
Improving Generation of Object-Oriented Test Suites by
Avoiding Redundant Tests

Tao Xie1 Darko Marinov2 David Notkin1

1 Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195, USA
{taoxie,notkin }@cs.washington.edu

2 MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139, USA
marinov@lcs.mit.edu

Technical Report UW-CSE-04-01-05

January 2004

ABSTRACT
Object-oriented tests consist of sequences of method invocations.
Behavior of an invocation depends on the state of the receiver ob-
ject and method arguments at the beginning of the invocation. Ex-
isting tools for automatic generation of object-oriented test suites,
such as Jtest and JCrasher for Java, typically ignore object states.
These tools generate redundant tests that exercise the same method
behavior, which increases the testing time without increasing the
ability to detect faults.

We propose a formal framework for detecting redundant tests
and present five fully automatic techniques within this framework.
Based on these techniques, we have developed a test-minimization
tool that removes redundant tests from test suites and a test-generation
tool that iteratively augments test suites with non-redundant tests.
We evaluate our tools on eight subjects taken from a variety of
sources. The experimental results show that our test minimization
can remove over 90% of the tests generated by Jtest for most sub-
jects and 30% of the tests generated by JCrasher for half of the sub-
jects, without decreasing the quality of test suites. The results also
show that our test generation can effectively generate new tests that
increase the quality of test suites generated by Jtest and JCrasher.

1. INTRODUCTION
Most existing tools for automatic generation of object-oriented

test suites, such as Jtest [26] (a commercial tool for Java) and
JCrasher [9] (a research prototype for Java), test a class by gen-
erating sequences of method invocations for the class. Each test
consists of one sequence; when two sequences differ, these tools
conservatively assume that the tests are not equivalent. However,
there are many cases when different method sequences exercise the
same behavior of the class under test. For example, two sequences
can produce equivalent objects because some invocations do not
modify state or because different state modifications result in the
same state. Intuitively, invoking same methods on such equivalent
objects is redundant. Since testing is typically constrained by time
limits, a key issue is to avoid redundant tests that only increase the
testing time and do not increase the ability to detect faults.

We propose a formal framework for detecting redundant tests
based on equivalent objects. Within this framework, we present
five fully automatic techniques for detecting equivalent objects.
These techniques do not require any user input, except that two
of the techniques assume that the class under test implements an
equality method. In Java, theequals method is defined in the

java.lang.Object class and often overridden in subclasses; it is
used pervasively, for example to compare elements in the Java Col-
lections Framework [31]. Anyequals method must satisfy a set
of properties, such as implementing an equivalence relation; other-
wise, the collections do not behave as expected.

Some testing tools, such as AsmLT [13, 15], require the user
to provide an abstraction function [24] for classes; two objects
are then equivalent if they map to the same abstract value. We
can view our techniques as automatically defining an abstraction
function based onequals ; it is more conservative than a user-
provided abstraction function, but fully automatic. Several other
projects [4, 11, 17] use observational equivalence [24] to define
equivalent objects. However, checking observational equivalence
is very expensive: by definition it takes infinite time, but in prac-
tice approximations are used. Our techniques sometimes give more
conservative results than observational equivalence, but they take
much less time.

We have developed a test-minimization tool that removes redun-
dant tests from a test suite and a test-generation tool that iteratively
augments test suites with non-redundant tests. During the execu-
tion of an existing test suite, our test-generation tool monitors and
collects method sequences that lead to each non-equivalent object
state. It also monitors and collects method arguments exercised by
the existing test suite. The tool then uses a form of combinatorial
testing that can exhaustively exercise each non-equivalent object
state for all methods and all collected arguments. Our test genera-
tion exploits the knowledge of existing tests to generate arguments;
this is a novel approach that complements generation of arguments
based on default values [9, 26] or user-defined values [5, 13, 26].
During this combinatorial generation, new non-equivalent objects
are encountered, and the process iteratively continues until for a
user-defined number of iterations. The test generation guarantees
that each generated test is non-redundant.

This paper makes the following main contributions:
• We propose a formal framework for detecting equivalent ob-

ject states and redundant tests.
• We present five techniques within this framework.
• We develop a test-minimization tool that removes redundant

tests from a test suite without sacrificing the quality of the
test suite.

• We develop a test-generation tool that iteratively augments
test suites with non-redundant tests. The tool does not re-
quire users to define any extra input for new tests, but fully
exploits the information from the existing test suite.

1

• We evaluate our test minimization and generation on eight
subjects taken from a variety of sources. The experimental
results show that our test minimization can remove over 90%
of the tests generated by Jtest for most subjects and 30% of
the tests generated by JCrasher for half of the subjects. The
results also show that our test generation can effectively add
tests that increase branch coverage of the test suites.

2. EXAMPLE
We next illustrate how our techniques determine redundant tests.

As a running example, we use an integer stack implementation
shown in Figure 1 and taken from Henkel and Diwan [17]. The
array store contains the elements of the stack, andsize is the
number of the elements and the index of the first free location in
the stack. The methodpush /pop appropriately increases/decreases
the size after/before writing/reading the element. Additionally,
push /pop grows/shrinks the array when thesize is equal to the
whole/half of the array length. The methodisEmpty is an observer
that checks if the stack has any elements, and the methodequals
compares two stacks for equality.

The following is an exampletest suitewith three tests for the
IntStack class:

Test 1 (T1):
IntStack s1 = new IntStack();
s1.isEmpty();
s1.push(3);
s1.push(2);
s1.pop();
s1.push(5);

Test 2 (T2):
IntStack s2 = new IntStack();
s2.push(3);
s2.push(5);

Test 3 (T3):
IntStack s3 = new IntStack();
s3.push(3);
s3.push(2);
s3.pop();

Eachtesthas several method sequences on the objects of the class.
For example, T2 creates a stacks2 and invokes twopush methods
on it. Tests of this form are generated by tools such as Jtest [26]
and JCrasher [9]. For such tests, the correctness checking depends
on design-by-contract annotations [23,25]. If the code has annota-
tions, the tools translate them into run-time assertions [7, 26] that
are evaluated during the execution. If there are no annotations, the
tools only check the robustness of the code: they execute the tests
to check if any uncaught exception is thrown [9].

To determine redundant tests, our techniques monitor executions
of the tests. An execution of a test consists of transitions on the
state of the Java program. Our techniques track these transitions
at the granularity of methods: each test-case execution produces a
sequence of method executions. Eachmethod executionis charac-
terized by the actual method that is invoked and arepresentationof
the state (receiver object and method arguments) at the beginning
of the execution. We call this statemethod-entry state, or simply
state when it is clear from the context. For instance, T2 has three
method executions:

1. a constructor without arguments is invoked;
2. push adds3 to the empty stack;
3. push adds5 to the previous stack.

In this list, we use English language to describe the method-entry
states. The techniques that we compare use several formal repre-
sentations for state and several approaches for determiningequiva-
lent states (Section 3).

public class IntStack {
private int[] store;
private int size;
private static final int INITIAL_CAPACITY = 10;
public IntStack() {

this.store = new int[INITIAL_CAPACITY];
this.size = 0;

}
public void push(int value) {

if (this.size == this.store.length) {
int[] store = new int[this.store.length * 2];
System.arraycopy(this.store, 0, store, 0, this.size);
this.store = store;

}
this.store[this.size] = value;
this.size++;

}
public int pop() {

int result = this.store[this.size - 1];
this.size--;
if (this.store.length > INITIAL_CAPACITY

&& this.size * 2 < this.store.length) {
int[] store = new int[this.store.length / 2];
System.arraycopy(this.store, 0, store, 0, this.size);
this.store = store;

}
return result;

}
public boolean isEmpty() {

return (this.size == 0);
}
public boolean equals(Object other) {

if (other == null) return false;
if (!(other instanceof IntStack)) return false;
IntStack s = (IntStack)other;
if (this.size != s.size) return false;
for (int i = 0; i < this.size; i++)

if (this.store[i] != s.store[i]) return false;
return true;

}
}

Figure 1: An integer stack implementation in Java

We call two method executions equivalent if they are invocations
of the same method with respective equivalent states. Our test-
minimization and test-generation approaches are concerned with
redundanttests: a test is redundant for a test suite if every method
execution of the test is equivalent to some method execution of
some test from the suite. Section 4 presents our test-minimization
approach that removes redundant tests from a test suite and our
test-generation approach that generates only non-redundant tests.

We next briefly explain different techniques for determining
equivalent states and illustrate redundant tests that these techniques
find in the example test suite.

• WholeSeq: This is the most conservative technique that mod-
els the existing test-generation tools. These tools typically
consider two tests to be equivalent only if they are identical.
The technique represents state using method sequences that
create objects and compares state using sequence equality. It
finds all three example tests to be non-redundant.

• ModifyingSeq: This technique improves on the previous by
using in state representation only those method invocations
that modify the state. It finds that T3 is redundant, because it
exercises a subset of method executions that T1 exercises.

• WholeState: This technique uses the whole concrete state for
representation and compares states by isomorphism (defined
in Section 3). It also finds that T3 is redundant because of
T1. However, it does not find T2 to be redundant because
of T1: these two tests have different concrete states before
push(5) —the arraystore has the value[3,0] in s2 and
the value[3,2] in s1 .

• MonitorEquals: This technique leverages theequals
method to extract only the relevant parts of the state. It finds

2

T2, as well as T3, to be redundant because of T1. Although
the whole concrete states in T2 and T1 beforepush(5) are
different, the relevant parts of the states are the same, namely
the subarray ofstore up tosize is [3] .

• PairwiseEquals: This technique uses directly theequals
method to compare pairs of states. In the running example,
It finds the same redundant tests as the previous technique.

3. FORMAL FRAMEWORK
This section formalizes the notions introduced informally in the

previous section. We first describe approaches for representing
states and comparing them for equivalence. We then describe how
each of the five techniques builds the appropriate representation and
finds equivalent states. We next show how equivalent states give
rise to equivalent method executions and define redundant tests and
test-suite minimization. We finally discuss the assumptions that our
techniques make about the code under test.

3.1 State Representation and Comparison
Our techniques use two main approaches for state representation:

1) method sequences and 2) concrete state of the objects. Both ap-
proaches assume that the classes under test have some set of meth-
ods (distinguished not only by their Java name, but by the entire
signature) and consider constructors as methods.

3.1.1 Method Sequences
Each execution of a test creates several objects and invokes meth-

ods on these objects. Our method-sequence approach represents
state using sequences of method invocations to represent objects,
following Henkel and Diwan who use the representation in map-
ping Java classes to algebras [17]. The state representation uses
symbolic expressions whose concrete grammar is shown in Fig-
ure 2. Each object and value are represented with an expression.
Arguments for method invocations are represented as sequences of
zero of more expressions; the receiver is treated as the first method
argument. This representation assumes that every method invoca-
tion can only modify the state of the receiver object (and not any of
the arguments) and return a result [17]. The.state and.retval
expressions denote the state of the receiver after the method invo-
cation and the result of the invocation, respectively. For brevity,
Figure 2 does not specify types, but the expressions are well-typed
according to the Java typing rules [1].

For example, the objects2 at the end of T2 is represented as1

push(push(<init>().state, 3).state, 5).state , where
<init> represents the constructor method. A constructor takes no
receiver, and<init>().state represents the object state created
by the constructor-method invocation. This object state becomes
the receiver of the method invocationpush(3) , and so on.

Some of our techniques represent method-entry states using tu-
ples of expressions. Two tuples are equivalent iff their expressions
are component-wise identical.

Some tests may contain loops or arithmetic operations. For ex-
ample, two manually written tests T4 and T5 are shown in the left
and right columns respectively:

Test 4 (T4): Test 5 (T5):
IntStack s4=new IntStack(); IntStack s5=new IntStack();
for(int i=0;i<=1;i++) int i = 0;

s4.push(i); s5.push(i);
s5.push(i + 1);

1More precisely, each method is represented together with its sig-
nature such that different methods have different representation,
even if they have the same name.

exp ::= prim| invoc “.state ” | invoc “.retval ”
invoc ::= method “(” exp* “) ”
prim ::= “null ” | “ true ” | “ false ” | “0” | “1” | “ -1 ” | . . .

Figure 2: Grammar for symbolic expressions

Our method-sequence approach monitors the invocations of the
methods ofs4 /s5 from T4/T5, and collects these method calls’
actual argument values. The approach represents the object states
at the end of both T4 and T5 as

push(push(<init>().state, 0).state, 1).state .

3.1.2 Concrete State
Each execution of a test operates on the program state that in-

cludes a program heap. Our concrete-state approach considers only
parts of the program heap. We also call each part a “heap” and view
it as a graph: nodes represent objects and edges represent object
fields. LetP be the set consisting of all primitive values, includ-
ing null , integers, booleans etc. LetO be a set of objects whose
fields form a setF . (Array elements are considered as object fields
labelled with indices.)

DEFINITION 1. A heap is an edge-labelled graph〈O, E〉,
whereE = {〈o, f, o′〉|o ∈ O, f ∈ F, o′ ∈ O ∪ P}.

We define heap isomorphism as graph isomorphism based on
node bijection.

DEFINITION 2. Two heaps〈O1, E1〉 and〈O2, E2〉 are isomor-
phic iff there is a bijectionρ : O1 → O2 such that:

E2 = {〈ρ(o), f, ρ(o′)〉|〈o, f, o′〉 ∈ E1, o
′ ∈ O1} ∪

{〈ρ(o), f, o′〉|〈o, f, o′〉 ∈ E1, o
′ ∈ P}.

Note that the definition allows only nodes to vary: two isomor-
phic heaps have the same fields for all objects and the same values
for all primitive fields.

Some of our techniques userootedheaps as state representation.

DEFINITION 3. A rooted heap is a pair〈r, h〉 of a root objectr
and a heaph such that all nodes inh are reachable fromr.

The techniques construct a rooted heap from a program heap
〈O, E〉 and a tuple〈v0, . . . , vn〉 of pointers and primitive val-
uesvi ∈ O ∪ P , where0 ≤ i ≤ n. The construction first
creates the heaph′ = 〈O′, E′〉, where O′ = O ∪ {r} and
E′ = E ∪ {〈r, i, vi〉|0 ≤ i ≤ n}; r 6∈ O is the root object. It
then creates the rooted heap〈r, h〉, whereh = 〈Oh, Eh〉 is the
subgraph ofh′ that contains all nodes reachable fromr and their
edges, i.e.,Oh ⊆ O′ is the set of all objects reachable fromr within
h′ andEh = {〈o, f, o′〉 ∈ E′|o ∈ Oh}.

Although there is no polynomial-time algorithm known for
checking isomorphism of general graphs, it is possible to efficiently
check isomorphism of rooted, edge-labelled graphs. Our approach
is to linearizeheaps into sequences such that checking heap isomor-
phism corresponds to checking sequence equality. Figure 3 shows
the pseudo-code of the linearization algorithm. It traverses the en-
tire heap in the depth-first order, starting from the root. When it
first visits a node, it assigns a unique identifier to the node, keeping
this mapping inids . If there is a cycle in the heap, the traversal
visits some nodes several time and uses previously assigned iden-
tifiers to represent nodes. Similar linearization has been applied in
model checking for encoding states [19,27,33].

It is easy to show that the linearization normalizes rooted heaps
into sequences.

3

THEOREM 4. Two rooted heaps〈o1, h1〉 and 〈o2, h2〉 are iso-
morphic iff linearize (o1, h1) =linearize (o2, h2).

3.2 Techniques
Table 1 shows the techniques that we compare. Different tech-

niques use different representations for method-entry states and dif-
ferent comparisons for equivalent states. Each method-entry state
describes the receiver object and arguments before a method invo-
cation. We next explain details of all five techniques.

3.2.1 WholeSeq
This technique uses the method-sequence approach to represent

state. It represents each object with an expression that includesall
methods invoked on the object since it has been created, including
the constructor. Our implementation obtains this representation by
executing the tests and maintaining a mapping from objects to their
corresponding expressions.

Each method-entry state is simply a tuple of expressions that rep-
resent the receiver object and the arguments. Two states are equiv-
alent iff the tuples are identical. For example, this technique repre-
sents the states beforepush(2) in T3 and T1 as

<push(<init>().state, 3).state, 2>
and
<push(isEmpty(<init>().state).state, 3).state, 2> ,
respectively. According to this technique, these two states are not
equivalent.

3.2.2 ModifyingSeq
This technique also uses the method-sequence approach. How-

ever, it represents each object with an expression that includesonly
those methods that modified the state of the object since it has been
created, including the constructor. Our implementation executes
the tests and determines at run time if a method modifies the state
or not.

This technique builds and compares method-entry states the
same as the previous technique. However, since it uses a coarser
representation for objects, it can find more method-entry states to
be equivalent. For example, sinceisEmpty does not modify the
state of the stack, this technique represents states beforepush(2)
in both T3 and T1 as

<push(<init>().state, 3).state, 2>
and thus finds them to be equivalent.

3.2.3 WholeState
This technique represents method-entry states using the entire

concrete state reachable from the receiver object and the arguments.
Assume that a test-case execution is about to invoke some method
a0.m(a1, ..., an) and the program heap is〈O, E〉. The execu-
tion has already evaluated the receiver object and the arguments to
some valuesvi ∈ O∪P , where0 ≤ i ≤ n. (Recall thatP is the set
of all primitive values.) This technique represents the method-entry
state with the rooted heap obtained from〈O, E〉 and〈v0, . . . , vn〉.
Two states are equivalent iff the rooted heaps are isomorphic.

3.2.4 MonitorEquals
This technique leverages user-definedequals methods to ex-

tract only the relevant parts of the state. Like the previous tech-
nique, this technique also represents state with a rooted heap, but
this heap is only a subgraph of the entire rooted heap. Conceptually,
this technique first obtains the entire rooted heap from the program
heap and the values〈v0, . . . , vn〉 of the receiver and arguments,
as in the previous technique. It then invokes2 vi.equals(vi) for
2This execution always returnstrue for properly implemented

Map ids; // maps nodes into their unique ids
int[] linearize(Node root, Heap <O,E>) {

ids = new Map();
return lin(root, <O,E>);

} int[] lin(Node root, Heap <O,E>) {
if (ids.containsKey(root))

return singletonSequence(ids.get(root));
int id = ids.size() + 1;
ids.put(root, id);
int[] seq = singletonSequence(id);
Edge[] fields = sortByField({ <root, f, o> in E });
foreach (<root, f, o> in fields) {

if (isPrimitive(o))
seq.add(uniqueRepresentation(o));

else
seq.append(lin(o, <O,E>));

}
return seq;

}

Figure 3: Pseudo-code of the linearization algorithm

each non-primitivevi and monitors the field accesses that these ex-
ecutions make. The rationale behind this technique is that these
invocations ofequals access the relevant object fields that define
an abstract state.

This technique represents each method-entry state as a rooted
heap whose edges consist only of the accessed fields and the edges
from the root. Formally, let〈r, 〈O, E〉〉 be the entire rooted heap
andEa ⊆ E be the set of all fields fromE that are accessed during
equals executions3. The method-entry state is the rooted heap
〈r, 〈O′, E′〉〉, whereE′ = Ea∪{〈r, f, o〉|〈r, f, o〉 ∈ E} ⊆ E and
O′ = {o|〈o, f, o′〉 ∈ E′∨〈o′, f, o〉 ∈ E′} ⊆ O. In this technique,
two states are equivalent iff their rooted heaps are isomorphic.

For illustration, recall the example and consider the state of
stacks before the calls topush(5) in T2 and T1. The whole con-
crete state ofs2 /s1 is shown in the left/right column:

// s2 before push(5) // s1 before push(5)
store = @766a24 store = @11ff436
store.length = 10 store.length = 10
store[0] = 3 store[0] = 3
store[1] = 0 store[1] = 2
store[2] = 0 store[2] = 0
... ...
store[9] = 0 store[9] = 0
size = 1 size = 1

where the values of thestore array are their identifiers (refer-
ence addresses, prefixed with@). These states are not equiv-
alent, becausestore[1] differs. However, the execution of
this.equals(this) accesses only the fieldssize , store , and
elements ofstore whose indices are up to the value ofsize . In
this example, the accessed part ofs2 /s1 is shown in the left/right
column:

// this.equals(this) // this.equals(this)
// before s2.push(5) // before s1.push(5)
store = @766a24 store = @11ff436
store[0] = 3 store[0] = 3
size = 1 size = 1

These two states are not identical, as the address differs, but
they are isomorphic, and thus this technique reports that the
method-entry states beforepush(5) in T2 and T1 are equivalent.

3.2.5 PairwiseEquals
This technique also leverages user-definedequals methods to

detect equivalent states. It implicitly uses the entire program heap

equals methods.
3The executions may additionally allocate temporary objects and
access their fields, but the fields of these objects are not inE and
these objects are unreachable at the end of the executions.

4

to represent method-entry states. However, it does not compare
(parts of) states by isomorphism. Instead, it runs the test to build
the concrete objects that correspond to the receiver and arguments,
and then uses theequals method to compare pairs of states. Two
statess1 ands2 are equivalent iffs1.equals(s2) returnstrue .

3.3 Redundant Tests
Each execution of a test produces a sequence of method execu-

tions.

DEFINITION 5. A method execution〈m, s〉 is a pair of a
methodm and a method-entry states.

We define equivalent method executions based on equivalent
states.

DEFINITION 6. Two method executions〈m1, s1〉 and〈m2, s2〉
areequivalentiff m1 = m2 ands1 ands2 are equivalent.

Our test minimization and generation approaches are concerned
with redundant tests.

DEFINITION 7. A testt is redundantfor a test suiteS iff for
each method execution oft, exists an equivalent method execution
of some test inS.

A test suite is minimal if it has no redundant test.

DEFINITION 8. A test suiteS is minimal iff there is not ∈ S
that is redundant forS\{t}.

Given a test suiteS, there can be several minimal test suitesS′ ⊆
S. Our minimization uses a greedy algorithm to find one of those
minimal test suitesS′. We could additionally find a test suiteS′

that is optimal in that it minimizes the number of tests inS′ or
the total number of method executions for the tests inS′. These
optimization problems, called “minimum set cover” and “minimum
exact cover” respectively, are known to be NP complete, and in
practice approximation algorithms [20] are used.

3.4 Assumptions
Our techniques make the following assumptions about the code

under test:
• Methods are deterministic. (Otherwise, different executions

for the same input may produce different results, so model-
checking techniques are more applicable than testing.)

• The execution of the methods depends only on the state
reachable from the receiver and other arguments. (This
means that the code under test does not for example reads
files or accesses network.)

• Method-sequence representation additionally assumes that
each method can only modify the state of the receiver and
return a result.

• Techniques based on theequals methods additionally as-
sume that these methods are properly implemented (as per
the contract injava.lang.Object [31]) and that they are
pure, i.e., do not modify any state that they do not temporar-
ily allocate during the execution.

4. IMPLEMENTATION
This section presents details of our implementation. We present

the implementation of our techniques for collecting method-entry
states and comparing their equivalence. We then present our test-
minimization and test-generation tools.

Technique Representation Comparison
WholeSeq the entire method sequence equality
ModifyingSeq a part of the method sequenceequality
WholeState the entire concrete state isomorphism
MonitorEquals a part of the concrete state isomorphism
PairwiseEquals the entire concrete state equals

Table 1: Techniques for state representation and comparison

4.1 Techniques
We use the Byte Code Engineering Library (BCEL) [10] to

rewrite the bytecodes of a class at class loading time. We col-
lect state representation at the entry and exit of each method call
between a candidate object (usually being an instance of the class
under test) and its clients. We do not collect object states for those
method calls that are internal to the candidate object.

During object state collection, we collect receiver object refer-
ences, method signatures, and arguments at method entries or re-
turns at method exits of a candidate object. We also instrument
test classes to collect receiver object references, method signatures,
arguments and return at call sites of those method sequences that
lead to argument object states for the candidate object’s method.
Then we can use the collected method call information to construct
the method sequence that leads to a particular state of a candidate
object or argument object. The WholeSeq and ModifyingSeq tech-
niques use these constructed method sequences to represent object
states. In the implementation of the PairwiseEquals technique, we
execute collected method sequences to reproduce object states.

The WholeState technique uses Java reflection mechanisms [1]
to recursively collect all the fields that are reachable from a can-
didate object. The MonitorEquals and ModifyingSeq techniques
need to collect accesses of the fields that are reachable from a can-
didate object. The MonitorEquals technique represents the object
state of a non-primitivevi by using those collected field accesses
within vi.equals(vi) . The ModifyingSeq technique determines
if a method modifies the receiver object state by observing if there
is a write of a field that is reachable from the receiver object. To
collect field accesses, we insert some code before each instance
field read or write site in the class bytecodes at loading time. The
inserted code invokes our runtime analysis routines to collect only
those accessed fields that are reachable from a candidate object.
Since our field access monitoring and collection are based on the
instrumentation of bytecodes at class loading time, if specifications
or aspects are weaved into bytecodes by using some tools, such as
JML tool-set [7] or AspectJ compiler [32], we can monitor those
field accesses in specifications or aspects, and collect their field
values as relevant ones for state representation.

In our implementations, all techniques except for the Modify-
ingSeq technique use the same technique for argument object state
representation as the one for receiver object state representation.
Due to engineering considerations, we do not collect the field ac-
cesses of every receiver object in the method sequence that leads
to an argument object for a candidate object’s method. Therefore
we cannot determine whether a method in this sequence modifies
its receiver object state. In our implementations, the technique
used to represent argument object states can be different from the
one used to represent receiver object states. Therefore we can use
any of the other four techniques for representing argument object
states when we use the ModifyingSeq technique to represent re-
ceiver object states. Indeed, if the intersection of the field reference
sets reachable from a receiver object and an argument object is not
empty, the accuracy of the concrete-state representation would be
compromised when using method-sequence state representation for
argument object states.

5

4.2 Test Minimization
In terms of testing the behavior of a method, equivalent method

executions are redundant. However, sometimes redundancy of
equivalent method executions is unavoidable in a test suite. For
example, in order to test all public method calls of a class on a par-
ticular object state, we have to duplicate the method call sequence
that produces such an object state several times as many as the num-
ber of public state-modifying methods. However, ideally we still
expect each test exercises at least one new method execution. If a
test in a test suite does not produce at least one new method execu-
tion that is not equivalent to any of those produced by previously
executed tests in the test suite, we consider this test to be redundant
and it is removed from the test suite.

We instrument the entry and exit of each test method in a given
test class. In the test method entry, we insert a method call to our
runtime analysis routine to notify the beginning of the test. After
this test method is executed, our tool collects method executions
exercised within this test method, and sees whether the representa-
tions of these method executions exist in a trie data structure [14].
The trie is initially empty before running tests in the given test class.
If the tool cannot find the collected representation of a method ex-
ecution in the trie, the tool adds this representation into the trie. In
the test method exit, we insert a method call to our runtime analysis
routine to notify the end of the test. If within the execution of this
test, there exists at least one method execution that has been added
to the trie, the test is determined to be a non-redundant one, oth-
erwise, a redundant one. After we execute all the test methods in
the test class, we process the source code of the test class by com-
menting out the source code of redundant test methods, and save
the processed source code to a new minimized test class.

4.3 Test Generation
We divide the test generation problem into two sub-problems:

object state setup and method parameter generation. Object state
setup puts an object of the class under test into a particular state
before invoking methods on it. Method parameter generation pro-
duces particular arguments for a method to be invoked on the object
state.

A method argument listis characterized by the method signa-
ture and the arguments for the method. Two argument lists are
non-equivalent iff their method signatures are different or some of
their corresponding arguments are non-equivalent. Unlike a non-
equivalent method execution, a non-equivalent method argument
list does not include the method-entry state. In method parame-
ter generation, we generate arguments by using the collected non-
equivalent method argument lists from the executions of existing
tests. This complements existing method parameter generation
based on a dedicated test data pool, which contains default data
values [9, 26] or user-defined data values [26]. In practice, pro-
grammers often write unit tests [3], and these tests often contain
some good representative argument values. Our method parame-
ter generation takes advantage of these tests, rather than requiring
programmers to explicitly define representative argument values.
When there are no manually written tests for a class, we can gener-
ate non-equivalent method argument lists based on tests generated
by existing test-generation tools.

Our test generation is a type of combinatorial testing. We gen-
erate tests to exercise each possible combination of non-equivalent
object states and non-equivalent method argument lists. In object
state setup, we collect non-equivalent object states from the exe-
cutions of existing tests. Since these non-equivalent object states
might not be exhaustively exercised by all non-equivalent method
argument lists, we generate tests to exercise each non-equivalent

Set testgen(Set existingTests, int maxIterNum) {
Set newTests = new Set();
RuntimeInfo runtimeInfo = runAndCollect(existingTests);
Set nonEqArgLists = runtimeInfo.getNonEqArgLists();
Set frontiers = runtimeInfo.getNonEqObjStates();
for(int i=1;i<=maxIterNum && frontiers.size()>0;i++) {

Set newTestsForCurIter = new Set();
foreach (objState in frontiers) {

foreach (argList in nonEqArgLists) {
Test newTest = makeTest(objState, argList);
newTestsForCurIter.add(newTest);
newTests.add(newTest);

}
}
runtimeInfo = runAndCollect(newTestsForCurIter);
frontiers = runtimeInfo.getNonEqObjStates();

}
return newTests;

}

Figure 4: Pseudo-code implementation of the test-generation
algorithm.

object state with all non-equivalent method argument lists. After
we execute the new generated tests, we might collect some more
new non-equivalent object states that are not encountered in the ex-
ecutions of existing tests. Then we can apply our test-generation
technique to generate more tests to exercise them in another itera-
tion. The pseudo-code of the test-generation algorithm is presented
in Figure 4.

Given a set of existing tests and a user-defined maximum it-
eration number, our test-generation algorithm first runs the exist-
ing tests and collect runtime information, including non-equivalent
method argument lists and non-equivalent object states. We also
collect the method sequence that leads to a non-equivalent object
state or an argument in a method argument list. We use these
method sequences to reproduce object states or arguments. We put
the collected non-equivalent object states into a frontier set. Then
we iterate each object state in the frontier set and invoke each non-
equivalent method argument list on the object state. Each combina-
tion of an object state and a method argument list forms a test. After
we generate tests based on all combinations, we run all new tests
generated in the current iteration and collect runtime information.
We collect new non-equivalent object states that are encountered
in the current iteration, and set them as the new frontier set. With
this new frontier set, we start the subsequent iteration until we have
reached the maximum iteration number or the frontier set has no
object state. Then we return the collected generated tests over all
iterations. These tests are exported to a test class.

Since invoking a state-preserving method on an object state does
not change the state, we can still invoke other methods on the object
state in the same test. We merge generated tests as much as possi-
ble by reusing and sharing the same object states among multiple
method argument lists. This reduces the number of the generated
tests and the execution cost of the generated test suite. The gener-
ated test suite contains no redundant tests, since our combinatorial
generation mechanism guarantees that the last method execution
produced by each test is not equivalent to any method execution
produced by earlier executed tests.

In our tool implementation, we use Java reflection mechanisms
[1] to generate and execute new tests online. In the end of test
generation, we export the tests generated after each iteration to a
JUnit test class code [21], based on JCrasher’s test code generation
functionality [9].

6

5. EXPERIMENTS
This section presents experimental results of our test-

minimization and test-generation tools. We hypothesize that our
test-minimization tool can reduce a significant number of tests au-
tomatically generated by existing test-generation tools, and our
test-generation tool can effectively generate non-redundant tests to
exercise non-equivalent object states. We conduct two experiments
to validate our hypotheses, and compare the effectiveness of dif-
ferent techniques. We perform all experiments on a Linux machine
with a Pentium IV 1.1 GHz processor using Sun’s Java 2 SDK 1.4.2
JVM with default configurations.

5.1 Subjects
We use eight Java classes in our experiments. TheIntStack

class is the running example. TheUBStack , BSet , and BBag
classes are taken from the experimental subjects used by Stotts
et al. [18, 30]. TheShoppingCart class is a popular example
for using JUnit [8]. TheBankAccount class is one of the ex-
amples distributed with Jtest [26]. TheBinarySearchTree and
LinkedList classes are data structures from a textbook [34]. The
first three columns of Table 2 show the class name, the number of
public method, and the number of non-comment, non-blank lines
of code for each subject respectively.

We use two third-party test-generation tools: Jtest [26] and
JCrasher [9] to automatically generate test inputs for program sub-
jects. Jtest allows users to set the length of calling sequences in
the range of one to three. In our experiment, we set the length
of calling sequences as three. Then Jtest first tries all calling se-
quences of length one followed by all those of length two and three
sequentially. JCrasher automatically constructs method sequences
to generate non-primitive arguments, and uses default data values
for primitive arguments. JCrasher generates tests with the length of
calling sequences as one. The last four columns of Table 2 show the
number of Jtest-generated tests, their exercised method executions,
JCrasher-generated tests, and their exercised method executions re-
spectively.

5.2 Experimental Results
As is discussed in Section 4, the ModifyingSeq technique cannot

be used to represent argument object states in our implementation.
Our experiments focus on the comparison of using different tech-
niques to represent receiver object states, and use the WholeSeq
technique, the most conservative one, to represent argument object
states. In the first experiment, we apply our test-minimization tool
to minimize tests automatically generated by Jtest and JCrasher.
Figure 5 and Figure 8 show the percentage of minimized (redun-
dant) tests among tests generated by Jtest and JCrasher respec-
tively. Figure 6 and Figure 9 show the percentage of minimized
method executions among method executions generated by Jtest
and JCrasher respectively. We observe that all techniques except
for the WholeSeq technique substantially remove over 90% of tests
and method executions generated by Jtest for most subjects, and
30% of the ones generated by JCrasher for half of the subjects. The
three concrete-state representation techniques minimize more tests
than the two method-sequence representation techniques. There
is no significant difference in the number of minimized tests by
these three concrete-state representation techniques. Figure 7 and
Figure 10 show the elapsed real time of test minimization on Jtest-
generated and JCrasher-generated tests respectively. The elapsed
time does not include the instrumentation time of a test class, which
is the same for all techniques, ranging from several seconds to a
minute. The three concrete-state representation techniques take
longer time than the two method-sequence representation tech-

Table 2: Subject programs used in the experiments
program size ncnb Jtest JCrasher

loc tests mexecs tests mexecs
IntStack 4 32 94 348 6 11
UBStack 10 77 1423 14067 14 27
BSet 9 59 1643 12492 45 87
BBag 8 77 1173 5153 90 177
ShoppingCart 7 39 470 1652 31 61
BankAccount 6 28 519 2554 135 261
BinarySearchTree 10 112 1384 6236 36 107
LinkedList 10 67 1965 9272 145 347

niques. There is no significant difference in the elapsed time of
minimized tests by these three concrete-state representation tech-
niques. We also measure the branch coverage and the number of
different uncaught thrown exceptions for the original test suite gen-
erated by Jtest or JCrasher and its minimized test suite. The results
show that the minimized test suite achieves the same branch cover-
age and the same number of different uncaught thrown exceptions
as the original test suite.

In the second experiment, we use our test-generation tool to
augment tests automatically generated by Jtest and JCrasher. We
set the maximum iteration number as two. Figure 11 and Fig-
ure 12 show the average number (averaging across subjects) of tests
and method executions generated by Jtest, JCrasher, and our test-
generation tool. The first two bars being marked withExisting
indicate the average number of tests generated by Jtest and JCrasher
respectively. The remaining bars show the average number of tests
generated by our test-generation tool based on Jtest-generated or
JCrasher-generated tests using different techniques. We do not in-
clude the results of using the WholeSeq technique in the figures,
since the test generation based on the WholeSeq technique causes
out-of-memory exceptions for most subjects in the second itera-
tion. Figure 13 shows the average number of non-equivalent ob-
ject states exercised by tests generated by Jtest, JCrasher, and our
test-generation tool. The bars associated withJtest-Existing
andJCrasher-Existing indicate the results for the existing tests
generated by Jtest and JCrasher respectively. The bars associated
with Jtest-Iteration 2 and JCrasher-Iteration 2 show
the results for the tests generated by our test-generation tool based
on Jtest-generated and JCrasher-generated tests respectively. Fig-
ure 14 shows the branch coverage percentage of tests generated
for each subject by Jtest, JCrasher, and our test-generation tool.
Since the branch coverage achieved by tests generated using dif-
ferent techniques are the same, we put different subjects instead of
different techniques in thex axis. From the results for test genera-
tion, we observe that our test-generation tool using our techniques
(except for the WholeSeq technique) generate fewer tests than Jtest,
and these tests exercise more non-equivalent object states and more
branches. In addition, the tests generated by our test-generation
tool based on Jtest-generated tests throw two more different un-
caught exceptions than the original tests generated by Jtest for the
UBStack subject, which throw two different uncaught exceptions.
Our test-generation tool generates slightly more tests than JCrasher,
and these tests also exercise more non-equivalent object states and
more branches. The tests generated by our test-generation tool
based on JCrasher-generated tests increase the number of differ-
ent uncaught exceptions from zero to two for theUBStack subject,
from one to two for theShoppingCart subject, from zero to three
for theBinarySearchTree subject.

7

Figure 5: Percentage of redundant tests among Jtest-generated
tests

Figure 6: Percentage of minimized method executions among
Jtest-generated method executions

Figure 7: Elapsed real time (in seconds) of test minimization on
Jtest-generated tests

Figure 8: Percentage of redundant tests among JCrasher-
generated tests

Figure 9: Percentage of minimized method executions among
JCrasher-generated method executions

Figure 10: Elapsed real time (in seconds) of test minimization
on JCrasher-generated tests

8

Figure 11: Average number of tests generated by Jtest
and JCrasher, and our test-generation tool based on Jtest-
generated and JCrasher-generated tests (after 2 iterations)

Figure 12: Average number of method executions generated by
Jtest and JCrasher, and our test-generation tool based on Jtest-
generated and JCrasher-generated tests (after 2 iterations)

Figure 13: Average number of non-equivalent object states
exercised by tests generated by Jtest and JCrasher and our
test-generation tool based on Jtest-generated and JCrasher-
generated tests (after 2 iterations)

Figure 14: Branch coverage percentage by tests generated by
Jtest, JCrasher and our test-generation tool based on Jtest-
generated and JCrasher-generated tests (after 2 iterations)

5.3 Threats to Validity
The threats to external validity primarily include the degree to

which the subject programs and third-party test-generation tools
are representative of true practice. We mainly used data structures
as our subject programs. Among two third-party tools, Jtest is one
of the testing tools popularly used in industry. These threats could
be further reduced by more experiments on wider types of subjects
and third-party tools. The main threats to internal validity include
instrumentation effects that can bias our results. Faults in our tools,
Jtest, or JCrasher might cause such effects. To reduce these threats,
we manually inspected the collected execution traces for most pro-
gram subjects. The main threats to construct validity include the
uses of those measurements in our experiments to assess our tools.
To assess the effectiveness of our test-generation tool, we mainly
measured the number of new non-equivalent object states, differ-
ent uncaught exceptions, and the percentage of branches that are
exercised by new generated tests. In future work, we plan to mea-
sure the fault-detecting capability of new generated tests more thor-
oughly.

6. RELATED WORK
Previous work has developed techniques to detect object state

equivalence. Observational equivalence [4, 11, 17] techniques are
much more expensive than our techniques. Our techniques some-
times give more conservative results than observational equivalence
techniques. The serialize-and-hash technique [17] is similar to our
WholeState technique. Most of these previous techniques in de-
tecting object state equivalence are used to verify the correctness
of axioms or infer axioms in algebraic specifications. We detect
equivalent object states mainly for avoiding redundant tests in test
generation.

There are some other research projects in encoding and compar-
ing program or object states. Zimmermann and Zeller develop a
memory graph and its visualization to capture and explore program
states during C program executions [39]. They reduce the compar-
ison of program states to the comparison of graphs. Zeller’s later
work compares memory graphs to isolate cause-effect chains of a
program failure [38]. Iosif [19] and Robby et al. [27] use a similar
linearization technique to encode states in model checkers. They
do not apply any technique to collect relevant object fields, but col-
lect all the fields. Our previous work [36] uses the C front end of
the Daikon tool [12] to output program states at method entry and
exit points. We assemble these program states in different ways to

9

form different levels of value spectra. Then we compare the value
spectra from the executions of an old and a new program versions,
and use the results to aid regression fault exposure and localization.
In future work, we plan to apply our state representation techniques
in the value spectra approach for object-oriented programs.

Several lines of previous work generate tests to exercise object
states without requiring any specification. Buy et al. use data flow
analysis, symbolic execution, and automated deduction to gener-
ate method call sequences exercising definition-use pairs of object
fields [6]. Our test-generation tool generates method calls to fully
exercise non-equivalent object states. Our generated tests for exer-
cising object states implicitly generate method sequences. Ball et
al. present an approach for automated testing of container classes
based on combinatorial algorithm for state generation [2]. Our test-
generation tool applies a similar combinatorial mechanism. Our ap-
proach is totally automatic, whereas Ball et al’s approach requires
a dedicated state generator. Kung et al. propose an object state test
model and use symbolic execution to statically extract an abstract
model from C++ source code [22]. They use this test model to
guide test generation. Our approach dynamically detects equivalent
object states and incrementally exercise those new object states.

Given specifications for a program, several other research
projects generate tests to exercise object states. Boyapati et al.
develop the Korat tool to exhaustively generate valid object states
that are bounded by a user-defined size [5]. Korat monitors field
accesses within the execution of a Java predicate and uses this in-
formation to prune the search for valid test inputs. Our MonitorE-
quals technique uses the actual values of accessed fields to repre-
sent state, and uses isomorphism to compare states for equivalence.
Korat’s generation also guarantees that the generated objects are
non-isomorphic. Grieskamp et al. allow the user to define indis-
tinguishability properties to group infinite states in abstract state
machines into equivalence classes, called hyperstates [15]. Their
tool incrementally produces finite state machines by executing ab-
stract state machines. Our test generation works in a similar way
by incrementally producing new object states.

Whaley et al. dynamically extract Java component interface
models, each of which accesses the same field [35]. They statically
determine whether a method is a state-modifying one. In their ex-
tracted models, they assume that the same state-modifying method
transits an object to the same abstract state. This assumption makes
the extracted models more compact. Our ModifyingSeq technique
dynamically and accurately determines if a particular method call is
state-modifying. The object state representations by our techniques
are more conservative and accurate than Whaley et al.’s approach.
In our ongoing work, we extract a state transition model from test
executions based on object state equivalence. In our preliminary
experiments, we observe that our extracted models are more com-
plex but more accurate than the models extracted by Whaley et al.’s
approach.

Our previous work integrates Daikon [12] and Jtest [26] and uses
operational violations to select a small valuable subset of automat-
ically generated tests for inspection [37]. We can view that our
new test-minimization technique is trying to conservatively mini-
mize automatically generated tests from the other end: removing
useless tests. There are other lines of work in minimizing or prior-
itizing tests for regression testing [16, 28, 29]. Although changing
a program can make a redundant test on the old version not re-
dundant any more, we can apply regression test prioritization tech-
niques based on non-equivalent object state coverage. In addition,
if two method sequences on the old version produce equivalent ob-
ject states, and the modifications do not affect the executions of
these two method sequences, we can still safely determine the ob-

ject states resulting from these two sequences on the new version
are equivalent. In future work, we plan to investigate the applica-
tion of our techniques in regression testing.

7. CONCLUSION
We have proposed a framework for detecting redundant tests

based on equivalent objects and presented five techniques within
this framework. We have also presented our test-minimization and
test-generation tools based on these techniques. Our tools produce
only non-redundant tests. We have conducted experiments to assess
the effectiveness of minimizing and augmenting tests generated by
two third-party test-generation tools. The results show that we can
substantially reduce the size of test suites generated by these tools,
and we can effectively generate tests to augment these test suites to
exercise more non-equivalent object states. These results strongly
suggest that tools and techniques for generation of object-oriented
test suites must consider avoiding redundant tests.

8. REFERENCES
[1] K. Arnold, J. Gosling, and D. Holmes.The Java

Programming Language. Addison-Wesley Longman
Publishing Co., Inc., 2000.

[2] T. Ball, D. Hoffman, F. Ruskey, R. Webber, and L. J. White.
State generation and automated class testing.Software
Testing, Verification and Reliability, 10(3):149–170, 2000.

[3] K. Beck.Test Driven Development: By Example.
Addison-Wesley, 2003.

[4] G. Bernot, M. C. Gaudel, and B. Marre. Software testing
based on formal specifications: a theory and a tool.Softw.
Eng. J., 6(6):387–405, 1991.

[5] C. Boyapati, S. Khurshid, and D. Marinov. Korat: automated
testing based on java predicates. InProceedings of the
international symposium on Software testing and analysis,
pages 123–133. ACM Press, 2002.

[6] U. Buy, A. Orso, and M. Pezze. Automated testing of classes.
In Proceedings of the International Symposium on Software
Testing and Analysis, pages 39–48. ACM Press, 2000.

[7] Y. Cheon and G. T. Leavens. A simple and practical
approach to unit testing: The JML and junit way. InProc.
European Conference on Object-Oriented Programming
(ECOOP), June 2002.

[8] M. Clark. Junit primer. Draft manuscript, October 2000.
[9] C. Csallner and Y. Smaragdakis. Jcrasher documents. Online

manual, December 2003.
[10] M. Dahm and J. van Zyl. Byte code engineering library,

April 2003.
[11] R.-K. Doong and P. G. Frankl. The astoot approach to testing

object-oriented programs.ACM Trans. Softw. Eng.
Methodol., 3(2):101–130, 1994.

[12] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to
support program evolution.IEEE Trans. Softw. Eng.,
27(2):99–123, 2001.

[13] Foundations of Software Engineering, Microsoft Research.
The AsmL test generator tool.
http://research.microsoft.com/fse/asml/
doc/AsmLTester.html .

[14] E. Fredkin. Trie memory.Commun. ACM, 3(9):490–499,
1960.

[15] W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes.
Generating finite state machines from abstract state

10

machines. InProceedings of the international symposium on
Software testing and analysis, pages 112–122. ACM Press,
2002.

[16] M. Harder, J. Mellen, and M. D. Ernst. Improving test suites
via operational abstraction. InProceedings of the 25th
international conference on Software engineering, pages
60–71. IEEE Computer Society, 2003.

[17] J. Henkel and A. Diwan. Discovering algebraic specifications
from java classes. In L. Cardelli, editor,17th European
Conference on Object-Oriented Programming, pages
431–456, Darmstadt, Germany, 2003. Springer.

[18] M. Hughes and D. Stotts. Daistish: systematic algebraic
testing for oo programs in the presence of side-effects. In
Proceedings of the 1996 international symposium on
Software testing and analysis, pages 53–61. ACM Press,
1996.

[19] R. Iosif. Symmetry reduction criteria for software model
checking. InProceedings of the 9th SPIN Workshop on
Software Model Checking, volume 2318 ofLNCS, pages
22–41. Springer, July 2002.

[20] D. S. Johnson. Approximation algorithms for combinatorial
problems.J. Comput. System Sci., 9:256–278, 1974.

[21] JUnit. http://www.junit.org.
[22] D. Kung, N. Suchak, J. Gao, and P. Hsia. On object state

testing. InProceedings of Computer Software and
Applications Conference (COMPSAC94), pages 222–227.
IEEE Computer Society Press, 1994.

[23] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design
of JML: A behavioral interface specification language for
Java. Technical Report TR 98-06i, Department of Computer
Science, Iowa State University, June 1998.

[24] B. Liskov and J. Guttag.Program Development in Java:
Abstraction, Specification, and Object-Oriented Design.
Addison-Wesley, 2000.

[25] B. Meyer.Eiffel: The Language. Prentice Hall, New York,
N.Y., 1992.

[26] Parasoft. Jtest manuals version 4.5. Online manual, October
2002.

[27] Robby, M. B. Dwyer, J. Hatcliff, and R. Iosif.
Space-reduction strategies for model checking dynamic
systems. InProceedings of the 2003 Workshop on Software
Model Checking, July 2003.

[28] G. Rothermel, R. J. Untch, and C. Chu. Prioritizing test cases
for regression testing.IEEE Trans. Softw. Eng.,
27(10):929–948, 2001.

[29] A. Srivastava and J. Thiagarajan. Effectively prioritizing tests
in development environment. InProceedings of the
international symposium on Software testing and analysis,
pages 97–106. ACM Press, 2002.

[30] D. Stotts, M. Lindsey, and A. Antley. An informal formal
method for systematic junit test case generation. In
Proceedings of the 2002 XP/Agile Universe, pages 131–143,
2002.

[31] Sun Microsystems.Java 2 Platform, Standard Edition,
v1.3.1 API Specification.
http://java.sun.com/j2se/1.3/docs/api/ .

[32] the AspectJ Team. The aspectj programming guide. Online
manual.

[33] W. Visser, K. Havelund, G. Brat, and S. Park. Model
checking programs. InProc. 15th IEEE International
Conference on Automated Software Engineering (ASE),

Grenoble, France, 2000.
[34] M. A. Weiss.Data Structures and Algorithm Analysis in

Java. Addison Wesley, 1999.
[35] J. Whaley, M. C. Martin, and M. S. Lam. Automatic

extraction of object-oriented component interfaces. In
Proceedings of the international symposium on Software
testing and analysis, pages 218–228. ACM Press, 2002.

[36] T. Xie and D. Notkin. Checking inside the black box:
Regression fault exposure and localization based on value
spectra differences. Technical Report UW-CSE-02-12-04,
University of Washington Department of Computer Science
and Engineering, Seattle, WA, December 2002.

[37] T. Xie and D. Notkin. Tool-assisted unit test selection based
on operational violations. InProceedings of 18th IEEE
International Conference on Automated Software
Engineering, pages 40–48. IEEE Computer Society, 2003.

[38] A. Zeller. Isolating cause-effect chains from computer
programs.SIGSOFT Softw. Eng. Notes, 27(6):1–10, 2002.

[39] T. Zimmermann and A. Zeller. Visualizing memory graphs.
In the Dagstuhl Seminar on Software Visualization, volume
2269 ofLNCS, pages 191–204. Springer-Verlag, 2001.

9. APPENDIX
This appendix presents detailed results for all experiments. Dis-

cussion of these results is in Section 5.
Table 3 in the appendix shows the actual numbers of the test

minimization results. The%r-tests column shows the percent-
age of minimized (redundant) tests among all generated tests; the
%m-mexecs column shows the percentage of minimized (removed)
method executions among all method executions executed by gen-
erated tests; thetime(sec) column shows the elapsed real time in
seconds spent on the minimization.

Table 4 and 6 in the appendix show the actual numbers of the
test generation results based on Jtest-generated tests and JCrasher-
generated tests respectively. Theorig , i-1 , and i-2 columns
show the data for the Jtest/JCrasher-generated tests, the generated
tests in the first iteration, and the generated tests in the second
iteration respectively. The#tests column shows the number of
generated tests; the#mexecs column shows the number of gener-
ated method executions; the#neobjs column shows the number of
exercised non-equivalent object states; thetime(sec) shows the
elapsed real time in seconds spent on the generation. The elapsed
time does not include the execution time of existing tests, which is
roughly equal to the test minimization time in Table 3. When we
apply a technique on an iteration and encounter an out-of-memory
exception, we put anomin the corresponding entry. We set the time
out for each iteration as one minute, and if an iteration is time out,
we put a* before the corresponding data entry. Table 5 and 7 in
the appendix show the numbers of different thrown uncaught ex-
ceptions and the branch coverage percentage of the generated tests
based on Jtest-generated tests and JCrasher-generated tests respec-
tively. The #exceptions column shows the number of different
thrown uncaught exceptions; the%bcov column shows the branch
coverage percentage.

11

Table 3: Experimental results for test minimization
Jtest generated tests JCrasher generated tests

subject technique %r- %m- time %r- %m- time
tests mexecs (sec) tests mexecs (sec)

IntStack WholeSeq 63.8% 58.6% 1.13 0.0% 0.0% 0.80
ModifyingSeq 83.0% 81.6% 1.25 0.0% 0.0% 1.02
WholeState 85.1% 84.2% 1.37 0.0% 0.0% 0.81
MonitorEquals 87.2% 86.8% 1.33 0.0% 0.0% 1.01
PairwiseEquals 87.2% 86.8% 1.24 0.0% 0.0% 0.84

UBStack WholeSeq 9.1% 5.6% 10.40 0.0% 0.0% 0.84
ModifyingSeq 95.9% 96.9% 8.82 0.0% 0.0% 1.04
WholeState 96.6% 97.7% 11.94 0.0% 0.0% 0.87
MonitorEquals 96.9% 98.1% 11.34 0.0% 0.0% 1.06
PairwiseEquals 96.9% 98.1% 16.94 0.0% 0.0% 0.91

BSet WholeSeq 27.9% 22.3% 8.52 0.0% 0.0% 0.94
ModifyingSeq 98.3% 98.5% 7.99 0.0% 0.0% 1.14
WholeState 98.3% 98.5% 10.19 31.1% 32.2% 1.02
MonitorEquals 98.5% 98.8% 9.13 31.1% 32.2% 1.19
PairwiseEquals 98.5% 98.8% 10.55 31.1% 32.2% 1.06

BBag WholeSeq 38.4% 32.9% 4.87 0.0% 0.0% 1.20
ModifyingSeq 92.7% 92.8% 5.30 0.0% 0.0% 1.43
WholeState 94.2% 94.5% 6.78 32.2% 32.8% 1.35
MonitorEquals 94.7% 95.1% 5.52 32.2% 32.8% 1.47
PairwiseEquals 94.7% 95.1% 5.15 32.2% 32.8% 1.30

ShoppingCart WholeSeq 36.6% 32.2% 2.41 0.0% 0.0% 0.99
ModifyingSeq 81.9% 82.2% 2.86 0.0% 0.0% 1.43
WholeState 90.6% 91.6% 3.15 0.0% 0.0% 1.10
MonitorEquals 90.6% 91.6% 3.83 0.0% 0.0% 1.54
PairwiseEquals 90.6% 91.6% 2.93 0.0% 0.0% 1.07

BankAccount WholeSeq 48.9% 43.1% 3.46 0.0% 0.0% 1.34
ModifyingSeq 84.0% 82.4% 3.40 0.0% 0.0% 1.53
WholeState 89.8% 89.3% 3.65 0.0% 0.0% 1.40
MonitorEquals 89.8% 89.3% 3.56 0.0% 0.0% 1.60
PairwiseEquals 89.8% 89.3% 5.53 0.0% 0.0% 1.62

BinarySearchTree WholeSeq 33.9% 28.8% 5.57 50.0% 63.6% 0.96
ModifyingSeq 87.4% 87.1% 5.33 50.0% 63.6% 1.17
WholeState 97.4% 97.8% 5.86 50.0% 63.6% 1.00
MonitorEquals 97.4% 97.8% 6.47 50.0% 63.6% 1.22
PairwiseEquals 97.4% 97.8% 5.47 50.0% 63.6% 1.04

LinkedList WholeSeq 49.5% 48.3% 7.85 48.3% 31.4% 1.50
ModifyingSeq 95.0% 95.3% 7.83 48.3% 31.4% 1.71
WholeState 98.1% 98.4% 9.82 48.3% 31.4% 1.75
MonitorEquals 98.1% 98.4% 10.40 48.3% 31.4% 1.91
PairwiseEquals 98.1% 98.4% 7.28 48.3% 31.4% 1.22

12

Table 4: Experimental results (1) for test generation based on Jtest generated tests
#tests #mexecs #neobjs time(sec)

subject technique orig i-1 i-2 orig i-1 i-2 orig i-1 i-2 i-1 i-2
IntStack WholeSeq 94 270 1005 348 1500 6786 59 217 805 1.00 3.03

ModifyingSeq 94 52 148 348 257 913 13 37 105 0.28 0.81
WholeState 94 36 76 348 166 436 9 19 40 0.25 0.54
MonitorEquals 94 28 60 348 123 325 7 15 31 0.22 0.45
PairwiseEquals 94 28 60 348 123 325 7 15 31 0.17 0.39

UBStack WholeSeq 1423 om om 14067 om om 8718 om om om om
ModifyingSeq 1423 85 265 14067 539 1955 17 53 170 0.35 0.95
WholeState 1423 45 93 14067 261 576 9 17 24 0.25 0.64
MonitorEquals 1423 35 71 14067 193 417 7 13 15 0.19 0.48
PairwiseEquals 1423 35 71 14067 193 417 7 13 15 0.24 0.50

BSet WholeSeq 1643 om om 12492 om om 6047 om om om om
ModifyingSeq 1643 76 188 12492 307 923 10 26 64 0.33 0.68
WholeState 1643 68 131 12492 257 550 9 18 34 0.38 0.63
MonitorEquals 1643 60 123 12492 216 509 8 17 27 0.31 0.59
PairwiseEquals 1643 60 123 12492 216 509 8 17 20 0.36 0.78

BBag WholeSeq 1173 om om 5153 om om 1429 om om om om
ModifyingSeq 1173 593 4064 5153 2938 24936 43 310 2534 2.60 19.33
WholeState 1173 271 1012 5153 1166 5342 20 77 272 1.59 5.99
MonitorEquals 1173 257 985 5153 1102 5218 19 75 250 1.39 5.88
PairwiseEquals 1173 257 985 5153 1102 5218 19 75 231 1.16 7.09

ShoppingCart WholeSeq 470 3185 om 1652 15806 om 306 2941 om 8.15 om
ModifyingSeq 470 476 2279 1652 2233 13070 36 171 899 2.11 9.67
WholeState 470 147 501 1652 597 2551 11 37 116 1.15 3.92
MonitorEquals 470 147 501 1652 597 2551 11 37 116 1.54 6.72
PairwiseEquals 470 144 410 1652 577 2033 10 31 94 0.98 4.13

BankAccount WholeSeq 519 om om 2554 om om 715 om om om om
ModifyingSeq 519 800 4820 2554 4004 29348 80 482 2894 3.17 21.75
WholeState 519 290 970 2554 1320 5258 29 97 155 1.36 4.09
MonitorEquals 519 290 970 2554 1320 5258 29 97 155 1.35 4.04
PairwiseEquals 519 290 970 2554 1320 5258 29 97 155 4.33 19.99

BinarySearchTree WholeSeq 1384 om om 6236 om om 1816 om om om om
ModifyingSeq 1384 657 4100 6236 3721 27671 78 481 2864 2.34 14.26
WholeState 1384 58 98 6236 213 416 5 9 10 0.38 0.65
MonitorEquals 1384 58 98 6236 213 416 5 9 10 0.43 0.81
PairwiseEquals 1384 58 98 6236 213 416 5 9 10 0.19 0.48

LinkedList WholeSeq 1965 om om 9272 om om 1966 om om om om
ModifyingSeq 1965 217 1092 9272 1335 7940 31 156 781 1.38 6.29
WholeState 1965 24 30 9272 138 190 4 5 6 0.34 0.45
MonitorEquals 1965 24 30 9272 138 190 4 5 6 0.34 0.45
PairwiseEquals 1965 24 30 9272 138 190 4 5 6 0.16 0.25

13

Table 5: Experimental results (2) for test generation based on Jtest generated tests
#exceptions %bcov

subject technique orig i-1 i-2 orig i-1 i-2
IntStack WholeSeq 1 1 1 66.7% 66.7% 66.7%

ModifyingSeq 1 1 1 66.7% 66.7% 66.7%
WholeState 1 1 1 66.7% 66.7% 66.7%
MonitorEquals 1 1 1 66.7% 66.7% 66.7%
PairwiseEquals 1 1 1 66.7% 66.7% 66.7%

UBStack WholeSeq 2 om om 93.8% om om
ModifyingSeq 2 3 4 93.8% 100.0% 100.0%
WholeState 2 3 4 93.8% 100.0% 100.0%
MonitorEquals 2 3 4 93.8% 100.0% 100.0%
PairwiseEquals 2 3 4 93.8% 100.0% 100.0%

BSet WholeSeq 0 om om 88.4% om om
ModifyingSeq 0 0 0 88.4% 93.0% 97.7%
WholeState 0 0 0 88.4% 93.0% 97.7%
MonitorEquals 0 0 0 88.4% 93.0% 97.7%
PairwiseEquals 0 0 0 88.4% 93.0% 97.7%

BBag WholeSeq 0 om om 85.2% om om
ModifyingSeq 0 0 0 85.2% 88.9% 94.4%
WholeState 0 0 0 85.2% 88.9% 94.4%
MonitorEquals 0 0 0 85.2% 88.9% 94.4%
PairwiseEquals 0 0 0 85.2% 88.9% 94.4%

ShoppingCart WholeSeq 2 2 2 92.9% 92.9% 92.9%
ModifyingSeq 2 2 2 92.9% 92.9% 92.9%
WholeState 2 2 2 92.9% 92.9% 92.9%
MonitorEquals 2 2 2 92.9% 92.9% 92.9%
PairwiseEquals 2 2 2 92.9% 92.9% 92.9%

BankAccount WholeSeq 3 om om 100.0% om om
ModifyingSeq 3 3 3 100.0% 100.0% 100.0%
WholeState 3 3 3 100.0% 100.0% 100.0%
MonitorEquals 3 3 3 100.0% 100.0% 100.0%
PairwiseEquals 3 3 3 100.0% 100.0% 100.0%

BinarySearchTree WholeSeq 3 om om 85.7% om om
ModifyingSeq 3 3 3 85.7% 91.1% 98.2%
WholeState 3 3 3 85.7% 91.1% 98.2%
MonitorEquals 3 3 3 85.7% 91.1% 98.2%
PairwiseEquals 3 3 3 85.7% 91.1% 98.2%

LinkedList WholeSeq 1 om om 63.3% om om
ModifyingSeq 1 1 1 63.3% 63.3% 63.3%
WholeState 1 1 1 63.3% 63.3% 63.3%
MonitorEquals 1 1 1 63.3% 63.3% 63.3%
PairwiseEquals 1 1 1 63.3% 63.3% 63.3%

14

Table 6: Experimental results (1) for test generation based on JCrasher generated tests
#tests #mexecs #neobjs time(sec)

subject technique orig i-1 i-2 orig i-1 i-2 orig i-1 i-2 i-1 i-2
IntStack WholeSeq 6 30 144 11 88 582 6 26 121 0.13 0.58

ModifyingSeq 6 20 80 11 62 338 4 16 61 0.11 0.41
WholeState 6 20 75 11 62 315 4 15 48 0.16 0.62
MonitorEquals 6 20 65 11 62 269 4 13 40 0.16 0.44
PairwiseEquals 6 20 65 11 62 269 4 13 40 0.12 0.46

UBStack WholeSeq 14 196 2520 27 587 10215 14 183 2341 0.63 4.67
ModifyingSeq 14 25 90 27 119 522 5 18 61 0.19 0.69
WholeState 14 25 70 27 119 398 5 14 21 0.26 0.78
MonitorEquals 14 25 60 27 119 336 5 12 13 0.26 0.62
PairwiseEquals 14 25 60 27 119 336 5 12 13 0.34 0.72

BSet WholeSeq 45 675 9495 87 2022 38478 45 633 8865 1.62 18.27
ModifyingSeq 45 30 63 87 141 303 6 9 18 0.23 0.43
WholeState 45 26 48 87 122 230 5 7 7 0.28 0.52
MonitorEquals 45 26 26 87 122 122 5 5 5 0.27 0.27
PairwiseEquals 45 26 26 87 122 122 5 5 5 0.30 0.30

BBag WholeSeq 90 2700 om 177 8097 om 90 2613 om 4.70 om
ModifyingSeq 90 93 357 177 441 1725 9 21 93 0.61 1.61
WholeState 90 47 113 177 233 554 5 8 8 0.60 1.08
MonitorEquals 90 47 47 177 233 233 5 5 5 0.48 0.48
PairwiseEquals 90 47 47 177 233 233 5 5 5 0.38 0.38

ShoppingCart WholeSeq 31 558 om 61 1660 om 31 541 om 1.96 om
ModifyingSeq 31 421 *7909 61 1293 *32129 15 248 *3686 1.77 64.50
WholeState 31 393 om 61 1205 om 14 184 om 2.53 om
MonitorEquals 31 169 1166 61 501 4610 6 32 162 1.46 10.87
PairwiseEquals 31 168 1127 61 500 4452 6 31 156 1.25 14.04

BankAccount WholeSeq 135 1620 om 261 4824 om 135 1521 om 3.68 om
ModifyingSeq 135 1170 om 261 3654 om 90 819 om 3.24 om
WholeState 135 264 495 261 804 1854 24 45 72 1.11 2.00
MonitorEquals 135 264 495 261 804 1854 24 45 72 1.07 2.06
PairwiseEquals 135 264 495 261 804 1854 24 45 72 1.69 4.82

BinarySearchTree WholeSeq 36 324 5310 107 971 21469 18 307 5016 1.09 11.31
ModifyingSeq 36 104 875 107 387 4160 10 83 658 0.65 3.45
WholeState 36 43 169 107 175 760 5 14 25 0.43 1.55
MonitorEquals 36 43 169 107 175 760 5 14 25 0.55 1.83
PairwiseEquals 36 43 169 107 175 760 5 14 25 0.36 1.10

LinkedList WholeSeq 145 5402 om 347 28190 om 73 5257 om 15.88 om
ModifyingSeq 145 3422 om 347 20690 om 58 3307 om 12.62 om
WholeState 145 116 182 347 487 851 2 3 4 0.72 1.19
MonitorEquals 145 116 182 347 487 851 2 3 4 0.74 1.14
PairwiseEquals 145 116 182 347 487 851 2 3 4 0.60 0.89

15

Table 7: Experimental results (2) for test generation based on JCrasher generated tests
#exceptions %bcov

subject technique orig i-1 i-2 orig i-1 i-2
IntStack WholeSeq 1 1 1 50.0% 66.7% 66.7%

ModifyingSeq 1 1 1 50.0% 66.7% 66.7%
WholeState 1 1 1 50.0% 66.7% 66.7%
MonitorEquals 1 1 1 50.0% 66.7% 66.7%
PairwiseEquals 1 1 1 50.0% 66.7% 66.7%

UBStack WholeSeq 0 1 2 56.2% 90.6% 100.0%
ModifyingSeq 0 1 2 56.2% 90.6% 100.0%
WholeState 0 1 2 56.2% 90.6% 100.0%
MonitorEquals 0 1 2 56.2% 90.6% 100.0%
PairwiseEquals 0 1 2 56.2% 90.6% 100.0%

BSet WholeSeq 0 0 0 55.8% 83.7% 83.7%
ModifyingSeq 0 0 0 55.8% 83.7% 83.7%
WholeState 0 0 0 55.8% 83.7% 83.7%
MonitorEquals 0 0 0 55.8% 83.7% 83.7%
PairwiseEquals 0 0 0 55.8% 83.7% 83.7%

BBag WholeSeq 0 0 0 55.6% 79.6% 79.6%
ModifyingSeq 0 0 0 55.6% 79.6% 79.6%
WholeState 0 0 0 55.6% 79.6% 79.6%
MonitorEquals 0 0 0 55.6% 79.6% 79.6%
PairwiseEquals 0 0 0 55.6% 79.6% 79.6%

ShoppingCart WholeSeq 1 2 2 71.4% 92.9% 92.9%
ModifyingSeq 1 2 2 71.4% 92.9% 92.9%
WholeState 1 2 2 71.4% 92.9% 92.9%
MonitorEquals 1 2 2 71.4% 92.9% 92.9%
PairwiseEquals 1 2 2 71.4% 92.9% 92.9%

BankAccount WholeSeq 3 3 3 100.0% 100.0% 100.0%
ModifyingSeq 3 3 3 100.0% 100.0% 100.0%
WholeState 3 3 3 100.0% 100.0% 100.0%
MonitorEquals 3 3 3 100.0% 100.0% 100.0%
PairwiseEquals 3 3 3 100.0% 100.0% 100.0%

BinarySearchTree WholeSeq 0 3 3 41.1% 89.3% 98.2%
ModifyingSeq 0 3 3 41.1% 89.3% 98.2%
WholeState 0 3 3 41.1% 89.3% 98.2%
MonitorEquals 0 3 3 41.1% 89.3% 98.2%
PairwiseEquals 0 3 3 41.1% 89.3% 98.2%

LinkedList WholeSeq 1 1 1 63.3% 63.3% 63.3%
ModifyingSeq 1 1 1 63.3% 63.3% 63.3%
WholeState 1 1 1 63.3% 63.3% 63.3%
MonitorEquals 1 1 1 63.3% 63.3% 63.3%
PairwiseEquals 1 1 1 63.3% 63.3% 63.3%

16

