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Abstract. We introduce ASketch, the first framework for sketching mod-
els in the Alloy language. The Alloy Analyzer is a SAT-based constraint
solver that allows users to create valuations for relations with respect
to given constraints and bound on the universe of discourse. Alloy users
routinely use the valuations to validate their models: enumerate some val-
uations and inspect them to detect underconstraints or overconstraints.
Our key insight is that valid and invalid valuations enable sketching Al-
loy models where the user writes a partial model with holes and provides
some valuations, and the sketching infrastructure completes the model
by synthesizing Alloy fragments for the holes.
ASketch offers the following extensions to Alloy: (1) it expands the Al-
loy grammar, allowing users to write holes in an Alloy model; (2) it can
parse regular expressions and automatically generate pools of matching
fragments to replace the holes; (3) it includes a solver-based technique
that encodes the model with holes, the fragments for each hole, and the
expected valuations to a meta-model which completes the holes when
solved. Experimental results show that ASketch works well for differ-
ent Alloy models with various number of holes, providing a promising
approach to bring the success of traditional program sketching for im-
perative and functional programs to declarative, relational logic.

1 Introduction

Building software models plays an important role in building reliable systems.
Alloy [11] is a well-known, relation-based modeling language that has been used
in academic and industrial settings [8,12,22,45]. Alloy has a SAT-based analyzer
that performs automatic analysis over a user-defined scope, i.e., bound on the
universe of discourse. Specifically, the analyzer finds instances, i.e., valuations
for relations in the model such that the formulas in the model evaluate to true.
The analyzer can also find counterexamples that refute properties of interest; an
instance for the negation of the property formula serves as a counterexample.
While Alloy’s expressive notation allows succinct formulation of complex prop-
erties, reasoning about the correctness of Alloy formulas, e.g., in the presence
of quantification and transitive closure, requires much care. Because Alloy mod-
els are effectively logical constraints, they can have two basic kinds of faults:
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overconstraints that rule out valid valuations and underconstraints that permit
invalid valuations.

We introduce the first approach for sketching Alloy models, where the user
does not need to write complete models. Instead, the user writes a partial model
with holes and also provides (1) some regular expressions that encode possible
fragments for each hole and (2) some valid and invalid valuations that serve as
test cases [35, 38] for the desired model. Our key insight is that these test valu-
ations enable sketching Alloy models, where the sketching framework completes
the partial model with respect to the given fragments and valuations.

Our sketching framework, called ASketch, focuses on sketching several con-
structs of Alloy models, including relational expressions, logical operators, and
quantifiers. Given a partial model and the corresponding test valuations, AS-
ketch first parses the user-provided regular expressions and generates pools of
matching fragments that can replace the holes. Then, ASketch systematically
explores the resulting search space of candidate Alloy models, to find a model
that satisfies all test valuations. Specifically, ASketch uses constraint solving to
explore the space of candidate models by creating one Alloy meta-model that
encodes the model to sketch along with the fragments for holes and test valu-
ations all at once. The meta-model effectively encodes multiple Alloy models,
i.e., all models from the entire candidate space. Finally, ASketch uses the Alloy
Analyzer to find solutions that can fill in the holes.

We perform an experimental evaluation of ASketch using 24 sketches de-
rived from 5 core Alloy models. Experimental results show that ASketch can
complete sketches that can simultaneously have up to 3 expression holes and
3 non-expression holes. To highlight the complexity of the underlying problem,
one example sketch, BinaryTree with 6 holes, has a search space of over 4 billion
candidate Alloy models (3 expression holes with 400 expression fragments each
and 3 non-expression holes with 4 fragments each). ASketch finds a solution Al-
loy model (w.r.t. 16 test valuations) in 12 minutes, and the Alloy meta-model
generated by ASketch creates a SAT problem with 1,378 primary variables and
1,188,735 clauses.

While ASketch introduces a new technique for writing Alloy models in gen-
eral, a particular application that we envision for ASketch is for education about
Alloy and more broadly, software modeling using relational specifications. Our
experience with beginner Alloy users shows that they often struggle to make
their formulas “just right”. They have a general idea for a formula skeleton, and
they can tell whether certain instances should or should not satisfy a formula,
but they still make mistakes that overconstrain or underconstrain their models.
We expect that beginners could greatly benefit from an iterative methodology
where the user could start from some skeleton formula with holes, use ASketch
to complete the formula, obtain some valuations, label them as valid or invalid,
and repeatedly iterate until getting all (and only) the valuations that the user
expects. In fact, our evaluation subjects are inspired by the example models that
beginners often struggle with.
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Fig. 1. Four test valuations shown graphically: T0, T1, and T3 are valid for the ex-
pected acyclicity; T2 is invalid. L0 is the list atom; N0 and N1 are node atoms.

This paper makes the following contributions:
Idea: We introduce the idea of sketching Alloy models using test valuations.
ASketch: We introduce a technique for completing Alloy sketches based on
constraint solving.
Experiments: We present an experimental evaluation with small but intricate
Alloy formulas; the results show that ASketch introduces a promising approach
for sketching Alloy models.

2 Example
To illustrate our ASketch approach, consider the following partial Alloy model
for an acyclic singly linked list:
one sig List { header: lone Node } sig Node { link: lone Node }
pred Acyclic() { \Q,q\ n: Node | n \CO,co\ \E,e\ => n \CO,co\ \E,e\ }
q := {| all|no|some|lone|one |}
co := {| =|in|!=|!in |}
e := {| (List.header|n).(~?)(*|^)link |}

The signature (sig) declaration introduces a set of atoms and a user-defined
type. A signature may declare fields, i.e., relations. List declares a set of list
atoms; one makes the set singleton, i.e., have exactly 1 atom, which represents
the list we are modeling. The field header declares a binary relation of type
List × Node; lone declares header to be a partial function, i.e., each List atom
maps to at most one Node atom. Node declares a set of nodes and introduces the
field link, which is a partial function of type Node× Node. The predicate (pred)
Acyclic introduces a named formula (which may have parameters).

The body of the predicate is a formula sketch with three different kinds of
holes: \Q,q\ (quantifier hole), \CO,co\ (comparison operator hole), and \E,e\
(expression hole). For the sake of illustrative example, we create several holes
of different kinds (potentially more than a user would actually create), and we
explicitly list all potential fragments for each hole. Each hole states the syntactic
kind of the hole followed by an identifier, e.g., E followed by e. Each identifier
refers to a regular expression (within {| ... |}, following [30]), e.g., e refers to
(List.header|n).(~?)(*|^)link, which encodes a set of eight Alloy expressions
in this example, including expressions List.header.*link and n.^link. ASketch
extends the Alloy grammar [39] with these holes. The variable n is introduced
by the quantifier (to be sketched) and is of type Node; the operator => denotes
logical implication.
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The goal is to fill in the holes such that the formula constrains the nodes
in the list to form an acyclic structure. Figure 1 graphically illustrates four
test valuations for the model. Three valuations—T0, T1, and T3—are valid
with respect to the expected acyclicity constraint. One valuation, T2, is invalid.
Note that T3 is valid although N1 links to itself: N1 is not in the list, and the
formula we are sketching should constrain only the nodes that are in the list,
i.e., reachable from the header.

The user can provide the test valuations simply as Alloy predicates. For
example, the following represent test valuations T0 and T2 from Figure 1:

pred Test0() {
some L0: List {

List = L0 and no header and no Node and no link and Acyclic[] }}
pred Test2() {

some L0: List | some disj N0, N1: Node {
List = L0 and header = L0->N0 and Node = N0+N1 and link = N0->N1 + N1->N0 and !Acyclic[] }}

The predicate Test0 uses an existentially quantified (some) formula to assign
a value to the List set. Using the Alloy keyword no, Test0 declares the other
signatures and relations to be empty. The predicate invocation Acyclic[] labels
the valuation as valid for the expected acyclicity constraint. The predicate Test2
uses existentially quantified formulas to assign values to the List and Node sets.
The keyword disj requires the variables in the declaration to represent disjoint
sets (i.e., unique nodes), the operator -> denotes Cartesian product, the operator
+ denotes set union, and the predicate invocation !Acyclic[] labels the valuation
as invalid for the expected acyclicity constraint.

Consider using ASketch to complete all five holes. Two are expression holes
\E,e\ with the same given regular expression assigned for the fragment space,
and each expression hole has eight syntactically different expression fragments.
Alloy also allows five quantifiers for \Q,q\ (all, no, some, lone, and one) and
four comparison operators for \CO,co\ (=, in, !=, and !in). In total, there are
5 × 4 × 8 × 4 × 8 = 5, 120 candidate Alloy models. For our example, we use
8 test valuations to obtain the expected solutions (4 shown in Figure 1 plus 4
more). To complete the sketch, ASketch takes less than 1 second when solving
the entire Alloy meta-model that encodes all 5,120 models and 8 valuations at
once. Here is a solution ASketch finds:

all n: Node | n in List.header.*link => n !in n.^link

The Alloy keyword in represents the subset, and ! denotes logical negation.
The operator * denotes reflexive transitive closure, and ^ denotes transitive clo-
sure. The expression List.header.*link represents the set of all nodes reachable
from the list’s header (following zero or more traversals of the field link). The
expression n.^link represents the set of all nodes reachable from n (following one
or more traversals of the field link). Thus, this universally quantified formula
states that for any node that is in the list, the node is not reachable from itself,
which correctly characterizes our expected acyclicity constraint.



V

Table 1. Supported fragments for non-recursively defined holes

Sketch Kind Hole Candidates Sketch Kind Hole Candidates
Quantifier \Q\ all, no, some, lone, one Unary Operator Formula \UOF\ !, ␣
Logical Operator \LO\ ||, &&, <=>, => Unary Operator Expression \UOE\ ~, *, ^
Compare Operator \CO\ =, in, !=, !in Binary Operator \BO\ &, +, -
Unary Operator \UO\ no, some, lone, one

3 ASketch Framework

We next present the ASketch grammar for Alloy models with holes and describe
how ASketch determines which fragments complete the sketch to produce an
Alloy model that satisfies all the given test valuations.

3.1 Input Language
The input to ASketch is an Alloy model with holes. For lack of space, we do
not show the full grammar for ASketch’s input language, but it effectively ex-
tends the Alloy grammar with new syntactic constructs that represent holes.
The current Alloy grammar is available at http://alloy.csail.mit.edu/alloy/
documentation/alloy4-grammar.txt; we follow an older exposition [11] that in-
cluded the semantics of the kernel Alloy language. Consider this part of the
ASketch grammar:
quant ::= "all" | "no" | "some" | "lone" | "one" | "\Q," identifier "\"
expr ::= "*"expr | expr "+" expr | ... | "\E," identifier "\"
compareOp ::= "=" | "in" | "!=" | "!in" | "\CO," identifier "\"
formula ::= quant v ":" type "|" formula | ...
regExDecl ::= identifier ":=" "{|" regex "|}"
regex ::= nonSpecial | regex "?" | "(" regex ")" | regex regex | regex "|" regex

We extend quant so the quantifier can be a hole \Q,i\ where Q indicates the
quantifier hole kind and i is an identifier that maps to a regular expression via
regExDecl. The expr options include the expressions from Alloy, formed with
unary (e.g., *) or binary operators (e.g., +), and we add a hole (\E,i\) that
can replace an entire expression. Comparison operators include all operators
from Alloy and also a hole \CO,i\. The formula options include the Alloy first-
order logic formulas. regExDecl has the form i:={|e|} where i is referred from
a hole and e is a regular expression. We follow the design of popular sketching
system [13,30,32] that include a few regular expression operators: options (e?),
concatenations (e1 e2), and choices (e1 | e2). nonSpecial is any character that
Alloy supports except for ?, (, ), and |; to use those, requires escaping them as
\(, \), and \|. Finally, ASketch generates all possible fragments that match e
using a standard backtracking algorithm [20]. ASketch supports all fragments for
non-expression holes, as shown in Table 1. Our current implementation requires
an explicit regular expression for every hole, although a default could be set
up such that non-expression holes implicitly get all possible fragments without
listing them explicitly.

3.2 Solver-based sketching
ASketch reduces the sketching problem to a constraint-solving problem in the
Alloy language itself, which is then solved by the Alloy Analyzer. Effectively,

http://alloy.csail.mit.edu/alloy/documentation/alloy4-grammar.txt
http://alloy.csail.mit.edu/alloy/documentation/alloy4-grammar.txt
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ASketch generates one meta-model in Alloy that encodes multiple potential so-
lutions (i.e., concrete models) to the sketch. To represent the fragments for each
hole, two constructs are added to the meta-model: (1) an Alloy atom that names
a specific fragment for the hole, and (2) constraints that characterize the seman-
tics of the different fragments for the sketch.

Because ASketch uses the Alloy tool-set itself to encode Alloy expressions
and formulas, their semantics need not be explicitly modeled in Alloy; rather,
they just need to be stated—indeed, the Alloy tool-set understands the seman-
tics of Alloy. Therefore, we can use a shallow embedding of Alloy fragments in
the model. Specifically, to represent the expression fragments, ASketch creates
new Alloy functions, i.e., parameterized expressions. To represent the operator
fragments, ASketch creates new Alloy predicates, i.e., parameterized formulas.
Moreover, to encode multiple given test valuations in the same meta-model, AS-
ketch parameterizes formulas with respect to user-defined relations, which are
extracted out of their declaring signatures and added as new parameters. Our
encoding allows constraining the model with respect to all valuation constraints
at once—without causing an unnecessary increase in the number of proposi-
tional variables in the resulting SAT formula and without requiring higher-order
solving [22].

We use the linked-list example from Section 2 to describe how ASketch
sketches the body of a predicate and completes five holes of three kinds—
quantifiers (\Q,q\), comparison operators (\CO,co\), and expressions (\E,e\).
ASketch uses the following steps to create an Alloy meta-model whose solutions
complete the sketch: (1) parameterize Alloy construct (Section 3.2.1); (2) create
Alloy meta constructs to encode holes (Section 3.2.2); (3) translate test valua-
tions to facts (Section 3.2.3); and (4) invoke the Alloy Analyzer to complete the
holes (Section 3.2.4).

3.2.1 Parameterize Alloy constructs In the first step, ASketch parameter-
izes all predicates, functions, and facts. To parameterize an Alloy fact, ASketch
first converts it to a semantically equivalent predicate. Without loss of generality,
we only present how ASketch parameterizes predicates. The goal is to allow mul-
tiple test valuations to be encoded in the same meta-model. ASketch constructs a
meta-model which includes (1) all signature declarations from the partial model,
but without any of the declared relations, and (2) all predicates. Moreover, all
predicates in the meta-model get additional parameters: one new parameter per
signature and one new parameter per field; parameters that represent signatures
have fresh variable names generated, whereas those that represent fields use the
same names as in the partial model. In the body of the predicates, any reference
to a declared signature is replaced by the corresponding fresh variable name.

For our acyclic linked-list example from Section 2, we get the following:

one sig List {} sig Node {}
pred Acyclic(ls: one List, header: List -> Node, ns: set Node, link: Node -> Node) {

\Q,q\ n: ns | n \CO,co\ \E,e\ => n \CO,co\ \E,e\ }
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3.2.2 Create Alloy meta constructs to encode holes ASketch creates
Alloy meta constructs that encode concrete values for every hole in Alloy pred-
icates. We present how to encode only quantifier holes, comparison operator
holes, and expression holes in Alloy predicates. The algorithm takes as inputs a
mapping from expression holes to the corresponding expression fragments and a
mapping from holes to all Alloy variables (sigs, fields, predicate parameters, let-
bound variables, and quantified variables) in scope of the holes. The algorithm
iterates over each Alloy predicate in the meta-model and updates the predicate
body by recursively replacing ASketch holes with predicate/function calls, and
creating and adding the predicate/function declarations to the meta-model. Note
that any reference to a declared signature in the generated predicate/function is
replaced by the corresponding fresh variable name as described in Section 3.2.1,
e.g., List with ls.

After this step, ASketch constructs the following meta-model (note that the
two comparison operator holes share the same operator fragments, and the two
expression holes share the same expression fragments):

pred Acyclic(ls: one List, header: List -> Node, ns: set Node, link: Node -> Node) {
q1[RQ1, ls, header, ns, link] }

abstract sig Q {} one sig RQ1 in Q {}
one sig Q_All, Q_No, Q_Some, Q_Lone, Q_One extends Q {}
pred q1(h: Q, ls: one List, header: List -> Node, ns: set Node, link: Node -> Node) {

h = Q_All => all n: ns | co2[RCO2, n, expr3[RE3, ls, header, ns, link, n]] =>
co2[RCO4, n, expr3[RE5, ls, header, ns, link, n]]

h = Q_No => no n: ns | co2[RCO2, n, expr3[RE3, ls, header, ns, link, n]] =>
co2[RCO4, n, expr3[RE5, ls, header, ns, link, n]]

... }
abstract sig CO {} one sig RCO2 in CO {} one sig RCO4 in CO {}
one sig CO_Eq, CO_In, CO_NEq, CO_NIn extends CO {}
pred co2(h: CO, e1, e2: set univ) {

h = CO_Eq => e1 = e2
h = CO_In => e1 in e2
... }

abstract sig E3 {} one sig RE3 in E3 {} one sig RE5 in E3 {}
one sig E3_1, E3_2, E3_3, E3_4, E3_5, E3_6, E3_7, E3_8 extends E3 {}
fun expr3(h: E3, ls: one List, header: List -> Node,

ns: set Node, link: Node -> Node, n: one Node): univ {
(h = E3_1 => ls.header.*link else
(h = E3_2 => n.^link else
... else none)) }

For quantifier holes, ASketch creates a unique abstract sig Q and declares
5 disjoint singleton sigs that represent all possible values for the hole (all, no,
some, lone, and one). For each quantifier hole, ASketch translates the quantified
formula to a predicate call. The predicate has the following parameters: (1) one
parameter of the new abstract sig type that allows evaluating the predicate to
one of the 5 quantifiers; and (2) one parameter for each variable in scope: signa-
tures and fields from the original model, and optionally, predicate parameters,
let-bound variables, and/or quantified variables in case of nested quantified for-
mulas. The corresponding predicate declaration, q1 in our example, is added to
the meta-model. The predicate body is a conjunction of implications that model
different quantified formulas corresponding to the hole. ASketch also introduces
a result sig, RQ1 in our example, that will obtain one of the 5 values (Q_All, Q_No,
Q_Some, Q_Lone and Q_One) to represent the quantifier to fill in the hole.
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For comparison operator holes, ASketch creates a unique abstract sig CO and
declares 4 disjoint singleton sigs that represent all possible values for the hole (=,
in, !=, and !in). Unlike for quantifier holes where each hole requires a new pred-
icate, all comparison operator holes (of the same arity) can be encoded using a
single predicate if they share the same set of fragments. ASketch creates a pred-
icate, co2 in our example, which encodes a formula that contains a comparison
operator. The predicate contains 3 parameters: (1) one parameter of the new
abstract sig type that allows evaluating the predicate to one of the 4 compari-
son operators (CO_Eq, CO_In, CO_NEq, and CO_NIn); (2) left operand; and (3) right
operand. For each comparison operator hole, ASketch introduces a result sig,
RCO2 and RCO4 in our example, similar as for quantifier holes. (ASketch treats the
other non-expression holes similar to comparison operator holes, but we do not
present details due to space limits.)

To model values of expression holes, ASketch creates one new abstract sig,
E3 in our example, for all holes that share the same set of expression fragments
and declares k singleton sigs that partition the new sig, where k is the number
of expression fragments for the corresponding expression hole, 8 in our example.
ASketch also introduces result sigs, RE3 and RE5 in our example, that will obtain
one of the k values to represent which fragment fills the hole. Next, ASketch cre-
ates an Alloy function that can select from these choices. The function has these
parameters: (1) one parameter of the new abstract sig type that allows evalu-
ating the function to one of the expression fragments based on the invocation
context; and (2) one parameter for each Alloy variable in scope. The function
body is a nested if-then-else expression where exactly one choice is true for any
invocation, and the function evaluates to the value of the expression fragment
corresponding to that choice.

3.2.3 Express test valuations as facts To complete the sketch with respect
to the given test valuations (labeled as valid or invalid), ASketch automatically
translates the test valuations (expressed as predicates in Section 2) to facts,
which forces any solution that is created (in the final meta-model) to conform to
all given valuations. Because valuations from different tests may contradict one
another, ASketch uses Alloy’s let construct to introduce the necessary names
for sets and relations that are assigned values. Then, ASketch passes these sets
and relations to the parameterized predicates (described in Section 3.2.1) so that
the final sketched model satisfies all the tests at once. For example, Test0 from
Section 2 becomes the following fact:
fact Test0 {

some L0: List {
let ls = L0 | let header = none->none | let ns = none | let links = none->none |

Acyclic[ls, header, ns, links] }}

3.2.4 Invoke Alloy Analyzer to complete holes The final meta-model
consists of all pieces generated in sections 3.2.1, 3.2.2, and 3.2.3. ASketch invokes
the Alloy Analyzer to execute an empty run command (run {}) on the final meta-
model. The analyzer searches for possible valuations of the result R sigs so that
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they conform to all tests. In our example, RQ1 evaluates to Q_All, RCO2 to CO_In,
RE3 to E3_1, RCO4 to CO_NIn, and RE5 to E3_2. Finally, ASketch maps result values
to the corresponding Alloy fragments and reports concrete values of all holes to
the user, e.g., 〈all, in, List.header.*link, !in, n.ˆlink〉 in our example. The
completed, sketched model becomes this:
one sig List { header: lone Node } sig Node { link: lone Node }
pred Acyclic() { all n: Node | n in List.header.*link => n !in n.^link }

Our example used only 8 expressions, but realistic ASketch models may have
hundreds of expressions, which results in much larger meta-models. Our exper-
iments show that the above encoding technique still works relatively well even
for a large number of expressions. It also works much better than all other meta-
model encoding techniques we tried.

4 Experimental evaluation

We next present our experimental evaluation of ASketch. We use five small
but intricate Alloy problems to derive 24 sketching models for evaluation (Sec-
tion 4.1). We evaluate how much time ASketch takes to find complete Alloy
models that satisfy all test valuations (Section 4.2).

4.1 Sketching problems
We use 24 sketches derived from five core Alloy models: LinkedList from Sec-
tion 2, BinaryTree models the acyclicity constraint of a binary tree, Contains
checks whether a list contains an element, Remove models removing an element
from a list, and Dijkstra models Dijkstra’s mutual exclusion algorithm.

For each core model, we picked one predicate to create several sketches by
increasing the total number of holes in the body of the predicate, from left to
right. This process enables us to systematically create model variants to explore
how the number of holes affects our techniques. For example, for LinkedList, we
identified 3 non-expression holes and 2 expression holes in the Acyclic predicate
and produced these 5 variants:
\Q,q\ n: Node | n in List.header.*link => n !in n.^link // LinkedList 1H
\Q,q\ n: Node | n \CO,co\ List.header.*link => n !in n.^link // LinkedList 2H
\Q,q\ n: Node | n \CO,co\ \E,e\ => n !in n.^link // LinkedList 3H
\Q,q\ n: Node | n \CO,co\ \E,e\ => n \CO,co\ n.^link // LinkedList 4H
\Q,q\ n: Node | n \CO,co\ \E,e\ => n \CO,co\ \E,e\ // LinkedList 5H

Our experiments are performed on a MacBook Pro running OS X El Capitan
with 2.5 GHz Intel Core i7-4870HQ and 16GB of RAM.

4.2 ASketch results
Table 2 shows the results of ASketch for various sketching problems. The column
Model shows the model variants for each core model; columns #N and #E
show the number of non-expression holes and expression holes, respectively; the
column Search Space shows the number of fragments combinations for all holes;
and the columns #Primary Vars, #Clauses, and Solving Time show the number
of primary variables, clauses, and solving time in seconds for the meta model,
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respectively. The Search Space is computed as the product of the number of
fragments for each hole in the model. For example, if the LinkedList model with
5 holes has 1 quantifier hole with 5 fragments, 2 comparison operator holes with
4 fragments each, and 2 expression holes with 400 fragments each, then the
sketching problem has a search space of 5× 42 × 4002 = 12, 800, 000 ∼= 1.3e7.

The columns 50, 100, 200, 300, and 400 show the number of expression frag-
ments in the experiment, e.g., 50 means that we use 50 syntactically different
expressions for each expression hole in the model variant. We generate regular
expressions for expression holes using RexGen1 [43] such that two properties
hold. First, the set of expressions contains the expected solutions. Second, the
larger set of expressions contains all expressions from the smaller set, e.g., the
set of 100 expressions includes the set of 50 expressions and adds 50 more. We
ensure the first property as follows. Suppose we have H expression holes and
E expected expressions to fill the holes. We run RexGen to get X expressions
and exclude E expected expressions from X expressions. Next, we run ASketch
to find all solutions w.r.t. the test valuations and exclude any expression in the
solutions that is non-equivalent to any of the E expected expressions. The idea
is to remove all expressions that could lead to a solution that passes all tests
but is incorrect. Then, to form a set of expressions with size Y (where Y is 50,
100, 200, 300, or 400), we sample the remaining expressions to obtain Y − E
expressions, and add the E expected expressions back .

Dijkstra has two expression holes with different variables in scope, so each
expression hole uses a different set of expression fragments (but with the same
number of expressions). Expression holes for each of LinkedList, BinaryTree,
Contains, and Remove share the same set of expression fragments. In the ex-
periments, we use 16 test valuations for each core model, and all model vari-
ants of the same core model share the same test suite. All experiment settings,
with various fragments and test valuations, yield solutions that are semantically
equivalent to the correct solutions.

If a sketch has no expression hole, then increasing the number of the expres-
sion fragments does not increase the search space, primary variables, or clauses in
the generated meta-model. For example, BinaryTree model with 1 hole has only
a comparison operator hole, and the search space (4), the number of primary
variables (170), and clauses (7,957) remain unchanged as the number of expres-
sion fragments increases. If the sketch has expression holes, then the search space,
primary variables, and clauses increase when we use more expression fragments.
In our experiment, the search space goes up to 4.1e9 (BinaryTree), the number
of primary variables goes up to 1420 (Remove), and the number of clauses goes
up to 2.3e6 (Dijkstra). Overall these numbers show that the sketching problems
are non-trivial.

1 Note that RexGen can work in the mode where it prunes out equivalent expression
fragments. We do not use that mode because we want to generate a large number
of expression fragments for our experiments. All expressions that we generate are
syntactically different but some may be semantically equivalent.
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The solving time depends on various factors, including the number of primary
variables and clauses, the size of each clause, the complexity of the expression
fragments, the search strategy of the SAT solver, etc. In general, the solving time
increases with the size of the search space and the number of holes. However,
there are exceptions. For example, in LinkedList with 4 holes, the solving time
decreases as the size of expression fragments grows from 300 to 400. The reason is
that multiple expression fragments are correct and equivalent. We cannot control
how the Alloy Analyzer generates CNF clauses from the meta-model, so some
solutions are found sooner than the others even if we increase the search space.
Another exception is when BinaryTree goes from 4 holes to 5 holes using 400
expression fragments. Again, the solving time decreases as the number of holes
increases. The reasons are that (1) adding an operator hole does not increase the
number of primary variables or clauses by much; (2) it can make the sketching
problem easier to solve as more equivalent correct solutions can be found; and
(3) the Alloy Analyzer encodes the problem such that the solver is able to find
the solution fast. Overall, ASketch’s encoding is relatively efficient and works
well for large search spaces.

5 Related work

We introduce the first approach to sketching Alloy models. Program sketching [1,
13, 28–33] is a form of program synthesis, which is a mature yet active research
topic [2, 5–7, 9, 17, 19, 21, 25, 28]. Researchers have proposed program synthesis
techniques for a number of languages, including synthesis of logic programs, e.g.,
using inductive synthesis based on positive and negative examples [3]. However,
prior work has not addressed the complexity of synthesis in the presence of
quantifiers, transitive closure, relational operators, and more generally, formulas
that express structurally complex properties, which are the focus of our work.

The Sketch system [30] takes as input a partial program in the Java-like
Sketch language, and uses SAT and inductive synthesis in a counterexample-
guided loop. Sketch requires users to provide generators for expression fragments
for expression holes. The JSketch tool translates Java to Sketch to allow sketching
Java programs [13]. Some tools focus on specific kinds of programs to sketch,
such as PSketch for concurrent data structures [32].

Previous work on program synthesis has also used user-provided tests, al-
beit for imperative code, to guide synthesis. SyPet [5] introduced a novel use of
Petri nets in synthesizing sequences of method invocations for complex APIs
using tests. EdSketch [10] and EdSynth [44] introduced an optimized back-
tracking search for completing Java sketches using test executions for pruning.
Test-Driven Synthesis iteratively builds a C# program such that it satisfies all
tests [26]. Component-based synthesis builds programs by combining compo-
nents from given libraries, e.g., work in this line used I/O oracles to synthesize
loop-free programs [14].

Our approach also shares the spirit of storyboard programming, which uses
user-provided graphical representations of data structures to synthesize imper-
ative code that performs desired data structure manipulations based on the
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insight that it can be easier and more intuitive for a user to provide concrete
data structure manipulations than to write the code [29]. Our test valuations
make use of a similar insight.

An approach for creating Alloy models using instances was introduced by
aDeryaft [15] in the spirit of Daikon [4] that uses a collection of known properties
to check which hold with respect to given inputs. Alchemy [18] defined a trans-
lation to database update operations and integrity constraints. AUnit [37, 38]
recently defined the concepts of test case, test execution, and model coverage
for unit testing of Alloy models in the spirit of popular xUnit frameworks for
imperative languages. AUnit has also enabled the adoption of other traditional
imperative testing infrastructures to Alloy such as mutation testing [37,42]. The
test valuations that ASketch uses in the context of synthesis follow AUnit’s defi-
nition of a test case. ASketch’s solver-based approach for sketching also inspired
a way to model state and state transitions in Alloy [36].

While this paper focuses on sketching for Alloy, one of the earliest approaches
for helping Alloy users build their models correctly was based on identifying un-
satisfiable cores in overconstrained models [27, 40, 41], which aids in automated
debugging. More recent work introduced different strategies for scenario explo-
ration for better understanding of the properties modeled [23,24].

6 Conclusions and Future Work

We introduced ASketch, the first approach for sketching Alloy models. Given a
model with holes and some (valid and invalid) valuations for the desired model,
ASketch completes the given model with respect to the valuations. ASketch
performs two key steps: it generates a pool of fragments (e.g., expressions) for
each hole from user-provided regular expressions, and it creates a meta-model to
explore the resulting space of candidate (completed) models to find a model that
conforms to the valuations. An experimental evaluation using a suite of sketches
shows that ASketch introduces a promising approach for sketching Alloy models.
ASketch brings the spirit of traditional program sketching [1,10,13,16,28–33]—
often regarded as the breakthrough approach in program synthesis for imperative
and functional programs during the last decade—to a declarative, relational
logic. We hope ASketch serves as a sound basis for a highly effective methodology
for synthesizing Alloy models, which ultimately increases the use of analyzable
models and leads to better software.

Future work can build on ASketch for solving other problems, such as au-
tomated debugging of faulty Alloy models. To illustrate, consider a model that
is erroneously overconstrained. To repair it, first identify its unsat core using
SAT to localize likely faulty expressions or formulas, and then create a sketch
and complete it using ASketch. Future work can also evaluate the usability of
ASketch via a user study; as common in sketching [30], we start first from the
algorithmic foundations for sketching and leave actual user evaluations for later.
An alternative to ASketch, which is a solver-based technique, is to employ an
enumeration-based technique [34]; future work can rigorously compare the two
techniques and combine them for a likely more effective synergistic approach.
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