require inputs that have specific properties, such as a
valid XML document, a key requirement to apply constraint-
based testing is to provide the constraints. Existing frame-
works facilitate writing constraint by supporting different
constraint languages, including declarative languages [15],
which provide constructs for succinct formulation of com-
plex properties but enforce the use of a likely unfamiliar
programming paradigm, and imperative languages, such as
C++, which likely offer familiarity but do not provide special
constructs for writing constraints [25]. The focus of this
paper is constraints written as imperative predicates in C++,
which due to its wide familiarity provides the basis of a
framework that can be used by many developers.

Given the constraints, a key technical challenge in au-
tomating this methodology is efficient generation of valid
inputs, which satisfy the given constraints. For imperative
constraints, it means generating inputs for which the corre-
sponding predicate returns true. For programs that operate
on dynamically allocated data with complex structural prop-
erties, input generation can require costly exploration of very
large input spaces to find valid inputs, e.g., finding strings
that represent valid XML documents.

The Korat framework [2] introduced a novel technique for
solving imperative constraints – execution-driven solving –
where a bounded space of candidate inputs is systematically
explored by executing the given predicate on candidate
inputs and monitoring the executions to filter and prune
invalid candidates from the input space. This technique
has been used effectively for finding bugs in a number of
applications [10], [19], [27], [28] and similar techniques
are the basis of other effective frameworks for systematic
bug finding, e.g., lazy initialization in generalized symbolic
execution [16] and the UC-KLEE framework [22]. While
Korat enables an efficient way to prune the input space, it
still requires checking each candidate input that is not pruned
using a complete execution of the given predicate. However,
such executions can be wasteful, particularly on candidate
inputs that are largely similar.

This paper provides a novel approach for more efficient
solving of imperative predicates using a lightweight static
data-flow analysis. Our insight is that repeated predicate ex-
ecutions can be optimized by performing certain comparison
operations, which determine the predicate’s output, against
sets of candidate values for fields used in the comparisons,
i.e., performing multi-value comparisons, rather than com-
paring individual values in turn as in traditional Korat exe-
cution. Thus, predicate executions on many candidate inputs
that are similar are forwarded, and the total execution cost
is reduced. Conceptually, our approach resembles stateful
model checking [29] where non-deterministic choice allows
an expression to evaluate to different values, each of which
is used in turn. However, a key difference is that we do
not require storing and re-creating entire states. Moreover,
our approach directly utilizes how field values determine the
predicate’s output in enumerating valid inputs as well as in
pruning invalid ones.

1 class BST {
2 struct Node {
3 Node* left;
4 Node* right;
5 Node* parent;
6 int data;
7 };
8 Node* root;
9 int size;

10 public:
11 static Finitization* finitize(int size);
12 bool repOk();
13 };

Figure 1. Binary search tree class definition

We make the following contributions:
• Lightweight static data-flow analysis for constraint

solving. We introduce the idea of utilizing def-use
analysis in optimizing repeated predicate executions on
similar inputs during Korat search.

• Multi-value comparisons. We introduce the idea of
comparing sets of values with a desired value to com-
pute the predicate’s output on its future executions that
are thus forwarded.

• Implementation. We embody our approach in a proto-
type tool that is available for download1.

• Evaluation. We use a suite of subject constraints that
have previously been studied in several projects and
serve as a benchmark for evaluating constraint-solving
for test-input generation. Experimental results show our
approach provides a significant speed-up over Korat.

II. BACKGROUND AND MOTIVATIONAL EXAMPLE

We consider a binary search tree and describe how its
structural constraints are solved using the Korat algorithm
to produce test inputs. We then describe how our technique
based on multi-value comparisons using static data-flow
analysis makes the constraint solving much faster while
keeping the algorithm correct.

A. Example: Binary search tree

The binary search tree class (BST) is defined in Figure 1.
It contains an inner class Node that represents a single node
in the BST. The Node contains left and right pointers
to other nodes, a parent pointer, and an integer data
field. The BST class contains a pointer to the root node
and the number of nodes in the tree in the size field. Two
methods must be provided for constraint solving with Korat:
a finitize method that describes bounds for analysis
(called finitization) and a repOk predicate method that tells
if a particular instance of BST is valid or not (also called
the class invariant).

Figure 2 shows an example finitization for BST. We
create a domain of Node objects and require root, left,

1http://svvat.ece.utexas.edu/tools/multivaluekorat

1 Finitization* BST::finitize(int c) {
2 Finitization* f = Finitization::create<BST>();
3 Domain<Node>* nodes = f->domain<Node>(c);
4 f->set(&BST::root, nodes);
5 f->set(&BST::size, f->domain<int>(c, c));
6 f->set(&Node::left, nodes);
7 f->set(&Node::right, nodes);
8 f->set(&Node::parent, nodes);
9 f->set(&Node::data, f->domain<int>(1, c));

10 return f;
11 }

Figure 2. Finitization for Korat

1 bool BST::repOk() {
2 set<Node*> visited;
3 stack<tuple<Node*, int, int> > wl;
4 if (root) {
5 wl.push(make_tuple(root,
6 numeric_limits<int>::min(),
7 numeric_limits<int>::max()));
8 visited.insert(root);
9 }

10 while (!wl.empty()) {
11 Node* c = get<0>(wl.top());
12 int min = get<1>(wl.top());
13 int max = get<2>(wl.top());
14 wl.pop();
15 if (c->data < min || c->data > max)
16 return false;
17 if (c->left) {
18 if (!visited.insert(c->left).second)
19 return false;
20 if (c->left->parent != c)
21 return false;
22 wl.push(make_tuple(c->left, min, c->data-1));
23 }
24 if (c->right) {
25 if (!visited.insert(c->right).second)
26 return false;
27 if (c->right->parent != c)
28 return false;
29 wl.push(make_tuple(c->right, c->data+1, max));
30 }
31 }
32 return size == visited.size();
33 }

Figure 3. Class invariant for binary search tree

right, and parent to take values only from this domain.
For data and size fields, we create integer domains of
appropriate sizes.

Next, we provide the repOk function for BST in Figure 3.
It is the class invariant and checks the BST properties.
These properties are: (1) acyclicity along left and right
pointers, (2) correct parent pointers, and (3) larger data
values are stored in right sub-tree while smaller data values
are stored in left sub-tree. The given function checks these
properties using a work-list based algorithm.

2

1 3

left right
3

2

1

left

left

3

1

2

left

right

1

3

2

right

left

1

2

3

right

right

Figure 4. Binary search trees of 3 nodes with parent pointers

B. Traditional Korat

Korat is an algorithm for execution-driven constraint
solving. It takes as input a class definition with its class
invariant and a finitization function (provided by repOk
and finitize methods in the above example).

To start solving the constraint, the Korat algorithm forms
an initial candidate structure to test. The candidate is formed
by assigning every field the first value from its domain
specified in the finitization. Korat executes repOk on this
candidate to check if it is valid.

During repOk execution, Korat monitors field accesses
and builds a field-access list. After repOk finishes, it picks
a new value for the last accessed field from its field domain
and runs repOk again. If there are no more values in its field
domain, it backtracks to the field accessed before it. This
way Korat explores the state-space without testing every
possible combination of values in the field domains.

Korat produces non-isomorphic inputs. Non-isomorphic
inputs differ only in the identity of objects used and provide
no additional fault-finding ability in testing code. To produce
non-isomorphic inputs, Korat records the values of reference
fields that are accessed by other reference fields of the same
type. It only backtracks to null, values also referenced
by other fields of the same type, and one new value. For
example, if N0 and N1 are used by root and left pointers
respectively, the right pointer will take a value from
{null, N0, N1, N2}. Choosing another value N3 would
form a structure isomorphic to the one formed using N2.

Given the class definition, finitization, and class invariant,
our desired output is a set of all concrete structures of a given
size. For size 3, these structures are shown in Figure 4. We
expect the constraint solver to list all of the five structures
and only these five structures.

Korat starts its search from an empty tree with
root=null and backtracks on accessed fields to try other
values. To explain the working of Korat we describe its
progression between two valid candidates shown at the right
and left extremes of Figure 5.

When Korat analyzes Figure 5(a) using repOk, the
fields accessed are (root, N0.data, N0.left,
N0.right, N1.parent, N1.data, N1.left,
N1.right, N2.parent, N2.data, N2.left,
N2.right, size). After marking this as a valid
candidate, it backtracks to N2.right as size is already

at its maximum value. All choices for N2.right result
in cyclic structures, so Korat backtracks to N2.left
which also results in cyclic structures. After each of these
executions, Korat uses the field-access list generated as
a result of the last execution. Since we assume that the
repOk function is deterministic, the initial part of the field
access list is the same.

After backtracking past other fields, Korat resets
N1.right to null and backtracks to try other values
for N1.left. When it tries N1.left=N2, it fails be-
cause N2.parent=null (its initial value). However the
field access list has a new field and Korat tries its other
values. N2.parent=N1 works but repOk fails because
N2.data 6> 1. This is Figure 5(b). In total, Korat performs
16 repOk executions between these two states. Korat pro-
ceeds this way until all values are exhausted and finds all
valid structures within the given bounds.

C. Koratmulti: multi-value comparisons

Koratmulti uses multi-value comparisons based on light-
weight data analysis. It is a technique for reducing the
amount of repOk executions required to find all valid
candidates by Korat. It is an automated technique that
requires no modification to the repOk predicate.

Koratmulti performs a static data-flow analysis on the
LLVM bit-code [1] of the program and instruments it. This
analysis identifies any field accesses in repOk that are used
in a comparison that directly results in the predicate failing
or succeeding. Here, “directly result” means that the result
of the comparison is either returned directly or it is used
in a conditional branch that results in returning from the
function on either the true side or the false side. Once
such comparisons are identified, we instrument them with
a special call with the field accessed, the comparison, and
the other side of the comparison as arguments. This special
call performs a multi-value comparison against all values in
the field domain of this field. If, however, the field access
is not used in such a comparison, we instrument it with a
simple call to monitor field access (like traditional Korat).

We explain the multi-value comparisons in Koratmulti
that are performed using this static data-flow analysis for
the state of exploration shown in Figure 5(a). To repeat,
the accessed fields are (root, N0.data, N0.left,
N0.right, N1.parent, N1.data, N1.left,
N1.right, N2.parent, N2.data, N2.left,
N2.right, size). Like traditional Korat, Koratmulti
backtracks over the first few fields until it reset N1.right
to null and sets N1.left=N2. At this point, unlike
traditional Korat, the repOk execution in Koratmulti will
not fail because N2.parent=null (its initial value).
The access to N2.parent would have been statically
instrumented with a function call. This function call is
invoked during repOk execution and this is the first
access to N2.parent. Therefore, our optimization is

1N0

2N1

3N2

right

right

1N0

2N1

1N2

right

left

1N0

3N1

right
1N0

3N1

2N2

right

left

field+condition values to try field+condition values to try field+condition values to try field+condition values to try
root 0,[N0] root 0,[N0] root 0,[N0] root 0,[N0]
N0.data [1],2,3 N0.data [1],2,3 N0.data [1],2,3 N0.data [1],2,3
N0.left [0],N0,N1 N0.left [0],N0,N1 N0.left [0],N0,N1 N0.left [0],N0,N1
N0.right 0,N0,[N1] N0.right 0,N0,[N1] N0.right 0,N0,[N1] N0.right 0,N0,[N1]
N1.parent=N0 0,[N0],N1,N2 N1.parent=N0 0,[N0],N1,N2 N1.parent=N0 0,[N0],N1,N2 N1.parent=N0 0,[N0],N1,N2
1<N1.data 1,[2],3 1<N1.data 1,[2],3 1<N1.data 1,2,[3] 1<N1.data 1,2,[3]
N1.left [0],N0,N1,N2 N1.left 0,N0,N1,[N2] N1.left [0],N0,N1,N2 N1.left 0,N0,N1,[N2]
N1.right 0,N0,N1,[N2] N1.right [0],N0,N1,N2 N1.right [0],N0,N1,N2 N1.right [0],N0,N1,N2
N2.parent=N1 0,N0,[N1],N2 N2.parent=N1 0,N0,[N1],N2 size=2 3 N2.parent=N1 [N1]
2<N2.data 1,2,[3] 1<N2.data<2 1,2,3, 1<N2.data<3 1,[2],3
N2.left [0],N0,N1,N2 N2.left [0],N0,N1,N2
N2.right [0],N0,N1,N2 N2.right [0],N0,N1,N2
size=3 [3] size=3 [3]

Figure 5. Four intermediate states when using Korat with multi-value comparisons for binary search trees of three nodes. All accessed fields are shown
in “field+condition” column along with any condition deduced from static light-weight analysis. For each field, the values to be tried are shown in “values
to try” column. Striked out values are “forwarded” based on the comparison. Current value is shown in square brackets.

applicable, and Koratmulti can do a multi-value comparison.
It also gets as arguments the comparison (equals) and the
value to compare against (null in this case). It does a
multi-value comparison of this value against all values in
the field domain of N2.parent. All invalid choices for
N2.parent (that would result in returning null) are
forwarded over without backtracking and executing repOk
on them again. The only valid choice is used for further
execution, and it reaches Figure 5(b). This takes 11 repOk
executions instead of 16 for traditional Korat.

From there, Koratmulti forwards over N2.data and
N2.parent fields to reach Figure 5(c). Lastly, it backtracks
and tries all fields while forwarding over parent and data
fields to arrive at Figure 5(d).

The instrumentation based on static data-flow analysis
and dynamic multi-value comparisons in Koratmulti enable
it to significantly reduce the number of repOk executions
required while still producing all valid structures. For a
binary search tree with 3 nodes, traditional Korat finds all
5 structures in Figure 4 using 238 repOk executions. In
contrast, Koratmulti requires only 173 repOk executions.

III. TECHNIQUE

In this section, we go over all the algorithms we em-
ploy to enable multi-value comparisons in Koratmulti. We
(1) describe the high-level Koratmulti algorithm and define
marked and unmarked candidates, (2) explain the multi-
value comparisons of a value against all values in a field
domain that mark candidates, (3) describe the data-flow
analysis that instruments the repOk predicate with calls
to multi-value comparisons, and (4) discuss the correctness
with respect to the traditional Korat algorithm.

A. The Koratmulti Algorithm

The Koratmulti algorithm builds upon the Korat algo-
rithm by utilizing the information that some candidates are
marked. A candidate is marked when the result of running
repOk can be determined without running repOk. This
determination comes from a combination of a multi-value
comparison (Section III-B) on the last accessed field and
light-weight static data-flow analysis (Section III-C). The
data-flow analysis determines the correlation of the return
value of the repOk predicate and the result of the multi-
value comparison.

Traditional Korat, after completing a repOk iteration and
receiving field-access list, picks the last accessed field and
chooses the next value from its field domain. On the other
hand, Koratmulti picks the next unmarked value from its do-
main. Marked values are either “known to succeed” meaning
repOk will accept them or “known to fail” meaning repOk
will reject them. Known to succeed values are included in
successful candidates directly, while known to fail values
are simply forwarded over. If there are no more unmarked
values in the field domain, Koratmulti backtracks to the field
accessed before the last accessed field while clearing all
markings on the last accessed field. This is done because
the markings are only valid on one path.

Thus Koratmulti divides candidates into marked and un-
marked candidates. Unmarked candidates need a complete
repOk execution, whereas marked candidates can be ac-
cepted or forwarded-over without executing repOk. This
forwarding results in much fewer repOk executions and a
substantially lower execution time per candidate considered
and makes Koratmulti much more efficient that traditional
Korat.

B. Multi-value comparisons

Koratmulti depends on candidates being marked during
the execution of repOk predicate. These markings are
done by multi-value comparisons. A multi-value comparison
compares a given value against all values in the field domain
of a field not yet accessed in the repOk predicate. If a
field has already been accessed, the given value can only
be compared against its assigned value and no multi-value
comparison can take place.

A multi-value comparison is only useful if at least one
of the possible results (true or false) can determine
what the repOk predicate will return. This information is
gathered statically (Section III-C).

The method that performs a multi-value comparison and
determines if some candidate needs to be marked helps in
forwarding candidates without running repOk, and we thus
call it forwardFn. The forwardFn method takes five
arguments. Three of these arguments are for the multi-value
comparison. They are (1) the field whose field domain gives
the values that are all compared against a given value, (2) the
comparison operator (==, <, > etc.), and (3) the given value
to be compared (e.g. 2 in if (size==2)). Two other
boolean arguments are statically determined (Section III-C)
and inform if a true result of the comparison means
that repOk will return true, and if a false result of
the comparison means that repOk will return false.
For example, in “if (size==2) return false;”,
we cannot mark a candidate if the comparison results in
a true value, but we can mark it to be forwarded if it
results in a false value.

Algorithm 1 shows forwardFn and useFn methods,
where the useFn method is invoked for every field access
in traditional Korat and it builds the field-access list. We also
use it in Koratmulti to instrument all accesses except those
that classify as forward-able and are thus instrumented with
forwardFn.

The forwardFn method checks if the given field has
not been accessed before (like useFn). If not, it performs
a multi-value comparison against all values in the field
domain of this field. If the comparison is successful and
trueForward=true (true side leads to returning constant
true), it marks those values as accepted without even
running repOk on them. Similarly, if the comparison is false
and falseForward=true (false side leads to returning
constant false), it marks them as skipped. If the initial
value (as Korat initializes all fields to the first value in
their field domains) of this field is marked as accepted or
skipped during this process, it forwards to the first unmarked
(not accepted, not skipped) value. If all values are marked,
it chooses the last value and proceeds. These markings
are used by the Koratmulti algorithm to forward candidates
without running repOk.

Algorithm 1 Algorithm for dynamic access monitoring
1: function USEFN(Variable v)
2: if v is a controlled variable and not accessed before then
3: add v to field-access list
4: end if
5: end function

6: function FORWARDFN(Variable v, Cond c, Value otherVal,
trueForward, falseForward)

7: if v is a controlled variable and not accessed before then
8: for all Values i in domain of v do
9: if result of applying c on i and otherVal is true then

10: if trueForward then
11: mark i as accepted without running repOk
12: end if
13: else if falseForward then
14: mark i to be skipped (no need to run repOk)
15: end if
16: end for
17: initialize v to first unmarked value
18: end if
19: return result of applying c on current value of v and

otherVal
20: end function

Algorithm 2 Algorithm for traditional Korat instrumentation
1: for all instruction i in repOk do
2: if i is a load instruction then
3: insert call to useFn before i
4: end if
5: end for

C. Data-flow analysis

Traditional Korat monitors all field accesses made during
repOk execution. Algorithm 2 shows monitoring and instru-
mentation of field accesses using LLVM [1]. The function
useFn dynamically determines if this is the first access to
this field, in which case it is added to the field-access list.

Koratmulti performs a more extensive analysis of the
function and instruments load instructions that meet a set
of conditions with a call to the forwardFn function. If the
conditions are not met, Koratmulti instruments with the same
useFn function.

There are four sets of conditions for load instructions to
be instrumented with forwardFn. Algorithm 3 gives the
core algorithm using one condition for clarity, while Table I
describes the other three conditions. Algorithm 3 iterates
over all load instructions in repOk. Each load instruction
defines a new variable and provides a starting point for def-
use analysis.

Koratmulti performs simple def-use analysis on this vari-
able traversing the uses list provided by LLVM and checks
if it is eventually (e.g., after sign-extending or bit-truncation)
only used in a comparison instruction (icmp). This means
that the accessed value is directly used as one argument of
a comparison. It then follows the uses list of the result of
the icmp instruction and sees if it is eventually used only in

Algorithm 3 Algorithm for light-weight def-use analysis
1: for all instruction i in repOk do
2: if i is a load instruction then
3: j = followUseChain(i)
4: if j is an icmp instruction then
5: k = followUseChain(j)
6: if k is a br instruction then
7: t = leadsToConstRet(true block of br)
8: f = leadsToConstRet(false block of br)
9: if t or f then

10: replace icmp with a call to forwardFn
11: continue // go to next i
12: end if
13: end if
14: end if
15: insert call to useFn before load
16: end if
17: end for

a conditional branch instruction (br). This means that the
comparison is used inside an if statement. Next, it inspects
the true and false basic blocks (also called then and else basic
blocks) that the branch leads to. Each basic block is a set of
sequentially executed instructions ending with a terminating
control flow instruction. If the terminating instruction is a
return instruction (ret), Koratmulti determines if a constant
is returned. If a constant is returned in either the true basic
block, or the false basic block, or both, it replaces the
comparison with a call to forwardFn with the original
icmp operands as arguments to the function, along with
boolean parameters determining which basic blocks lead to
returning constant.

While inserting the call to forwardFn, Koratmulti en-
sures that the true, respectively false, side of the comparison
leads to the function returning true, respectively false. If
not, it inverts the comparison for passing it to forwardFn
and again inverts the return value from forwardFn. This
simplifies the operation of forwardFn.

This high-level description skims over two important
details: (1) following the uses lists and (2) determining
if a basic block results in returning a constant.

Algorithm 4 describes the def-use analysis. To follow
from one instruction to the next, it ensures that the target
instruction is the only instruction that uses the result of
the source instruction. If more than one instruction uses
the result of the source instruction, it does not attempt to
determine if the other use does not influence the branch it
will later take and thus does not consider such a case. If
the target instruction is a cast instruction (truncation, zero
extending, or sign extending), it repeats the algorithm to
find the instruction that uses the result of the cast. Cast
instructions are common in LLVM because it is a typed
language with no implicit type conversions.

Algorithm 5 gives the algorithm for determining if a
basic block leads to a constant return. This works similar

Algorithm 4 Algorithm for following def-use chain
1: function FOLLOWUSECHAIN(instruction i)
2: if result of i has one use then
3: j = only use of result of i
4: if j is a cast instruction then
5: return followUseChain(j)
6: end if
7: end if
8: return null
9: end function

to constant propagation, except that the value to propagate
(the result of comparison) is not really constant. Assuming
that the result of comparison is known (true or false),
it analyzes if this result could have been propagated to the
return instruction. Sometimes it can be propagated for a
true result of the comparison, or a false result, or for
both. This information is then used by forwardFn to mark
candidates after performing a multi-value comparison.

The algorithm is used on both the true and false target
basic blocks of a conditional branch instruction to determine
if either side results in returning a constant. The function
works by considering the last instruction in the basic block
(the only control flow instruction). If it is an unconditional
branch to another basic block, it recursively invokes the
same function on the target of the unconditional branch. If,
however, the terminating instruction is a return instruction
(ret), it checks the value returned. The returned value can
be (1) a constant, (2) result of another instruction, or (3) a phi
constant. A phi constant is a map from basic blocks to values
where the value picked is based on the last basic block it was
executing before a control flow instruction jumped into this
block. The value corresponding to a basic block is again one
of (1) a constant, (2) result of an instruction, or (3) another
phi constant in the source basic block. Since it knows the
basic block chain from the first load instruction to this ret
instruction, it recursively resolves the phi constants. After
this analysis, the algorithm may still be unable to resolve it,
as it may depend on which basic block it came from before
hitting the load instruction. When the returned value is a
constant or a phi constant that it resolved to a constant, the
algorithm returns this value.

Note that the def-use analysis is light-weight because
it only attempts to find the last use of some field before
every return. It also does not need to consider earlier load
instructions accessing the same field. This would have been a
consideration if it had to make decisions statically. However,
the def-use analysis delays the decision making until it
actually executes the repOk predicate. At this time, it can
monitor if a particular field is accessed for the first time or
not (like traditional Korat does) and uses this information to
enable forwarding for that access.

Table I shows all four conditions in which we instrument.
Only the first condition is used in Algorithm 3 to describe

Table I
DEF-USE ANALYSIS OF LOAD INSTRUCTIONS WE INSTRUMENT.

No. Use-chain Description

1 load icmp br

ret constant

false

ret constant

true
either or both

A load instruction defines a variable only used by an icmp instruc-
tion, the result of which is only used by a conditional br instruction
leading to constant return on at least one of true and false sides.

Example:
if(size!=visited.size())

return false;

2 load icmp ret

A load instruction defines a variable only used by an icmp instruc-
tion, the result of which is used by a ret instruction.

Example:
return size!=visited.size();

3 load

icmp-1

and/or br

ret constant

false

ret constant

true
icmp-2

either or both

A load instruction defines a variable only used by two icmp
instructions, where the results of both instructions are only used by an
and or an or instruction, whose result is used by a conditional br
instruction leading to constant return on at least one of true and false
sides.

Example:
if (data < min || data > max)

return false;

4 load

icmp-1

and/or ret

icmp-2
A load instruction defines a variable only used by two icmp
instructions, where the results of both instructions are only used by
an and or an or instruction, whose result is only used by a ret
instruction.

Example:
return data < min || data > max;

Algorithm 5 Algorithm to see if a block leads to a constant
return

1: function LEADSTOCONSTANTRET(BasicBlock b)
2: i = last instruction in block b
3: if i is ret instruction then
4: v = value returned by i after resolving phi nodes
5: if v is constant then
6: return v
7: end if
8: else if i is an unconditional branch then
9: return leadsToConstantRet(target of i)

10: end if
11: return null
12: end function

the core concepts. The second condition is when the result
of a comparison is directly returned without being used in a
branch instruction. The next two cases are when two com-
parisons are made on the same field with an AND or an OR
operation joining them. In such cases the variable defined
by a load instruction is used in two icmp instructions and
their results are used in an and or an or instruction whose
result is used in a branch leading to a return (case 3) or

directly returned (case 4). This can be easily generalized to
multiple comparisons which are then joined by and or or
instructions. However, our current implementation is limited
to two comparisons.

Other limitations of our current implementation include
instrumenting only one function (repOk). Any called helper
functions are not instrumented. Additionally, we only sup-
port integer comparisons. These are, however, not funda-
mental limitations of the algorithm and more a matter of
defining the scope of the implementation.

D. Correctness

For correctness, note that the candidates considered by
Koratmulti are the same as those considered by traditional
Korat. However, Koratmulti divides the candidates into un-
marked (complete repOk execution) and marked (identified
during forwardFn as accepted or rejected without running
repOk again) and the union of marked and unmarked
candidates is the same as traditional Korat. Thus, it suffices
to show that marked candidates are correctly classified as
accepted or rejected.

For marked candidates, we divide repOk into two parts.
The first part goes from the start of repOk to the first
forwardFn call and the second part from the forwardFn
call to the ret statement.

We determined using static data-flow analysis that a true
or a false return from forwardFn would lead to a true
or a false return from repOk. Thus we do not need to
execute the second part once we know the return value from
forwardFn.

On the other hand, for every marked candidate we do
have an execution of the first part. That execution touched
everything except the last field, invoked the instrumented
forwardFn, and marked candidates based on the compar-
ison of the last accessed field. This execution is shared by all
candidates who only vary in this last accessed field. Thus we
have a dynamic execution of the first part (shared by more
than one candidate) and a static knowledge of the behavior
of the second part. Hence, Koratmulti generates the same set
of valid inputs as the traditional Korat algorithm.

IV. EVALUATION

We evaluate Koratmulti using two metrics: the number of
repOk executions and the time it takes to generate valid
inputs.

We use five complex structures to evaluate our technique.
For each structure, we consider five different sizes. For
each example, we generate structures of exactly the given
size with unique elements. Our experiments were run on a
machine with two Intel Xeon 2.93GHz 6-core processors
and 24GB of memory.

To instrument a structure whose definition (along with
repOk and finitize methods) is given in, say,
struct.cc, we use the following command:

llvm-g++ --emit-llvm --no-exceptions -c

struct.cc -o struct.o && llvm-ld -disable-inlining

-disable-internalize struct.o korat.o -o korat &&

opt -load forward.so -forward struct.bc | opt -O3

| llc -o struct.S && g++ struct.S -o struct

The command performs the following steps: (1) translate
user code in struct.cc to LLVM bit code, (2) combine
the user code with the Korat algorithm in korat.o, (3)
apply the LLVM analysis in shared library forward.so
required by multi-value comparisons, (4) optimize instru-
mented code (inlining etc.), (5) convert to native assembly,
and (6) compile to native binary.

The structures we chose to test are min heap, dynamic
order statistics, binary search tree, red-black tree, and sorted
doubly linked list. Red-black trees are height balanced
binary search trees using node colors and restrictions on as-
signment of that color. Dynamic order statistics are red-black
trees where the nodes are further augmented with the size of
the sub-tree rooted there. The problem of order statistics is
concerned with returning the kth smallest number in a set.
For example, the minimum element in a set of n elements is

Min heap (14)

Dynamic order statistics (7)

Binary search tree (10)

Red-black tree (8)

Sorted doubly linked list (19)
0

5

10

15

20

25

30

35

Ti
m

e
in

m
in

ut
es

Traditional Korat Korat with multi-value comparisons

Figure 6. Time taken by Korat with and without multi-value comparisons.
Number is parenthesis is the size of structures generated.

the first order statistic while the maximum is the nth order
statistic. Dynamic order statistics enable retrieving any order
statistic in logarithmic time. These structures provide a basis
for developing more complex software and have been used
in evaluating other software analysis techniques including
the traditional Korat algorithm [2].

The results of our experiments are given in Table II.
Our speedup ranges from 1.6X to 4.7X. This is shown
graphically in Figure 6.

V. RELATED WORK

Recent frameworks based on symbolic/concrete (aka con-
colic or dynamic symbolic) execution [3], [12], [23] that
handle references/pointers are most closely related to Korat.
A major difference is Korat’s spirit of bounded exhaustive
generation and backtracking based on last field accessed and
not last branch taken. Generalized symbolic execution [16]
follows Korat’s spirit: lazy initialization of references has ex-
actly the same effect as Korat’s monitoring–both approaches
consider the same candidates in the same order and generate
the same structures. Practically, Korat is much faster since it
is a specialized implementation–baseline Korat is an order of
magnitude faster than a highly optimized version of lazy ini-
tialization on Java PathFinder [11]. In previous experiments
using CUTE [23] for structural constraint solving, Korat
outperformed CUTE by two orders of magnitude [24]. This
is because of the overhead to keep symbolic state and Korat’s
specialized nature to backtrack on last accessed field. More
recently, lazy initialization has also been implemented for
equivalence checking of operations on complex structures
in UC-KLEE [22].

Table II
COMPARISON OF KORATMULTI WITH TRADITIONAL KORAT ALGORITHM FOR STRUCTURAL CONSTRAINT SOLVING

Valid Traditional Korat Korat with multi-value comparisons
Subject Size Structures Explored Time [s] Explored Time [s] Speedup

9 896 64,401 0.14 19,781 0.04 3.5X
10 3,360 316,369 0.85 94,538 0.26 3.3X

Min heap 12 79,200 9,277,511 34.74 2,961,691 11.50 3.0X
13 506,880 55,005,301 4:04.25 18,545,942 1:23.24 2.9X
14 2,745,600 356,649,476 29:47.13 120,077,299 10:15.61 2.9X

3 2 3,356 0.02 1,654 0.01 2.0X
4 4 42,294 0.44 20,115 0.21 2.1X

Dynamic order statistics 5 8 415,922 6.74 188,321 3.06 2.2X
6 16 3,646,604 1:27.68 1,558,574 37.24 2.4X
7 33 28,564,440 15:11.70 11,502,100 6:19.81 2.4X
6 132 49,524 0.46 30,469 0.28 1.6X
7 429 279,427 3.50 166,762 2.10 1.7X

Binary search tree 8 1,430 1,555,219 25.50 906,048 14.77 1.7X
9 4,862 8,562,721 2:55.95 4,891,974 1:39.93 1.8X

10 16,796 46,729,370 19:47.34 26,269,077 10:58.52 1.8X
4 4 20,482 0.19 8,397 0.08 2.4X
5 8 161,122 2.40 53,956 0.79 3.0X

Red-black tree 6 16 1,259,268 26.83 360,500 7.59 3.6X
7 33 7,962,572 3:52.97 1,938,263 55.66 4.2X
8 56 51,242,194 32:21.49 11,077,150 6:55.75 4.7X

15 1 1015748 19.20 294,897 5.88 3.3X
16 1 2,162,624 44.75 622,576 13.83 3.2X

Sorted doubly linked list 17 1 4,587,452 1:49.12 1,310,703 32.65 3.3X
18 1 9,699,256 4:12.08 2,752,494 1:14.80 3.4X
19 1 20,447,156 9:45.19 5,767,149 2:52.19 3.4X

Averge speedup 2.9X

SAT-based static analysis tools (Alloy [14], CBMC [4])
can perform bounded exhaustive checking for heap-allocated
data. However, they require a translation of the whole pro-
gram and its specification to a SAT formula: for non-small
programs the formulas can choke the solvers. Korat requires
solving only for input constraints, which are much simpler
than the cumulative constraint that represents the correctness
of the program under test. Static analysis tools that perform
sound analysis of heap-allocated data (traditional shape
analysis, verification conditions, separation logic) require
more manual effort (in the form of loop invariants, additional
predicates etc.) and have not been shown to scale to checking
applications, which Korat readily handles.

UDITA [10] is a language that provides the ability to
combine declarative and imperative predicates. It is based
on JPF and delayed choice, which is an extension of the
lazy initialization algorithm.

Dedicated generators in Korat [18] are most closely re-
lated to our optimization technique. Dedicated generators ex-
ploit common input properties to efficiently generate inputs.
Basic generators support various properties: (1) if a value is
in a set, (2) if two values are not equal, (3) if two values are
equal, (4) if a value is smaller/greater than another value etc.
More complex generators support if a pointer points to a tree
or an acyclic graph etc. If the user takes the time to use the
generator library, dedicated generators can be more efficient
than our technique. However, for unmodified predicates,
dedicated generators are not applicable, whereas our opti-

mization technique can still apply. In fact, the forwardFn
we introduced is a form of a dedicated generator which is
introduced automatically where applicable.

Glass-box testing [7] uses the method under test to prune
Korat’s generation. Thus it takes a step further from the
pure black-box approach of Korat. Glass-box testing can be
optimized using our technique. Efficient backtracking [9]
optimizes Korat by using abstract undo operations that
enable re-using partial repOk executions. However, it needs
explicit support from the repOk writer in the form of using
un-doable operations. STARC [8] uses the Korat algorithm
to repair structures. Our approach would make STARC
efficient by forwarding over many invalid choices and thus
reducing the number of repOk executions.

Korat has been parallelized for efficient analysis using
pre-defined static partitions [20] and using a load-balancing
approach [25]. Korat has also been combined with a sym-
bolic execution engine [16] so that integer constraints can be
solved without running repOk many times. However, the
overhead of running an external symbolic execution engine
is significant. Despite this, there are performance gains for
non-reference fields. Also, the number of candidates gener-
ated is fewer as symbolic execution engine only generates a
single solution for a given constraint. Another similar effort
was Focused Generation for Korat [26]. Both of these works
aimed at reducing the number of test inputs. However, this
paper focuses on reducing the number of repOk executions
to produce all test inputs.

VI. CONCLUSIONS AND FUTURE WORK

We presented a novel approach to optimize input genera-
tion using imperative constraints, i.e., constraints written as
predicates in an imperative language. We built upon Korat,
a technique for solving such constraints using execution-
driven monitoring, where the given predicate is executed on
candidate inputs to filter and prune invalid inputs and to gen-
erate valid ones. We used the insight that a static lightweight
data-flow analysis of the given imperative constraint can
enable more efficient solving. We described an approach
that embodies our insight and evaluates it using a suite
of well-studied subject constraints. The experimental results
show that our approach provides a substantial speedup over
previous work.

ACKNOWLEDGMENTS

This material is based upon work partially supported by
the Fulbright program, the National Science Foundation
under Grant Nos. IIS-0438967, CCF-0746856, and CCF-
0845628, and AFOSR grant FA9550-09-1-0351.

REFERENCES

[1] V. Adve, C. Lattner, M. Brukman, A. Shukla, and B. Gaeke,
“LLVA: A Low-level Virtual Instruction Set Architecture,” in
Proc. 36th MICRO, 2003, pp. 205–216.

[2] C. Boyapati, S. Khurshid, and D. Marinov, “Korat: Automated
Testing based on Java Predicates,” in Proc. ISSTA, 2002.

[3] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R.
Engler, “EXE: Automatically Generating Inputs of Death,” in
Proc. 13th CCS, 2006, pp. 322–335.

[4] E. Clarke, D. Kroening, and F. Lerda, “A Tool for Checking
ANSI-C Programs,” Proc. TACAS, pp. 168–176, 2004.

[5] L. A. Clarke, “Test Data Generation and Symbolic Execution
of Programs as an aid to Program Validation.” Ph.D. disser-
tation, University of Colorado at Boulder, 1976.

[6] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton,
“The AETG System: An Approach to Testing Based on
Combinatorial Design,” IEEE Trans. Softw. Eng., vol. 23, pp.
437–444, July 1997.

[7] P. T. Darga and C. Boyapati, “Efficient Software Model
Checking of Data Structure Properties,” in Proc. 21st OOP-
SLA, 2006, pp. 363–382.

[8] B. Elkarablieh, S. Khurshid, D. Vu, and K. S. McKinley,
“STARC: Static Analysis for Efficient Repair of Complex
Data,” in Proc. 22nd OOPSLA, 2007, pp. 387–404.

[9] B. Elkarablieh, D. Marinov, and S. Khurshid, “Efficient
Solving of Structural Constraints,” in Proc. ISSTA, 2008.

[10] M. Gligoric, T. Gvero, V. Jagannath, S. Khurshid, V. Kuncak,
and D. Marinov, “Test generation through programming in
UDITA,” in Proc. ICSE, 2010.

[11] M. Gligoric, T. Gvero, S. Lauterburg, D. Marinov, and
S. Khurshid, “Optimizing Generation of Object Graphs in
Java PathFinder,” in Proc. 2nd ICST, 2009, pp. 51–60.

[12] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed
Automated Random Testing,” in Proc. PLDI, 2005, pp. 213–
223.

[13] J. Huang, “An Approach to Program Testing,” ACM Comput-
ing Surveys, vol. 7, no. 3, pp. 113–128, Sep. 1975.

[14] D. Jackson, “Alloy: A Lightweight Object Modelling Nota-
tion,” ACM Trans. Software Engg. and Methodology, vol. 11,
no. 2, pp. 256–290, Apr. 2002.

[15] D. Jackson, Software Abstractions: Logic, Language, and
Analysis. The MIT Press, 2006.

[16] S. Khurshid, C. S. Pasareanu, and W. Visser, “Generalized
Symbolic Execution for Model Checking and Testing,” in
Proc. 9th TACAS, 2003, pp. 553–568.

[17] J. C. King, “Symbolic Execution and Program Testing,”
Communications ACM, vol. 19, no. 7, pp. 385–394, Jul. 1976.

[18] D. Marinov, “Automatic Testing of Software with Structurally
Complex Inputs,” Ph.D. dissertation, Massachusetts Institute
of Technology, 2005.

[19] D. Marinov and S. Khurshid, “TestEra: A Novel Framework
for Automated Testing of Java Programs,” in Proc. 16th ASE,
2001, pp. 22–31.

[20] S. Misailovic, A. Milicevic, N. Petrovic, S. Khurshid, and
D. Marinov, “Parallel Test Generation and Execution with
Korat,” in Proc. 6th ESEC/FSE, 2007, pp. 135–144.

[21] C. V. Ramamoorthy, S.-B. F. Ho, and W. T. Chen, “On the
Automated Generation of Program Test Data,” IEEE Trans.
Software Engg., vol. 2, no. 4, pp. 293–300, Jul. 1976.

[22] D. A. Ramos and D. R. Engler, “Practical, Low-Effort Equiv-
alence Verification of Real Code,” in Proc. 23rd CAV, 2011,
pp. 669–685.

[23] K. Sen, D. Marinov, and G. Agha, “CUTE: A Concolic Unit
Testing Engine for C,” in Proc. 5th ESEC/FSE, 2005, pp.
263–272.

[24] J. H. Siddiqui and S. Khurshid, “An Empirical Study of
Structural Constraint Solving Techniques,” in Proc. ICFEM,
2009, pp. 88–106.

[25] J. H. Siddiqui and S. Khurshid, “PKorat: Parallel Generation
of Structurally Complex Test Inputs,” in Proc. 2nd ICST,
2009, pp. 250–259.

[26] J. H. Siddiqui, D. Marinov, and S. Khurshid, “Optimizing a
Structural Constraint Solver for Efficient Software Checking,”
in Proc. 24th ASE, 2009.

[27] K. Stobie, “Model Based Testing in Practice at Microsoft,”
Electronic Notes in Theoretical Computer Science, vol. 111,
pp. 5–12, 2005.

[28] K. Sullivan, J. Yang, D. Coppit, S. Khurshid, and D. Jackson,
“Software Assurance by Bounded Exhaustive Testing,” in
Proc. ISSTA, 2004, pp. 133–142.

[29] W. Visser, K. Havelund, G. Brat, and S. Park, “Model
Checking Programs,” in Proc. 15th ASE, 2000, p. 3.

