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ABSTRACT

In security frameworks for speculative execution, an instruction is
said to reach its Visibility Point (VP) when it is no longer vulnerable
to pipeline squashes. Before a potentially leaky instruction reaches
its VP, it has to stallÐunless a defense scheme such as invisible
speculation provides protection. Unfortunately, either stalling or
protecting the execution of pre-VP instructions typically has a
performance cost.

One way to attain low-overhead safe execution is to develop tech-
niques that speed-up the advance of the VP from older to younger
instructions. In this paper, we propose one such technique. We find
that the progress of the VP for loads is mostly impeded by waiting
until no memory consistency violations (MCVs) are possible. Hence,
our technique, called Pinned Loads, tries to make loads invulnerable
to MCVs as early as possibleÐa process we call pinning the loads in
the pipeline. The result is faster VP progress and a reduction in the
execution overhead of defense schemes. In this paper, we describe
the hardware needed by Pinned Loads, and two possible Pinned

Loads designs with different tradeoffs between hardware require-
ments and performance. Our evaluation shows that Pinned Loads
is very effective: extending three popular defense schemes against
speculative execution attacks with Pinned Loads reduces their av-
erage execution overhead on SPEC17 and on SPLASH2/PARSEC
applications by about 50%. For example, on SPEC17, the execution
overhead of the three defense schemes decreases from 112.6% to
51.3%, from 35.8% to 15.3%, and from 24.8% to 13.2%.

CCS CONCEPTS

· Computer systems organization → Architectures; · Secu-
rity and privacy → Side-channel analysis and countermea-

sures.
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1 INTRODUCTION

Speculative execution attacks leak information through the ex-
ecution of transient instructionsÐi.e., instructions that will get
squashed [5, 9, 10, 12, 16, 22ś24, 27ś30, 34, 35, 41ś43, 46]. These
attacks are concerning because they exploit fundamental mecha-
nisms of modern processors such as branch prediction, memory
dependence prediction, and out-of-order instruction execution [15].

Since these attacks were first disclosed [23, 27], many defense
schemes have been proposed. Such schemes range from hardware-
based (e.g., [1, 4, 20, 21, 26, 32, 33, 38, 48, 51, 52]) to software-only
(e.g., [2, 11, 17, 40]) and hybrid (e.g. [25, 39, 53]). They prevent
the early, unprotected execution of transmittersÐi.e., instructions
whose micro-architectural resource usage may reveal secret infor-
mation [18, 21, 52]. While there are many types of transmitters, the
most important one is loads, which, depending on the address they
read, exercise different parts of the memory hierarchy.

A central idea in defense schemes against speculative execution
attacks is an instruction’s Visibility Point (VP) [48]. An instruction
reaches its VP when it is no longer vulnerable to pipeline squashes
that are relevant to the threat model considered. For example, as-
sume a threat model based on Spectre [23] and that transmitters
are loads. A load reaches its VP when it can no longer be squashed
by any branch mispredictionÐi.e., when all of its older branches
are resolved.

Each instruction transitions from being pre-VP to reaching its
VP, and then to becoming post-VP. A transmitter cannot safely
execute before it reaches its VP. In the example above, we can pre-
vent the load from executing by inserting a fence before it. Some-
times, a defense scheme provides special protection that allows a
pre-VP transmitter to execute. For example, with the InvisiSpec
scheme [48], pre-VP loads can be issued invisibly, but need to be
followed by a second access later on.

When the transmitter reaches its VP, it can execute without
protection. In the example above, once all the branches older than
the load are resolved, we can remove the fence. As instructions
reach their VPs and execute, they enable younger instructions to

314

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3503222.3507724
https://doi.org/10.1145/3503222.3507724


ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Z. N. Zhao, H. Ji, A. Morrison, D. Marinov, J. Torrellas

reach their own VPs. Hence, we intuitively say that łthe older
instructions pass the VP downstream.ž

The stall or protection of pre-VP transmitters slows down pro-
gram execution over a conventional, unsafe processor. For instance,
in the examples above, pre-VP loads are either delayed by fences or
have to be issued twice.

The more aggressive the threat model is, the more costly pro-
tecting pre-VP instructions becomes. Consider the Comprehensive
threat model [53], where a load L reaches its VP only when it can no
longer be squashed for any reason. In this model, reaching the VP
requires that: (i) all branches older than L are resolved; (ii) neither
L nor any older instruction can suffer exceptions; (iii) there is no
unresolved older load or store that L or an older load could alias
with; and (iv) neither L nor any older load can cause a memory
consistency violation (MCV). Schemes that protect L until all of
these conditions are true have substantial overhead.

Based on this discussion, a new approach to reduce the overhead
of defense schemes against speculative execution attacks could be
to try to speed-up the advance of the VP toward young instructions.
If a technique could be found to do this, then potentially all the
defense schemes could have lower overhead.

In this paper, we propose such a technique, which we call Pinned
Loads. To conceive it, we first examine, under the Comprehensive
threat model, the delay induced to the VP advance by each of the
four conditions listed above. We use the Comprehensive model
because it is the most general one and covers recent attacks, includ-
ing MCV-based attacks [29, 37]. In our analysis, we find that what
delays VP progress the most is ensuring that no MCV is possible.
This condition, therefore, adds the most overhead to safe program
execution.

Based on this observation, we design Pinned Loads as a microar-
chitecture that tries to make loads invulnerable to MCVs as early
as possible, therefore speeding-up VP progress. In our design, we
assume the TSO memory consistency model [36, 44]. Recall that,
under TSO, a load is conservatively flagged as causing an MCV and
squashed when the core receives a coherence invalidation for the
line accessed by the load or when the line is evicted from the cache.
Hence, given a load L that has met all the conditions required to
reach the VP except for the guarantee of no MCVs, Pinned Loads
tries to ensure that no invalidation or eviction of L’s line is possible
anymore. If Pinned Loads can ensure this, we say that it pins L in
the reorder bufferÐmaking L unsquashable and moving L to its VP.
If we manage to do this for many loads, the VP makes fast progress
and the execution speeds-up.

In this paper, we describe the hardware needed for Pinned Loads.
Further, we propose two possible designs of Pinned Loads, which
offer different tradeoffs between hardware requirements and de-
livered performance. Finally, we extend several popular defense
schemes for speculative execution with Pinned Loads. As we run
the SPEC17, SPLASH2, and PARSEC benchmark suites with them,
we observe a substantial reduction of their execution overhead.
Indeed, the average execution overhead of defense schemes that (i)
either place fences before loads, (ii) or stall speculative loads that
miss in the L1 (Delay-On-Miss [26, 33]), (iii) or stall speculative
loads whose arguments are tainted (STT [52]) decreases by about
50%. Specifically, on SPEC17, Pinned Loads decreases the execution

overhead of the fence-based defense from 112.6% to 51.3%, of Delay-
On-Miss from 35.8% to 15.3%, and of STT from 24.8% to 13.2%; on
SPLASH2/PARSEC, Pinned Loads decreases the execution overhead
of the defense schemes from 113.1% to 46.4%, from 15.8% to 7.6%,
and from 11.3% to 8.1%, respectively.

In summary, the paper makes the following contributions:

• Introduces Pinned Loads, a novel technique to reduce the over-
head of speculative-execution defense schemes by speeding-up VP
progress.

• Presents the mechanisms behind Pinned Loads.

• Describes two different designs of Pinned Loads.

• Evaluates multiple Pinned Loads-extended popular defense
schemes on an extensive application set.

2 BACKGROUND

Speculative Execution and Pipeline Squashes. In out-of-order
processors, some instructions may execute but later get squashed
and not commit. These bound-to-squash instructions are called
transient instructions. Some of these transient instructions can
create micro-architectural resource usage that may reveal secret
information [18, 21, 52]. They are called transmitters. For example,
loads exercise different parts of the memory hierarchy depending
on the address they read, some floating-point instructions take
different times to execute depending on their operand values, and
different ALU instructions use different functional units. Attackers
use the side-effects of transmitters to mount speculative-execution
attacks. In this paper, we focus on loads because they are the most
important type of transmitter.

There are multiple reasons why an instruction may be squashed
in a modern pipeline. Which speculative threat model we use de-
termines which reasons for squashes are considered relevant. For
example, if we use the popular but weak Spectre threat model [23],
we only need to consider squashes due to control-flow mispredic-
tions. Alternatively, if we use the Comprehensive threat model [53],
we need to consider all possible sources of squashes.

Section 1 defined the Visibility Point of an instruction, and listed
the conditions required for a load to reach its VP under the Spectre
and Comprehensive threat models. In practice, in conventional pro-
cessors, by the time a load reaches its VP under the Comprehensive
model, the load is very close to the Reorder Buffer (ROB) head.
Memory Consistency Violations (MCVs). In a multiprocessor
system, the memory consistency model defines the order in which a
processor’s loads and stores are observed by other processors.When
a store retires from the pipeline, its data is deposited into the write
buffer. From there, when the memory consistency model allows, the
data is merged into the cache, making it observable by all the other
processors. In this paper, we say that a store is performed when
its data is merged into the cache; we say that a load is performed
when it receives its data. In conventional, unsafe processors, loads
can read from the memory hierarchy and be performed before they
reach the ROB head, and even out of orderÐi.e., before older loads
and stores in the ROB are performed. These out-of-order loads can
lead to memory consistency violations (MCVs) if another processor
observes an order not allowed by the memory consistency model.
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A processor recovers from an MCV by using the instruction
squash and rollback mechanism of speculative execution [13]. We
discuss how this is done for the Total Store Order (TSO) mem-
ory consistency model [36, 44], which is the one used by the x86
architecture and assumed in this paper. TSO forbids load to load re-
orderings (load→load), which is when a younger load is performed
before an older load to a different address. Implementations of
TSO prevent observable load→load reordering by ensuring that the
value that a load reads when it is performed remains valid when the
load retires. This guarantee is conservatively maintained by squash-
ing a load that has performed, but not yet retired, if the processor
receives a cache invalidation for the line read by the load. Moreover,
the load is also squashed if the line read by the load is evicted from
the cache before the load retiresÐsince, on a subsequent external
write, the cache may not receive an invalidation.

Strictly speaking, cache line invalidations and evictions do not
need to squash the oldest load in the pipelineÐsince such load
has not been reordered. A reorder can only occur when the line
in question has been read by a load L that is not the oldest load
in the pipeline, and then the hardware needs to squash L and all
its successor instructions. This is the design that we use in our
evaluation. However, for ease of explanation of our mechanism, we
discuss the simpler implementation where any load that has read
a line that is invalidated or evicted triggers a squash. This is the
implementation used in Intel processors [29].

TSO also forbids load to store (load→store) and store to store
(store→store) reorderings. Implementations of TSO prevent them
by merging a store with the cache hierarchy only after the store
instruction has retired, and by using a FIFO write buffer, ensuring
that stores are drained in program order.

3 PINNED LOADS: MAIN IDEA & IMPACT

3.1 Advancing the VP is Crucial

The Visibility Point (VP) is an important concept in defense schemes
against speculative execution attacks. When an instruction reaches
its VP, it becomes safe to execute without any protection. Consider
a load, which is the focus of this paper. If the baseline defense
is to place a fence before a load, then when the load reaches its
VP, the fence can be removed. If the defense is to issue the load
early invisibly, followed by a second access later [48], when a load
reaches its VP, it is unnecessary to issue the load twice anymore.

The conditions that determine when a load reaches its VP depend
on the threat model used. However, it is evident that any technique
that can help a load reach its VP sooner will help speed-up execution
under practically any defense scheme against speculative execution
attacks: loads will execute sooner or with lower overhead, and
will in turn enable subsequent loads to reach their VPs sooner.
Intuitively, the hardware will be łmoving the VP to younger loadsž
faster.

There are some defense schemes that, using certain assumptions,
allow the unprotected issue of some loads that have otherwise
not reached their VPÐe.g., loads that have reached the Execution
Safe Point in InvarSpec [53] or loads whose arguments are not
tainted by transiently-read data in STT [52]. Even in these cases,
enabling loads to reach their VP sooner is useful: the conditions that
enable such unprotected early load execution depend on older loads

actually reaching their VP. In this paper, to keep the discussion
simple, we will not discuss such łearly safež loads.

3.2 Focus on Memory Consistency Violations

For the Comprehensive threat model, Section 1 listed the four con-
ditions necessary for a load to be free of potential squashes and,
therefore, reach its VP. To design an effective łVP-advancingž tech-
nique, we need to understand how performance-limiting each of
these conditions is in practice. To this end, we take a processor
that places a load-stalling fence before each load, and consider four
possible times when to remove the fenceÐfrom typically earlier
to later times. The times are when no squash is possible due to:
(i) branches (Ctrl Dep), (ii) branches or aliasing (Alias Dep), (iii)
branches, aliasing, or exceptions (Exception), and (iv) branches,
aliasing, exceptions, or memory consistency violations (MCV). Fig-
ure 1 shows the resulting execution overhead of the environments
(in a stacked manner) over a conventional unsafe processor. The
processor is the one shown in Table 1, and the programs are those
in the SPEC17 [8] suite (single-threaded), and in the SPLASH2 [47]
and PARSEC [6] suites (with eight threads).
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Figure 1: Effect of each reason that delays reaching the VP.

Of all the conditions, ensuring that no MCV is possible is, by
far, the one that delays reaching the VP the most and, therefore,
slows down execution the most. Waiting for branch resolution
also has a substantial, yet smaller impact, while waiting for alias
resolution and exception-free state is much less significant. Overall,
as intuition suggests, while the absence of squashes due to Ctrl Dep,
Alias Dep, or Exception is determined relatively soon, the absence
of squashes due to MCV remains unresolved until the load is close
to the head of the ROB. Hence, this condition substantially delays
łmoving the VP downstreamž and, therefore, slows down program
execution.

For this reason, in this paper, we focus on making loads invul-
nerable to MCVs as early as possible. We pick a load L that has met
all the conditions to reach its VP except for guaranteeing that 𝐿
will not cause MCVs. Then, our goal is to Pin L in the ROBÐi.e., to
declare it unsquashable due to MCVs and hence declare that it has
reached its VPÐas early as possible.

Recall from Section 2 that a load is conservatively identified as
causing an MCV and squashed when the core receives a coherence
invalidation for the line accessed by the load or when the cache
evicts this line. Hence, to declare load L as Pinned, the hardware
needs to guarantee that none of these two events will occur for L.

Our proposed architecture, called Pinned Loads, guarantees it as
follows. First, to guarantee that there will be no squash of L due to
invalidations, Pinned Loads delays incoming invalidations to the
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line read by L until L retires. Since invalidations can only be delayed
for a limited time period, the hardware also has to guarantee that
L will eventually reach the ROB head and retireÐat which point,
no more invalidation delays will be needed. Consequently, Pinned
Loads can only declare L as pinned if the core has enough resources
to retire L and all the instructions older than L in the pipelineÐin
particular, the write buffer needs to have enough entries to fit all
the yet-to-complete stores older than L.

Second, to guarantee that there will be no squash of L due to
cache evictions, Pinned Loads pins only loads that access cache lines
that it can guarantee are non-evictable. To obtain such a guarantee,
Pinned Loads needs to reserve, for each core, a minimum number
of lines 𝑊𝑑 per set in the directory plus last-level cache (LLC).
Furthermore, Pinned Loads knows the associativity𝑊𝐿1 of the L1
cache. With this information, Pinned Loads only declares L pinned
if the lines accessed by L and by the set of already-pinned older
loads: (i) do not overflow𝑊𝑑 for any directory plus LLC set, and
(ii) do not overflow𝑊𝐿1 for any L1 cache set. In addition, Pinned
Loads refuses to evict from its L1 cache and from the directory plus
LLC any line that has been accessed by a currently-pinned load.
Such eviction request may be a self eviction initiated by the local
processor or a cross eviction initiated by another processor.

To keep the design simple, Pinned Loads: (i) pins all the loads
that will eventually retire and (ii) does it in strict program order.
Further, no load can be pinned before it has generated its address,
since it can suffer an exception during address translation. After
address translation, we assume the load cannot suffer exceptions.

3.3 Potential Performance Gains

To understand the performance gains enabled by Pinned Loads,
consider a ROBwith three independent loads. Recall that we assume
a baseline processor implementation where even the oldest load in
the ROB can suffer an MCV. Figure 2(a) shows the behavior of the
conventional, unsafe processor. As denoted by the arrows, all three
loads can be issued to memory in parallel. Figure 2(b) shows the
behavior of a safe processor. In this case, a load can only be safely
issued when it reaches its VP. Generally, this occurs when the load
is close to the ROB head. The result is poor performance, as loads
are issued late and only one load can be in progress at a time.

Consider now a safe processor augmented with Pinned Loads.
We propose two designs, which will be detailed later. To understand
them, consider a load L that has met all the conditions to reach
the VP except for guaranteeing no MCVs. Our first design (Early
Pinning) has special hardware that determines whether there is
enough space in the cache hierarchy and directory to hold the line
that L requestsÐgiven that there may already be other pinned loads.
If the answer is yes, Pinned Loads declares L pinned even before
issuing L to memory, and łpasses the VP downstream.ž Our second
design (Late Pinning) is simpler and has no such special hardware.
In this design, L is first issued to memory. If L successfully brings
the data to the L1 cache, hence proving that directory and caches
have space for the line, Pinned Loads declares L pinned and łpasses
the VP downstream.ž These two designs offer different tradeoffs
between hardware requirements and performance.

The behavior of the safe processor augmented with Late Pinning
is shown in Figures 2(c)-(e). As shown in Figure 2(c), the oldest

ld2
ROB

Head
ld3

Conven�onal Unsafe

ld1

Issue to 

memory

Safe

ld2ld3

Safe + Late Pinning

ld1

VP

(a) (b)

(c) (d) (e)

ld2ld3 ld1

Safe + Early Pinning
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(f) (g)

Conven�onal Unsafe

(h)

Safe + Early Pinning

ld2ld3 ld1

VP

ld2ld3 ld1

VP

ld2ld3 ld1

VP

ld2ld3 ld1 ld2ld3 ld1

VP

Figure 2: Overlapping of loads in the reorder buffer (ROB).

load reaches its VP (and issues to memory) earlier than in the
safe processor: when only an MCV could squash it. However, in
reality, no MCV-induced squash will occur: while the data has not
returned, no MCV can occur by construction; and as soon as the
data arrives, Pinned Loads will pin it and hence ensure no MCV
can occur. Assume that, when the oldest load gets pinned, the
second load reaches its VP. The second load then issues to memory
(Figure 2(d)) and, on reception of the line, gets pinned. The process
repeats for the third load in Figure 2(e). We see that, while loads
are not issued in parallel as in the unsafe processor, they are issued
much earlier than in the safe processor.

The behavior of the safe processor augmentedwith Early Pinning
is shown in Figure 2(f). In this design, Pinned Loads can pin a load
(and enable the next load to reach its own VP) even before the load
issues to memory. Hence, as shown in the figure, the VP łis passed
downstreamž quickly and all the loads proceed in parallel. The
result is safety and high performance.

For completeness, Figure 2(g) shows the case when the second
load is dependent on the first one. The unsafe processor can issue
the first and third loads in parallel. However, even the Early Pin-
ning design cannot match the performance of the unsafe processor.
Indeed, the second load’s address depends on the return value 𝑉
of the first load. Hence, the second load cannot be declared pinned
until𝑉 is known and the load’s address is translatedÐsince there is
a risk of an address translation exception. Since the second load is
not pinned, the third one, although independent, cannot be claimed
as pinned and issue (Figure 2(h)).

If Pinned Loads is able to remove most of the stall due to MCVs
in Figure 1, the resulting performance may be close to that of
a processor only stalling for branch resolution. In that case, the
performance of a safe processor under the Comprehensive threat
model would be close to that of a safe processor under the Spectre
threat model.
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If the processor supports the more aggressive implementation
of TSO described in Section 2, where cache line invalidations and
evictions do not squash the oldest load in the ROB, a more aggres-
sive design of Late Pinning is possible. Specifically, as soon as the
oldest load (i.e., ld1 in Figure 2(c)) is free of all the other sources
of squashes (i.e., branches, aliasing, and exceptions), it issues and
łpasses the VP downstreamžÐsince it cannot be squashed anymore.
Hence, ld2 can be issued while ld1 is still outstanding. Furthermore,
when ld2 receives the data, it gets pinned, and ld3 can be issued
even if ld1 is still outstanding. Overall, while the safe baseline can
have only one outstanding load, this more aggressive design of
Late Pinning can support two outstanding loads, as long as one of
them is the oldest one in the ROBÐin addition to supporting the
sequential issue of multiple loads much earlier, as indicated before.
This is the design we use in the evaluation.

4 THREAT MODEL

We assume the Comprehensive threat model and various baseline
hardware defense schemes that Pinned Loads augments for per-
formance. The Comprehensive model is necessary to cover recent
attacks, including attacks related to memory consistency [29, 37]
(Section 10). Examples of baseline schemes that Pinned Loads can
augment are those that protect pre-VP loads with blocked execu-
tion [4, 45, 52], execution only if they hit in the L1 [26, 33], or
invisible execution that does not change the state of the cache
hierarchy [1, 20, 48].

Pinned Loads does not modify the speculative execution security
properties of the baseline defense schemes. The reason is because
Pinned Loads does not modify the definition of VP; it simply enables
loads to reach their VPs earlier.

Pinned Loads does not add new speculative side or covert chan-
nels. The reasons are: (i) a load is pinned only if it satisfies all the
conditions for reaching its VP except for the possibility of causing
an MCV, and (ii) a pinned load is guaranteed not to cause an MCV.
These combined properties imply that, once a load is pinned, its
retirement is guaranteed, and so any side-effects of its execution
cannot result in speculative leakage. In particular, this argument
applies to any new side-effects introduced by Pinned Loads itself
(e.g., changes in the processing of coherence invalidations or evic-
tions). These side-effects are only a function of the pinned load’s
operands, and thus do not leak speculative information.

Pinned Loads does not address non-speculative side channels. It is
well known that, in a multi-threaded shared-memory environment,
an attacker can exploit cache coherence states for timing-based
non-speculative side channels [50].

5 DESIGN OF PINNED LOADS

In this section, we describe the Pinned Loads design and present the
Late and Early Pinning variations. In Sections 6 and 7, we outline
some implementation aspects, and compare to a related design. In
the following, we refer to a line that is accessed by a currently-
pinned load as a pinned line.

At its core, Pinned Loads: (i) delays incoming invalidations to
pinned lines and (ii) prevents cache evictions of pinned lines. In
addition, it has to ensure that the processor has enough resources
to pin a loadÐi.e., enough write buffer entries for yet-to-complete

stores, and enough cache and directory space for all the pinned
lines. Finally, it has to ensure that delayed stores make progress.

Note that Pinned Loads never pins loads younger than in-ROB
MFENCE or LOCK instructions because doing sowould be incorrect.
For example, pinning a load before an older lock is acquired would
be equivalent to binding the value returned by the load before the
lock is acquired.

5.1 Pinned Loads Mechanisms

5.1.1 Delaying Invalidations to Pinned Lines. Processors that sup-
port TSO [36, 44] conservatively avoid MCVs by squashing a yet-
to-retire load issued by the processor when the L1 cache receives
an invalidation for the line read by the load. When an invalida-
tion is received in L1, the Load Queue (LQ) is snooped and, on
finding a matching entry, the corresponding load and its successor
instructions are squashed.

Pinned Loads keeps a record of the pinned lines. Such a record
only requires one bit in each LQ entry, although other designs are
possible (Section 6.1). When an invalidation arrives and the LQ
snoop finds it is directed to a pinned line, the hardware denies the
invalidation.

Supporting this functionality requires a modification to the write
transaction of the cache coherence protocol. Figures 3(a) and (b)
show the conventional and the Pinned Loads write transaction,
respectively. In the figure, Core 1 has brought the line to its L1 cache
in state shared (S) with a yet-to-retire load, and Core 2 issues a write
to the line (arrow 0 ). In the conventional transaction (Figure 3(a)),
Core 2 issues a GetX request to the directory ( 1 ). The directory
returns the line plus the number of sharers to Core 2 ( 2 ), sends an
invalidation to Core 1 ( 2 ), and enters a transient state that rejects
other requests to the line. Core 1 invalidates its local copy of the
line, snoops its LQ, squashes its load to the line, and sends an ack to
Core 2 ( 3 ). Core 2 then sends an Unblock request to the directory
( 4 ), which exits the transient state and updates the sharers.

In the Pinned Loads transaction, when Core 1 receives the inval-
idation ( 2 ), the hardware snoops the LQ before invalidating the
cache line. On finding a match with a pinned line, the cache is not
invalidated, the load is not squashed, and a Defer message is sent
to Core 2 ( 3 ). If Core 2 receives a Defer from any sharer of the
line, it aborts the write and sends an Abort to the directory ( 4 ).
The latter exits the transient state and does not change the sharer
bits. Core 2 will now retry the write. To ensure that Core 2 is able
to eventually write, additional support is added in Section 5.1.5.

5.1.2 Ensuring EnoughWrite Buffer Entries. Delaying invalidations
is a temporary mechanism applied until the pinned load reaches
retirement. Hence, before Pinned Loads marks a load L as pinned,
it has to ensure that there are enough resources for L to reach
retirement. One obvious resource required is related to stores: there
need to be enough write buffer entries to be able to hold all the
yet-to-complete stores that are older than L. This includes stores
already in the write buffer and stores not yet in the write buffer.
The reason is that, for L to retire, all of its older stores should be
pushed into the write buffer.

If this condition is unmet, deadlock may ensue. To see why,
consider the two cores in Figure 4. Core 1 has retired a store to
line 𝑥 to its write buffer. Its ROB contains another store and then a
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Figure 3: Conventional (a) and Pinned Loads (b) write trans-

action.

pinned load to line 𝑦. Core 2 has retired a store to line 𝑦 to its write
buffer. Its ROB contains another store and a pinned load to line 𝑥 .
Assume that 𝑙𝑑𝑥 and 𝑙𝑑𝑦 have loaded their data to the L1 caches,
and that the write buffers can hold a single write. In the write buffer
of Core 1, 𝑠𝑡𝑥 ’s attempt to write is denied by Core 2 because line 𝑥
is pinned by 𝑙𝑑𝑥 ( 1 ). Similarly, in the write buffer of Core 2, 𝑠𝑡𝑦’s
attempt to write is denied because 𝑙𝑑𝑦 is pinned. To make forward
progress, either 𝑙𝑑𝑥 or 𝑙𝑑𝑦 have to retire. Load retirement would
remove the pin, which would in turn allow the write in the other
core to succeed, and execution to proceed. However, no load can
retire ( 2 ): both ROBs have an older store that cannot leave the
ROB because the write buffer is full.
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� Stores are denied by loads

stldy
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load y;
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stystx
Write 

Buffer

Write

Buffer

Figure 4: Deadlock due to insufficient write buffer entries.

To prevent this deadlock, before Pinned Loads declares a load
pinned, it counts the number of yet-to-complete stores older than
the load (already in the write buffer or not). The load is not pinned
while such count is higher than the number of write buffer entries.

5.1.3 Preventing Evictions of Pinned Lines. Processors that support
TSO also conservatively avoid MCVs by squashing a yet-to-retire
load when the L1 cache wants to evict the line read by the load.
In Pinned Loads, the hardware prevents pinned lines from being
evicted from L1.

The process is similar to how Pinned Loads denies invalidations
in Section 5.1.1. Specifically, when the L1 wants to evict a line, the
hardware checks whether the line is pinned. The record of what
lines are pinned can be kept in the LQ, as described in Section 5.1.1,
or in the L1 tags, as we will see in Section 6.1. If the line is found
pinned, the eviction is denied. Then, the cache controller updates
the replacement algorithm state as if the line had been accessed (to
minimize future attempts to evict the line), and then selects a new
victim from the same cache set.

The action of evicting a line from L1 may be initiated by a re-
quest from the local core, which may need to allocate space in
any cache, or from another core, which may need to allocate space
in the shared cache. Moreover, it may occur with inclusive, non-
inclusive or exclusive cache hierarchies, andwith different directory
organizations.

Note that this mechanism is not unusual: conventional cache
hierarchies sometimes need to deny cache line evictions, as is the
case when the victim cache line is in a transient state. More details
are given in Section 6.1.

5.1.4 Guaranteeing Space in Cache & Directory. A core cannot pin
any number of cache lines. The number of pinned lines that map to
a set in a private cache or to a set in a shared directory/LLC cannot
be bigger than the associativity of these structures: all the pinned
lines need to remain in the caches or directory/LLC, respectively.
Consequently, before Pinned Loads declares a load L pinned, it has to
ensure that the lines accessed by all the currently-pinned loads plus
L can co-exist in the private caches and in the shared directory/LLC.

One approach to ensure that L can be pinned is to issue it first and
observe whether it attains the cache and directory space needed; if
so, it gets pinned. Another approach is to only issue and pin L if
Pinned Loads can first guarantee that there will be space.

For this second approach, let us assume an inclusive cache hier-
archy with private L1 caches and a shared L2 LLC with the direc-
tory. We discuss other cache hierarchy organizations in Section 6.2.
In this case, Pinned Loads needs to know the associativity of L1
(𝑊𝐿1) and, because the directory/LLC is shared by all the cores,
the number of entries in each set of each directory/LLC slice that
are reserved for each core (𝑊𝑑 ). In addition, Pinned Loads needs
to know the mapping of line addresses to sets in L1 and to slices
and sets in the directory/LLC. Finally, Pinned Loads needs to have a
small hardware-managed table that records, for each pinned load
L, the L1 set and the directory/LLC slice and set where the line
accessed by L maps. This table is called the Cache Shadow Table

(CST) and is discussed in Section 6.2.
In this second approach, when Pinned Loads wants to pin load

L, it first determines the L1 set and the directory/LLC set and slice
where the line maps. Then, it accesses the CST and determines
whether such sets and slice can hold one additional pinned lineÐi.e.,
whether with the addition of L, no more than𝑊𝐿1 and𝑊𝑑 pinned
lines map to the same set in L1 and directory/LLC, respectively. If
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Figure 5: Mechanism to prevent store starvation. In the figure, x is the address of the line that the store is trying to update.

these conditions are all met, L is declared pinned; otherwise pinning
needs to wait.

5.1.5 Preventing Store Starvation. Figure 3 showed that when a
core pins a cache line, a write by another core is denied, and the
hardware in the writer core has to keep retrying. Unfortunately, it
is possible that the reader core (and other additional cores) keep
reading and pinning the line. Since the decision to pin a line is made
locally in each core, the readers may never know that there is a
writer that is starving.

To avoid starvation, Pinned Loads uses the following idea: if a
write request is denied, its retry works in a slightly different way,
which prevents the indefinite repeated pinning of the line by other
cores before the write succeeds. To support this idea, Pinned Loads
adds a small hardware table in each core called the Cannot-Pin Table
(CPT). The CPT records the lines that the core cannot pin at the
moment.

Figure 5 illustrates how the algorithm works. After the first write
by Core 2 in Figure 3 was denied, Core 2 now retries with a new
variant ofGetX calledGetX* ( 1 in Figure 5(a)). After the directory
receives GetX*, it sends a special invalidation, Inv*, to Core 1 and
all the other current sharers ( 2 ). Upon receiving Inv*, Core 1 and
all the other sharers add the address of the line (𝑥) to their CPTs
( 3 ), meaning that they will not be able to pin the line again until
the write succeeds. The sharers then reply to Core 2: if a sharer
has the line pinned (as in Core 1), the sharer replies Defer to Core
2 ( 3 ); otherwise it replies Ack to Core 2 and invalidates its copy
of the line. If Core 2 receives at least one Defer, it knows the line
is pinned; hence it sends an Abort to the directory ( 4 ), which
does not change its state. To minimize hardware modifications, the
directory is not modified to record that a write is being denied.

From now on, none of the cores with 𝑥 in their CPTs can pin the
lineÐalthough they can read it. Other cores can still read the line
and pin it. However, every single retry of the write will insert 𝑥 in
the CPTs of the sharers. In the worst case, all cores but the writer
end up with 𝑥 in their CPTs.

Eventually, all the reader cores will retire the pinned loads, and
a retry by the writer will find that all the responses are Ack and
there is noDefer (Figure 5(b)). SuchAcks come from all the sharers
recorded in the directory. The write has now succeeded. Hence,
Core 2 sends the Unblock message to the directory ( 4 ). On recep-
tion of the Unblock message, the directory sends an extra Clear

request to all the sharers ( 5 ) so they remove 𝑥 from the CPT ( 6 ),
and then updates the sharer information.

5.2 Late and Early Pinning Approaches

We propose two variations of Pinned Loads that offer different
tradeoffs between hardware requirements and performance: Early
and Late Pinning. In both designs, loads are pinned in program
order, all loads that will eventually retire are pinned, and a load can
only be pinned when it has met all the conditions to reach its VP
except for guaranteeing no MCV.

5.2.1 Late Pinning (LP). This design does not include the CST of
Section 5.1.4. A core does not know, at the point of issuing a load,
whether the private caches and the shared directory/LLC will have
space to hold the lineÐgiven all the older pinned loads. Hence,
when a load meets all the conditions to reach the VP except for
guaranteeing no MCVs, and Pinned Loads concludes that there are
enough write buffer entries, Pinned Loads issues the load. If the
core receives a response with the data, it means that private caches
and shared directory/LLC have the space for the line; then, Pinned
Loads declares the load pinned. Otherwise, Pinned Loads has to wait
until the line can be loaded to declare the load pinned.

This design has two advantages. First, it is simpler because it has
no CST. Second, cores can ignore the limitation of only pinning at
most𝑊𝑑 lines per set and slice in the shared directory/LLC. A core
can issue many loads that attempt to allocate lines in the directo-
ry/LLC; if they succeed, the loads are declared pinned. It is possible
that a core ends up pinning more than its share of lines in a given
directory/LLC set. Such a situation often improves performance
and only infrequently ends up temporarily starving other cores.

This design’s shortcoming is that the load’s response from the
memory system is in the critical path of declaring the load pinned
and, hence, of łpassing the VP to the next loadž. The result is that all
loads access the memory system sequentially (Figures 2(c)-(e)), even
if they are independent. Hence, performance is low in programs
with bunched-up cache misses.

5.2.2 Early Pinning (EP). This design includes the CST. When a
load L meets all the conditions to reach the VP except for guaran-
teeing no MCVs, and Pinned Loads ascertains that there are enough
write buffer entries, the CST is checked. If the CST decides that
the new line will find space in the private caches and the shared
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directory/LLC, L is declared pinned and the VP is łpassed downžÐ
potentially even before issuing L to memory.

The pluses and minuses of this design are the opposite of those
of the previous one. The advantages are that independent loads
are issued to memory with great parallelism (Figure 2(f)), even
out of order, and that the VP łis passed to younger loadsž faster.
The result is high application performance. Recall, however, that
if a load cannot be issued to memory due to a dependence, then
subsequent, independent loads cannot be issued to memory either
(Figure 2(h)).

The shortcomings of this design are the need for the CST hard-
ware and the fact that a core will not attempt to pin more than
its𝑊𝑑 share of lines per slice and set in the directory/LLC. This
is because loads are pinned before being issued, and hence Pinned
Loads has to guarantee space for their data in advance.

Note that the assignment of𝑊𝑑 maximum pinned lines per slice
and set in the shared directory/LLC to each core is an agreement
among cores; it does not require fixed set partitioning of the direc-
tory/LLC. Also, once the load that pinned a line retires, the line
gets unpinned, and the line can remain in the directory/LLC for
potential future use without counting toward the𝑊𝑑 maximum
pinned lines allocated to the owner core.

6 KEY IMPLEMENTATION ASPECTS

In this section, we describe the implementation of key aspects of
the Pinned Loads hardware.

6.1 Recording Pinned Lines

Pinned Loads provides hardware to record the currently-pinned
lines. On any attempt to invalidate or evict a line, the hardware is
checked to either allow or prevent the operation. Note that such
hardware can be placed very close to the core. The reason is that,
if a pinned load has already obtained its data, it has brought the
line to L1, and any invalidation or eviction request for the line will
reach L1. Alternatively, if the pinned load has not brought the line
to L1 yet (which may happen in Early Pinning), since the load has
not consumed the data yet, the consistency model does not squash
the load on invalidation or eviction of the line from other cache
levels. We present two possible designs to record pinned lines. Our
chosen design is the first one.

6.1.1 Storing the Information in LQ. This design adds one Pinned
bit to each LQ entry, indicating whether the load is pinned. When a
load gets pinned, the core sets the bit in the load’s LQ entry. When
the L1 receives an invalidation or attempts to evict a line, the LQ is
checked. If the hardware finds a matching entry with the Pinned bit
set, the operation is denied. When a pinned load retires, it trivially
becomes unpinned.

Most of the mechanisms in this design are already present in
conventional processors. For example, in conventional processors,
when a line is to be evicted from a cache level, the hardware in-
forms higher levels of caches (i.e., smaller caches) so they also evict
the lineÐwith some variations depending on whether or not the
cache hierarchy is inclusive. In some proposals, the higher levels
may refuse to evict the line for performance or security reasons,
prompting the initiating cache level to find another victim [19, 49].
Pinned Loads uses the same approach for pinned loads.

In conventional TSO cores, when the L1 wants to invalidate
or evict a line, the hardware checks the LQ and, on a match, the
corresponding load and its subsequent instructions are squashed.
In Pinned Loads, the process is different in two ways. First, the
invalidation or eviction may be denied. Second, the LQ check and
the invalidation/eviction cannot happen in parallel: the check has
to be done first in case the operation is denied.

6.1.2 Storing the Information in L1 Tags. This design adds a Pinned
bit to each cache line in L1, to indicate whether or not the line is
pinned. At runtime, when a load is to get pinned, Pinned Loads

accesses the L1 and sets the Pinned bit of the line. When an L1 line
receives an invalidation or is picked for eviction, if its Pinned bit is
set, the operation is denied.

This design still keeps the Pinned bit in the LQ entries. Recall
that a load can become pinned only after all of its older loads are
pinned; hence the presence of the Pinned bit in the LQ enables
the hardware to find this condition easily. In addition, LQ entries
need one additional bit: the Youngest Pinned Load (YPL) bit. To
understand its functionality, consider multiple pinned loads in the
LQ that are accessing the same line. Only when the youngest of
them retires can Pinned Loads clear the Pinned bit in the cache.
Hence, for each pinned cache line, one of the LQ entries has the
YPL bit set. When a new load is to be pinned, the hardware searches
the LQ for an entry for the same line and the YPL bit set; if the
entry is found, the hardware łpasses the YPL bitž from the older
to the newer entry and there is no need to set the Pinned bit in L1
cache again. When a pinned load with a set YPL bit retires, the L1
cache is accessed to clear the Pinned bit.

When using the Early Pinning of Section 5.2.2, a load may be
declared pinned before the L1 receives the data. In this case, since
the L1 does not have the line, we add a Pinned bit in the MSHR that
the load uses. This is done as soon as a pinned load is issued. When
the requested line is received and placed in the L1, the Pinned bit
in the MSHR is copied to the L1.

The advantage of this design is that it decides whether to in-
validate or evict an L1 line quickly, without waiting for an LQ
access. This reduces the latency to respond to requests. However,
a disadvantage is that this design requires extra requests from the
pipeline to L1 to unpin lines. This fact puts extra pressure on L1 and
increases the unpinning latency. Overall, because load pinning/un-
pinning operations are much more frequent than L1 invalidations
or evictions, we do not use this design.

6.2 Optional Cache Shadow Table (CST)

The CST is a per-core hardware structure only used in Early Pin-
ning. It records the mapping of each line pinned by the coreÐi.e.,
which set in L1 and which slice and set in the shared directory/LLC
(Section 5.1.4). The hardware checks the CST before pinning a load
to determine whether, with the addition of this load, all the pinned
lines still have enough guaranteed space in the cache hierarchy.

A core has one CST for the directory/LLC and one for the L1
cache. Each CST is a hash table. Figure 6 shows the CST for the
directory/LLC. Assume that Pinned Loads wants to pin a load L that
accesses address A. First, Pinned Loads generates the set and slice
numbers where A maps, hashes them, and uses the result to access
a CST entry. An entry contains𝑀 records, each corresponding to a
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line. Each record has the hash of the line address, the LQ ID of the
youngest pinned load that reads from the line, and a Valid bit. 𝑀
is equal to or less than the maximum number of lines that can be
pinned by the core in the same set and slice (i.e.,𝑊𝑑 in Section 5.1.4).

Hash(Address)

LQ ID Valid

N

Entries

M Records

Hash

(Set, Slice)

Figure 6: Cache Shadow Table (CST) for the directory/LLC.

At the indexed table entry, the hardware performs a CAM read
to find if there is a valid entry for A. If there is, the line is already
pinned by older loads, and hence the directory/LLC has enough
resources to pin 𝐿. Then, the LQ ID field of the record is updated to
𝐿’s LQ ID, and 𝐿 is declared pinned.

If the CST entry does not contain a record for A, the hardware
checks whether the entry has enough room for a new record. If so,
a new record for A is created, its LQ ID field is updated to 𝐿’s LQ
ID, and 𝐿 is declared pinned. Otherwise, the pinning is denied as
there are not enough resources.

To reduce overhead, when a pinned load retires, we do not access
the CST to potentially remove its entry. Instead, we let the poten-
tially stale entry remain and remove it only when the hardware
attempts to pin a new line. At that point, the hardware discovers if
any of the records in the chosen entry has an LQ ID that is outside
of the currently-used LQ entries. If so, the record is expunged.

One corner case that we handle is LQ ID wraparound, which
could lead to using stale CST entries. We solve this problem by
using a longer LQ ID tag in both the CST and LQ. For example, if
the LQ has 64 entries, rather than using 6 bits for the LQ ID, we use
24 bits. Then, we use the modulo operation to map an LQ ID to a
physical LQ entry. With this longer LQ ID tag, wraparound happens
infrequently. When it happens, Pinned Loads stops pinning loads
until all the pinned loads retire. During this time, loads reach their
VPs and issue as they would on a safe scheme without Pinned Loads.
Once all the pinned loads retire, the CST is cleared, and normal
Pinned Loads execution resumes. Because wraparound is infrequent,
the performance impact of this design is negligible. Other designs
to handle LQ ID wraparound are possible.

The use of hashes in the CSTmay cause hash collisions. One class
of collisions occurs when two different {𝑠𝑒𝑡, 𝑠𝑙𝑖𝑐𝑒} pairs hash to the
same CST entry. This is safe, as it only underestimates the capacity
of a {𝑠𝑒𝑡, 𝑠𝑙𝑖𝑐𝑒} combination. Another class of collisions occurs
when the hashes of two different line addresses in a {𝑠𝑒𝑡, 𝑠𝑙𝑖𝑐𝑒}

match the same record. This collision needs to be detected. Pinned
Loads detects it by always using the second field of the record
(i.e., the LQ ID) to access the LQ entry and check whether the line
address of the existing entry is indeed the same as the one we want
to pin. If it is not, then we cannot pin the new load and Pinned

Loads handles it as if there was not enough space in the {𝑠𝑒𝑡, 𝑠𝑙𝑖𝑐𝑒}.

The CST for the L1 cache operates similarly, except that there is
no slice number, and that the number of records per entry𝑀 can
be as high as the cache associativity.

Supporting Different Types of Cache Hierarchies. Cache hierar-
chies can have different organizations, whichmay affect how Pinned

Loads designs its CSTs. In particular, cache hierarchies typically
have multiple levels of private caches (e.g., an L1 and an L2 level).
In nearly all cases, there is no need to have a CST for a private
L2 cache. This is true if the L2 is exclusive with respect to the L1:
whether the L1 has enough space to hold a line does not depend on
L2’s organization. It is also almost always true if the L2 is inclusive
with respect to the L1: L1 caches typically have a set count and an
associativity that are lower than or equal to those of the L2 caches.
Hence, it is almost always the case that, if a line has space in L1,
it also has space in L2. If such statement is untrue, Pinned Loads

would need a CST for a private L2. Finally, if the L2 is non-inclusive
with respect to the L1, a more subtle analysis of the data flows
allowed is required to determine the CST needs.

6.3 Cannot-Pin Table (CPT)

The CPT is a per-core hardware structure that records the addresses
of lines that the core is not allowed to pin at the moment (Sec-
tion 5.1.5). The CPT is placed near the LQ, which checks it before
attempting to pin a line. A line’s address is inserted in the CPTwhen
the core receives an Inv*; the address is removed when the core
receives a Clear. Our CPT can hold up to four addresses although,
on average (Section 9.2), it only needs to hold one. If the CPT fills
up and a request to insert an address cannot be serviced, the core
stops pinning loads until the CPT is half empty.

We expect that a core that tries to write to a pinned line like
Core 2 in Figure 5(a) will eventually succeed in inserting an entry
in the CPT(s) of the reader core(s). However, there is a corner case
when every time that Core 2 attempts to write, the CPT(s) in the
reader core(s) are full and do not accept new entries. In this very
unlikely case, Core 2 would never succeed in inserting its entry in
the CPT(s).

To prevent this case, a more advanced design can add a small
FIFO queue to the CPT with the IDs of writer cores that visited the
node but found no space in the CPT. Then, when one CPT entry is
released, it is reserved for a write from the core whose ID is at the
head of the queue.

6.4 Effect of Limited-Sized Hardware
Structures

Pinned Loads uses certain key hardware structures such as the CST,
CPT, and extended LQ ID tag. Their limited size may sometimes
cause Pinned Loads to operate with slightly lower performance, but
never incorrectly. Specifically, when the CST cannot find space to
pin a load, either because there is no space or because of a hash
conflict, the core stops pinning loads until space can be found.
Similarly, when the CPT fills up, the core stops pinning loads until
the CPT is half empty. Finally, when LQ ID tag wraps around, the
core stops pinning loads until all the pinned loads retire. In all cases,
in the meantime, loads reach their VPs and issue as they would on
a safe scheme without Pinned Loads. The execution is not as fast
but it is correct and does not have deadlocks or livelocks.
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7 COMPARISON TO A RELATED SCHEME

Our design to guarantee early that a load will not cause MCVs uses
a mechanism to temporarily delay invalidations to a line. Ros et
al. [31] proposed a mechanism with a similar goal in their Writ-
ersBlock protocol. Their purpose was to improve performance by
allowing load-load reordering in TSO without squashes. Later, Tran
et al. [39] applied the design to a speculative processor to allow
loads to execute early without risking MCVsÐthe same goal as
Pinned Loads.

We did not want to use Tran et al.’s aggressive design because
its hardware is complex. In this section, we compare Pinned Loads
to their design.

In the WritersBlock protocol, any load that has been issued
speculatively causes its core to (i) reject an incoming write to the
line and (ii) send a request to the directory, causing the directory
to enter a new transient state for the line called WritersBlock. The
rejected write is buffered and blocked in the directory. Other readers
that arrive to the directory while in WritersBlock state can read
the data. However, to prevent starvation, they get a "tear-off" copy
of the data: a copy that is uncacheable, does not get recorded in
the directory, and can be used only once. Moreover, a directory
entry in WritersBlock state cannot be evicted from the directory.
Hence, if a read for a different line arrives to the directory/LLC and
cannot allocate space because it would have to evict WritersBlock-
ed entries, the read gets a tear-off copy of the data from main
memory and does not allocate a directory entry.

This is an aggressive design that allows any speculative load in
any order to get the dataÐirrespective of howmany older loads exist
in the ROB, and without needing to guarantee that there is space to
hold the line in caches or directory. However, the hardware changes
required are major: a new transient directory state, which buffers
the write and allows reads; writes that transition between three-
and four-hop transactions; reads that dynamically turn uncacheable
based on directory state; and new read transactions that directly
grab data from memory and skip directory entry allocation. The
result is challenging hardware. Perhaps more importantly, adding
these no-directory-allocation and uncached paths creates parallel
paths for transactions, namely cached and uncached paths, which
are hard to verify for correctness.

In contrast, with Pinned Loads, we seek a simpler and safe design.
A key source of complexity reduction is that Pinned Loads pins all
the loads of a core in strict program order, and only when cache and
directory resources are guaranteed. Further, we limit the complexity
added to the coherence protocol as much as we can: we add no new
directory states; we create no uncached or no-directory-allocation
paths in the protocol; the directory buffers no new state; to attempt
to write to pinned lines, we reuse processor retry mechanisms that
have been used commercially to access busy directory lines; and,
generally, we minimize the changes made to the directory and LLC,
moving some functionality to structures that are local to cores.

8 EXPERIMENTAL METHODOLOGY

We model the architecture shown in Table 1 using cycle-level simu-
lations with gem5 [7]. In the simulator, we model all the side effects
of transient instructions. The baseline architecture is called Unsafe,
because it has no protection against speculative execution attacks.

We use loads as transmitters and model the Comprehensive [53]
and Spectre [23] threat models. In Comprehensive, squashes can
be due to control-flow mispredictions, address aliasing, exceptions,
and MCVs. In Spectre, the only relevant squashes are those due to
control-flow mispredictions.

We augment the Unsafe architecture with the hardware defense
schemes in Table 2. These schemes protect loads until they reach
their VP as follows: Fence stalls loads with fences; Delay-On-Miss
(DOM) [26, 33] stalls speculative loads that miss in the L1; STT [52]
stalls loads whose arguments are tainted by transiently-read data.

Wemodel each hardware defense schemewith the configurations
of Table 3. They include Comp and Spectre, which are the defense
schemes without extensions under the Comprehensive and Spectre
model, respectively. They also include LP and EP, which are the
defense schemes augmented with Late Pinning and Early Pinning,
respectively, under the Comprehensive model.

Table 1 also shows the area, dynamic read energy, and leakage
power of the CST, which is the main Pinned Loads hardware struc-
ture. The data is obtained using Cacti [3] with 22nm technology.

Table 1: Parameters of the simulated architecture.

Parameter Value

Architecture 1 (SPEC17) or 8 (SPLASH2 & PARSEC) out-of-order
x86 cores at 2.0 GHz

Core 8-issue, no SMT, 62 load queue entries, 32 store
queue entries, 192 ROB entries, LTAGE branch pre-
dictor, 4096 BTB entries, 16 RAS entries

Private L1-I Cache 32KB, 64 B line, 4-way, 2 cycle Round Trip (RT) la-
tency, 1 port, 1 hardware prefetcher

Private L1-D Cache 32 KB, 64 B line, 8-way, 2 cycle RT latency, 3 Rd/Wr
ports, 1 hardware prefetcher

Shared L2 Cache (LLC) Slice: 2MB, 64 B line, 16-way, 8 cycles RT latency
Coherence Directory-based MESI protocol
Network Ordered, 4×2 mesh, 128b link, 1 cycle/hop
DRAM 50 ns RT latency after L2

L1 CST 12 entries, 8 records/entry; Area: 0.0008𝑚𝑚2; Dy-
namic read energy: 0.6𝑝 𝐽 ; Leakage power: 0.17𝑚𝑊

Dir/LLC CST 40 entries, 2 records/entry;𝑊𝑑 : 2 per slice and set for

each core; Area: 0.0005𝑚𝑚2 ; Dynamic read energy:
0.4𝑝 𝐽 ; Leakage power: 0.17𝑚𝑊

CPT 4 entries; Negligible area, energy, and power
LQ ID Tag 24 bits

Table 2: Hardware defense schemes modeled.

Scheme Description of the defense

Unsafe No defense: unmodified x86 architecture

Fence Stall all speculative loads with fences

DOM Stall speculative loads on L1 miss [26, 33]

STT Stall loads that are tainted by transient data [52]

Table 3: Extensions added to the defense schemes.

Config. Description

Comp No extension: Unmodified scheme under Comprehen-

sive model

LP Comp + Pinned Loads with Late Pinning

EP Comp + Pinned Loads with Early Pinning

Spectre No extension: Unmodified scheme under Spectre model

We run SPEC17 applications [8] on a single core, and SPLASH2
[47] and PARSEC [6] applications on 8 cores. For SPEC17, we use
the reference input size. For each application, we use SimPoint [14]
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Figure 7: Normalized CPI of SPEC17 programs on different architecture configurations, all normalized to Unsafe. The three

plots correspond, from top to bottom, to configurations built on the Fence, DOM, and STT defense schemes. Each plot has a

different Y-axis range.

to generate up to 10 representative intervals that accurately charac-
terize the end-to-end performance of the application. Each interval
consists of 50M instructions. We run Gem5 on each interval with
system-call emulation mode with 1M warm-up instructions. For
SPLASH2 and PARSEC, we use the simmedium input size and run
full-system simulation for the region of interest (ROI).

9 EVALUATION

9.1 Overall Performance Results

9.1.1 Performance on SPEC17. Figure 7 shows the normalized CPI
of SPEC17 programs on all the defense schemes with the extensions
listed in Table 3 (Comp, LP, EP, and Spectre). The three plots
correspond, from top to bottom, to the Fence, DOM, and STT

defense schemes. Each plot has a different Y-axis range. All bars
are normalized to Unsafe. Each plot shows each SPEC17 program
and the geometric mean of all.

Going from top to bottom, we see that Fence has the highest
execution overhead among all the schemes evaluated. On average, it
has a geometric mean execution overhead of 112.6% with the Com-
prehensive model. With Late Pinning (LP), we reduce the execution
overhead to 66.4%. By using Early Pinning (EP), we further reduce
the execution overhead to 51.3%, which is close to the execution
overhead with the Spectre threat model (34.5%).

DOM has a moderate execution overhead on SPEC17. On aver-
age, it has a geometric mean execution overhead of 35.8% under
Comprehensive. Because DOM only delays speculative loads that
miss in L1, it usually has high execution overhead on applications
that have poor L1 hit rate, in which case LP cannot effectively pin
the loads and łpass the VPž (Section 5.2.1). With LP, the average
execution overhead is only reduced to 32.3%. EP, on the other hand,
can better handle cache misses (Section 5.2.2), and reduces the av-
erage execution overhead to 15.3%. This is close to Spectre’s (9.7%).

EP provides huge speedups to benchmarks with high L1 miss rates,
such as bwaves and fotonik3d.

STT’s average execution overhead is 24.8% on SPEC17 under
Comprehensive. It is the fastest scheme evaluated. LP reduces the
average execution overhead to 19.5% and EP to 13.2%. The execution
overhead under the Spectre model is 6.4%.

Overall, we see that augmenting existing defense schemes with
EP substantially reduces the execution overhead of the schemes.

9.1.2 Performance on SPLASH2 and PARSEC. Figure 8 shows the
normalized CPI of SPLASH2 and PARSEC applications. The figure
is organized as in Figure 7. We see that Fence’s geometric mean
execution overhead is 113.1% under Comprehensive. Because of the
relatively high L1 hit rate of SPLASH2 and PARSEC applications,
both LP and EP offer good speedups: they reduce the execution
overhead to 51.2% and 46.4%, respectively. The execution overhead
under Spectre is 31.1%.

DOM has a moderate execution overhead on SPLASH2 and PAR-
SEC under Comprehensive, mainly because of high L1 hit rate. On
average, its execution overhead is 15.8%. LP reduces it to 12.7%,
and EP further reduces it to 7.6%. The execution overhead under
Spectre is 4.2%. The lu_ncb and raytrace applications have a high
L1 miss rate, but lu_ncb’s branches are resolved quickly (hence
Spectre performs well), unlike raytrace’s. EP reduces lu_ncb’s
execution overhead from 167.2% to 33.3%.

STT has small execution overheads on SPLASH2 and PARSEC.
On average, it has a geometric mean execution overhead of 11.3% un-
der Comprehensive. With LP, it is reduced to 8.7%. EP further re-
duces it to 8.1%. The execution overhead under Spectre is 5.1%. The
x264 application still has much higher execution overhead under
EP than under Spectre. The reason is that it has dependencies
between loads, which is a pattern EP cannot efficiently handle.

Overall, for these programs, we observe that LP, and especially
EP, substantially reduce the execution overheads of all schemes.
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Figure 8: NormalizedCPI of SPLASH2 andPARSECprogramsondifferent architecture configurations, all normalized toUnsafe.

The three plots correspond, from top to bottom, to configurations built on the Fence, DOM, and STT defense schemes. Each

plot has a different Y-axis range.

9.1.3 Network Traffic Overhead. While Pinned Loads does not change
the network traffic of the SPEC17 applications, it could increase
the traffic of the SPLASH2 and PARSEC applications. In practice,
we find that enabling Pinned Loads on Fence, DOM, and STT has
no significant impact on network traffic. The reason is that very
few writes and evictions have to retry due to pinning. Even in
the worst-case applications, only 14.8 writes and 0.05 evictions are
retried per million instructions.

9.1.4 Breakdown of the Execution Overhead. We now assess the
big-picture impact of Pinned Loads on the execution overhead of
the defense schemes. Figure 9 combines defense schemes (Fence,
DOM, and STT) and applications (SPEC17 and Parallel ones). For
each combination, it shows, first, the execution overhead of Comp
normalized to Unsafe and broken down into the different sources
of speculation. These bars are like those in Figure 1. The second
and third bars of each combination are the execution overheads of
the same defense scheme augmented with LP and EP, respectively.
Note that two of the bars in the graph are cut off.
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Figure 9: Breakdown of the execution overhead due to differ-

ent sources and for different schemes, all relative to Unsafe.

We see that, under the Comprehensive model, the execution
overhead of every defense scheme is mainly caused by stalls to
prevent potentialMCVs and, to a lesser extent, control dependencies.
LP and EP focus on removing the MCV overhead. We see that LP

and, especially, EP eliminate most of the MCV overhead. The upper
bound of EP’s effectiveness is to eliminate all the MCV overhead. In
that case, it would be nearly as if we only had control dependence
overheadsÐwhich is the Spectre model overhead. From the figure,
we see that, in the case of Fence, EP has an absolute 15% higher
overhead than Spectre.

9.2 Analysis of the Hardware Structures

9.2.1 Cache Shadow Table (CST) Configuration. Ideally, the CST
should precisely track where each pinned line maps in the L1 cache
and in the directory/LLC. However, in practice, to minimize area
overhead, we reduce the CST’s number of entries and number of
records per entry. As a result, there are false positive conflicts: the
CST claims the load cannot be pinned due to lack of space while,
in reality, there is space.

To decide on the sizes of the CSTs, we perform a sensitivity anal-
ysis. Our chosen default sizes (Table 1) are 12 entries with 8 records
per entry for the L1 CST and 40 entries with 2 records per entry
for the Dir/LLC CST. With this design, we find that the average
L1 CST false positive rates are smaller than 0.02% on SPEC17, and
than 0.01% on SPLASH2 and PARSEC for all the defense schemes
with EP. Further, the average Dir/LLC CST false positive rates are
smaller than 0.4% on SPEC17, and than 0.02% on SPLASH2 and
PARSEC for all the schemes with EP. Hence, false positives are rare.

We measured the execution overhead of the different defense
schemes (with EP) and programs for different CST sizes. On average,
the execution overheadwith our chosen configuration is 3.6% higher
than with an infinite CST.

9.2.2 Cannot-Pin Table (CPT) Size. A line is inserted into the CPT
only when a write fails a retry after having been deferred. We
collect the average and the maximum number of lines that are in
the CPT at a time. We use an ideal CPT and run SPLASH2 and
PARSEC. On average, the CPT only needs to hold one line, and the
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maximum number of lines is 4ś7 for all the schemes. Thus, we use a
default CPT with 4 entries (Table 1). With this size, we see less than
0.0001 CPT overflows per insertion attempt for a few applications,
and no overflows for most.

9.2.3 Smaller Directory/LLC Partition Size. Our default EP design
allows a core to pin up to 2 lines per set in the directory/LLC at
a time (𝑊𝑑 is 2). We repeat our experiments with𝑊𝑑 equal to 1
while keeping the same CST size. We see that the overhead of the
schemes with EP increases: for Fence, it increases from 51.3% to
54.7% on SPEC17 and from 46.4% to 47.0% on parallel applications;
forDOM, it changes from 15.3% to 18.5% on SPEC17 and from 7.6% to
8.0% on parallel applications; for STT, it increases from 13.2% to
14.7% on SPEC17 and remains the same on parallel applications.
Consequently, keeping𝑊𝑑 equal to 2 is best.

9.2.4 Hardware Overhead. The main storage structure added by
Pinned Loads is the CST used by EP. The CPT and the extended LQ
ID tags are very small. With our default configuration and including
the tags, the L1 CST is 444 bytes and the Directory/LLC CST is 370
bytes. We use CACTI 7.0 [3] to estimate the CST area, dynamic read
energy, and leakage power at 22nm. As shown in Table 1, these
numbers are very small.

10 OTHER RELATED WORK

Speculative execution attacks exfiltrate secret data by exploiting dif-
ferent types of speculation, such as control-flow speculation [10, 12,
22ś24, 28, 35], memory dependence speculation [16], and memory
consistency speculation [29, 37]. For memory consistency specula-
tion, Ragab et al. [29] and Skarlatos et al. [37] demonstrate how an
attacker from a core can repeatedly create squashes due to MCVs
in another core. From here, many attacks are possible. For example,
if the victim gets a random number, the attacker can force selective
squashes and retries and bias the random number generator. De-
fending against this type of speculation attack is expensive. Pinned
Loads substantially reduces the cost of such defense.

11 CONCLUSION

To reduce the overhead of defenses against speculative execution
attacks, this paper presented Pinned Loads, a general technique that
helps instructions reach their VPs sooner. Under the Comprehensive
threat model, we found that the progress of the VP is mostly im-
peded by waiting until no MCVs are possible. Hence, Pinned Loads
tries to make loads invulnerable to MCVs as early as possibleÐa
process we call pinning the loads in the ROB. In this paper, we de-
scribed the several hardware mechanisms needed by Pinned Loads,
and two possible Pinned Loads designs with different tradeoffs. Our
evaluation showed that Pinned Loads is very effective: extending
the fence-insertion, Delay-On-Miss, and STT defense schemes with
Pinned Loads reduces these schemes’ average execution overhead
on SPEC17 and on SPLASH2/PARSEC applications by about 50%.
Specifically, on SPEC17, the execution overhead of the three de-
fense schemes decreases from 112.6% to 51.3%, from 35.8% to 15.3%,
and from 24.8% to 13.2%, respectively; on SPLASH2/PARSEC, the
execution overhead decreases from 113.1% to 46.4%, from 15.8% to
7.6%, and from 11.3% to 8.1%, respectively.
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A ARTIFACT APPENDIX

A.1 Abstract

Our artifact provides a complete gem5 implementation of Pinned
Loads, along with scripts to evaluate Pinned Loads’ performance
on SPEC17, PARSEC, and SPLASH2X benchmark suites. We also
open sourced our gem5 implementation and experiment scripts on
GitHub (benchmark applications are not included due to license
issues).

A.2 Artifact Checklist (Meta-information)
• Program: Gem5

• Compilation: We compiled the gem5 simulation infrastructure

with gcc-5.4.0.

• Run-time environment: Linux with Docker containers.

• Run-time state: We use SimPoint methodology to generate up

to 10 representative intervals that accurately characterize end-to-

end performance for SPEC17 benchmarks. Each interval consists

of 50 million instructions. For PARSEC and SPLASH2X, we use

simmedium input size and run full-system simulation for the region

of interest (ROI).

• Output: Plots are output by the provided scripts.

• Experiments: Please refer to Section A.5.

• How much disk space required (approximately)?: 1GB.

• How much time is needed to prepare workflow

(approximately)?: 20 minutes.

• Howmuch time is needed to complete experiments (approx-

imately)?: 1 day.

• Publicly available?: Yes.

• Code licenses (if publicly available)?:MIT License.

• Workflow framework used?: HTCondor for job management.

• Archived (provide DOI)?: https://doi.org/10.5281/zenodo.5741384.

But we recommend using the latest version from GitHub.

A.3 Description

A.3.1 How to Access. Our complete simulation implementation is
available at:
https://github.com/zzrcxb/PinnedLoads (recommended) or
https://doi.org/10.5281/zenodo.5741384.

A.3.2 Hardware Dependencies. Any hardware capable of running
the gem5 simulator is sufficient.

A.3.3 Software Dependencies. We use Docker and provide a com-
plete Dockerfile that captures all the software dependencies re-
quired to build our simulation infrastructure.

A.3.4 Data Sets. We run SPEC17 with the reference input size.
Because of simulation issue with gem5, we exclude 2 applications
(omnetpp, imagick) out of 23 from SPEC17. We run PARSEC and
SPLASH2X with simmedium input size. We exclude 4 applications
(raytrace, dedup, streamcluster, ocean_ncp) out of 27 from PARSEC
and SPLASH2X due to simulation issues.
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A.4 Installation

Build time: 5 to 10 minutes depends on the machine. More informa-
tion in Section A.5.4.

Required libraries: All libraries that are required by gem5. The
instruction can be found at https://www.gem5.org/documentation
/learning_gem5/part1/building/.

A.5 Experiment Workflow

A.5.1 Overview. To reproduce our results, under the scripts di-
rectory, we provide two scripts, runner and plotter, to submit
jobs and process results.

A.5.2 Clone Pinned Loads. Pinned Loads is publicly available on
GitHub. Run

git clone https://github.com/zzrcxb/PinnedLoads.git

to clone our repository from GitHub. Then enter the cloned project.

A.5.3 Environment Setup. Set environment variables

export GEM5_ROOT=<path to gem5 root>

export M5_PATH=<path to full-system images and disks>

export WORKLOADS_ROOT=<path to benchmark suites root>

Note that the WORKLOADS_ROOT directory must be structured
properly to include required benchmarks before using any of the
scripts. Please refer to instructions in $GEM5_ROOT/scripts/README.md
1 for more details.

A.5.4 Compile gem5. Due to a gem5 bug2, it must be compiled
on Ubuntu 16.04 to avoid crashing on some benchmarks. To ad-
dress this issue, we provide a Docker image for compilation. Under
$GEM5_ROOT, run command

./cgem.sh

will invoke Docker and start the compilation process.
For the instructions of building gem5 manually, please refer to

$GEM5_ROOT/README.md.

A.5.5 Submit Jobs. Enter $GEM5_ROOT/scripts/ and run com-
mand:

./runner submit SPEC17 &&

./runner submit PARSEC &&

./runner submit SPLASH2X

to submit all the required jobs to HTCondor. It takes about 10
minutes to finish job submission.

A.5.6 Check Status. To check job status via condor, run command:

condor_q

which prints the total number of running jobs and remaining jobs.
To check job status for each configuration, under

$GEM5_ROOT/scripts/, run command:

./runner status

to print detailed job status information for each configuration.
Depending on the performance of your servers, it can take several

days to finish all the jobs.

1https://github.com/zzrcxb/PinnedLoads/blob/main/scripts/README.md#Structure-
of-Workload-Directory
2https://gem5.atlassian.net/browse/GEM5-631

A.5.7 Collect Results. After all the jobs are finished, under
$GEM5_ROOT/scripts/, you can collect the results by executing:

./runner collect

which should generate a file named data.csv that contains execu-
tion overhead for each benchmark and configuration, normalized
to an unsafe baseline.

Then, execute:

./plotter perf && ./plotter breakdown

to generate Figure 7 (perf-spec.pdf), Figure 8 (perf-sp.pdf), and
Figure 9 (brkd.pdf), respectively.

A.6 Evaluation and Expected Result

Because the benchmark checkpoints can be different from the ones
in our evaluation, the collected plots may not exactly match their
corresponding figures in our paper, but they should be similar.

A.7 Methodology

Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-
badging

• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html
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