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Abstract. Java PathFinder (JPF) is an explicit-state model checker
for Java programs. It explores all executions that a given program can
have due to different thread interleavings and nondeterministic choices.
JPF implements a backtracking Java Virtual Machine (JVM) that exe-
cutes Java bytecodes using a special representation of JVM states. This
special representation enables JPF to quickly store, restore, and com-
pare states; it is crucial for making the overall state exploration efficient.
However, this special representation creates overhead for each execution,
even execution of deterministic blocks that have no thread interleavings
or nondeterministic choices.

We propose mized execution, a technique that reduces execution time of
deterministic blocks in JPF. JPF is written in Java as a special JVM that
runs on top of a regular, host JVM. Mixed execution works by translating
the state between the special JPF representation and the host JVM rep-
resentation. We also present lazy translation, an optimization that speeds
up mixed execution by translating only the parts of the state that a spe-
cific execution dynamically depends on. We evaluate mixed execution on
six programs that use JPF for generating tests for data structures and
on one case study for verifying a network protocol. The results show that
mixed execution can improve the overall time for state exploration up to
36.98%, while improving the execution time of deterministic blocks up
to 69.15%. Although we present mixed execution in the context of JPF
and Java, it generalizes to any model checker that uses a special state
representation.

1 Introduction

Software model checking [3,6,12,19,27,32] is a promising approach for increasing
the reliability of programs. The goal of model checking is to explore the pro-
gram’s state space to find property violations or confirm absence of violations.
While “state-space explosion” is the key issue in model checking, time efficiency
is also an important problem. Several recent model checking tools—including
AsmLT [12], BogorVM [27], JPF [19], and SpecExplorer [32]—make the trade-
off to speed up the overall state exploration by slowing down a straight-line
execution. This work focuses on speeding up the straight-line execution.



We present our approach in the context of the Java PathFinder (JPF) [19,
33|, an explicit-state model checker for Java programs. JPF takes as input a
Java program and an optional bound on the length of program execution. JPF
explores all executions (up to the given bound) that the program can have due
to different thread interleavings and nondeterministic choices. JPF can generate
as output those executions that violate a given (temporal) property, for example
violate an assertion or lead to a deadlock. JPF can also generate as output test
inputs for the given program [34,35].

JPF is implemented in Java as a special Java Virtual Machine (JVM) that
runs on top of the host JVM. The main difference between JPF and a regular
JVM is that JPF can (quickly) backtrack the program execution by restoring any
state previously encountered during the execution. Backtracking allows explo-
ration of different executions from the same state. To achieve fast backtracking,
JPF uses a special representation of states and executes program bytecodes by
modifying this representation. The special state representation makes the overall
exploration of all different executions efficient, although it makes each single ex-
ecution inefficient compared to a regular JVM. An alternative to using special
state representation is using the native state representation of the host JVM
throughout model checking; however, while native representation makes each
single execution efficient, it can slow down the overall exploration.

We propose mized execution, a technique that can reduce execution time in
JPF. The main idea of mixed execution is to execute some parts of the program
not on JPF but directly on the host JVM. With mixed execution, JPF still as
usual executes the other parts of the program and stores, restores, and compares
the states. Mixed execution executes on the host JVM only deterministic blocks,
i.e., parts of the execution that have no thread interleavings or nondeterministic
choices. To achieve this, mixed execution translates the state from JPF to JVM
at the beginning of a block and from JVM to JPF at the end of a block. These
two translations introduce an overhead, but the speedup obtained by execut-
ing on the host JVM can easily outweigh the slowdown due to the translations.
Although we present mixed execution in the context of JPF, our main idea—
executing parts of model checking on different state representations—generalizes
to all other model checkers—including AsmLT [12], BogorVM [27], and Spec-
Explorer [32]—that use some special state representation; these checkers do not
need to be for Java or even based on virtual machines.

We have implemented mixed execution by modifying the source code of JPF.
Our implementation uses, in a novel way, a mechanism that already exists in
JPF; to quote from the JPF manual [19]:

Host VM Execution - JPF is a JVM that is written in Java, i.e. it runs
on top of a host VM. For components that are not property-relevant, it
makes sense to delegate the execution from the state-tracked JPF into
the non-state tracked host VM. The corresponding Model Java Interface
(MJI) mechanism is especially suitable to handle IO simulaion [sic] and
other standard library functionality.



MJI is an API that allows the host JVM to manipulate JPF state. The novelty
of mixed execution is the use of MJI to delegate the execution from the state-
tracked JPF into the non-state tracked host JVM even for components that
are property-relevant. Indeed, mixed execution executes on the host JVM some
program code that can modify the program state and thus affect a property, for
example assertion violation. For example, we use our technique in the execution
of property-relevant fragments during the model checking of a network protocol.
In contrast, the previous use of MJI in JPF did not execute such program code
on JVM and did not translate the state between JPF and JVM representations.

We also present lazy translation, an optimization that speeds up mixed exe-
cution by translating only the parts of the state that an execution dynamically
depends on. The basic, eager mixed execution always translates from JPF to
JVM the entire state reachable from a set of roots at the beginning of a deter-
ministic block. (Note that even this state can be a tiny part of the entire JVM
state.) Effectively, the eager mixed execution translates the entire state that any
execution of the deterministic block may read or write. In contrast, lazy trans-
lation starts the execution without translation and then, during the execution,
translates on demand those state parts that the specific execution does read
or write. As a result, lazy mixed execution performs less translation and can
speed up the eager mixed execution. We have implemented lazy translation by
providing an instrumentation for the classes executed on the host JVM.

We evaluate mixed execution and lazy translation on six subject programs
that use JPF to generate tests for data structures. The experimental results
show that mixed execution can improve the overall time for state exploration
in JPF up to 36.98%, while improving the time for execution of deterministic
blocks up to 69.15%. Additionally, lazy translation can improve the eager mixed
execution up to 25.02%. We also evaluate mixed execution on a case study that
uses JPF to find a bug in a fairly complex routing protocol, AODV [25]. Note
that mixed execution only reduces the execution time for deterministic blocks
and thus the overall exploration time; mixed execution does not affect the order
of exploration, the number of explored states, or any other aspect of the state
exploration. The techniques that improve the latter aspects are orthogonal to
mixed execution, which can be used to further improve them.

2 Example

We next present an example that illustrates how mixed execution can speed up
JPF’s state exploration. Figure 1 shows the example code that was previously
used in several studies on JPF [34-36]. The code explores the state space of the
java.util.TreeMap class from the standard Java libraries. This class implements
the map interface using red-black trees. The basic operations on the map are put
(which adds a given key-value pair; the example sets all values to null), remove
(which removes the key-value pair for a given key), and get (which gets the value
for a given key). The code represents a driver that explores all sequences of put,
remove, and get operations up to the given bounds M (for the sequence length)



public static void main(String[] args) {
int M = Integer.parselnt(args[0]); // length of the sequence
int N = Integer.parselnt(args[1]); // range of inputs
// initialize N method arguments
Integer[] elems = new Integer[N];
for (int i = 0; i < N; i++) elems[i] = new Integer(i);
// create an empty tree, the root object for exploration
TreeMap t = new TreeMap();
// explore method sequences up to length M
for (int i = 0; i < M; i++) {
Verify.beginAtomic();
switch (Verify.random(2)) {
case 0: t.put(elems[Verify.random(N-1)], null); break;
case 1: t.remove(elems[Verify.random(N-1)]); break;
case 2: t.get(elems[Verify.random(N-1)]); break;
}
Verify.endAtomic();
Verify.ignoreIf (storelfNotAlreadyStored(t));

}
}
public class TreeMap {
Entry root;
int size;
static class Entry {
Object key;

Object value;
boolean color;
Entry left;
Entry right;
Entry parent; ...

}

public Object put(Object key, Object value) { ... }
public Object remove(Object key) { ... }

public Object get(Object key) { ... } ...

Fig. 1. Driver for bounded-exhaustive exploration and parts of TreeMap code.

and N (for the range of input values). JPF’s library method Verify.random(int
n) nondeterministically returns a number between zero and the given bound n.
JPF’s library methods beginAtomic and endAtomic mark an atomic block; these
(manually added) annotations instruct JPF to ignore thread interleavings within
a given block.

Figure 1 shows relevant fields and methods of the class TreeMap. Objects of
the Entry class represent the nodes of red-black trees. Each node has a key-value
pair, a color (red or black), and pointers to the parent node and the left and
right children. Executions of the put, remove, and get methods manipulate the
tree (passed as the implicit this argument). The goal of the driver is to explore
different trees that can arise during the executions. JPF in general considers the
entire state when comparing different executions, but the driver uses abstract
matching [35-37] to compare only the state of the tree, namely the state of all
objects reachable from the root t. If the state has been already visited, the JPF’s
library method Verify.ignoreIf instructs JPF to backtrack the execution.

As already mentioned, JPF uses a special representation of the JVM state
to efficiently store, restore, and compare states. Without mixed execution, JPF



executes put, remove, and get methods on the special representation, which slows
down every field read and write. Note, however, that JPF needs the state of the
tree only at the beginning and at the end of these methods; in other words, each
method can execute atomically. Mixed execution therefore executes these three
methods on the host JVM:

— At the beginning of each method execution, mixed execution translates the
objects reachable from the method parameters (including the tree reachable
from this) from the JPF representation into the host JVM representation.
(Lazy translation does not translate all objects at the beginning but only on
demand during the execution.)

— Mixed execution then invokes the method on the translated state in the host
JVM. The method execution can then modify this state.

— At the end of each method execution, mixed execution translates the state
back from the host JVM representation into the JPF representation. JPF
then compares whether it has already explored the resulting state, appropri-
ately backtracks the execution (restores the state), and the process continues.

The speedup (or slowdown) that mixed execution achieves depends on the size
of the state and the length of the method execution. The smaller the state is,
the less mixed execution has to copy between the JPF and JVM representations.
(Lazy translation further reduces this cost such that it does not depend on the
size of the state at the beginning of the method but on the size of the state
that the execution accesses.) Also, the longer the execution is, the more mixed
execution saves by executing on JVM rather than on JPF.

In our running example with TreeMap, the results depend on the value for the
bounds M and N. We set M = N in all experiments, and the value ranges from 6
to 10, as done in the previous studies with abstract matching [35-37]. For these
bounds, JPF with mixed execution (and lazy translation) takes from 9.44% to
36.98% less time for overall state exploration than JPF without mixed execution.
Considering only the executions of put, remove, and get methods, mixed execu-
tion provides from 43.15% to 54.95% speedup. Besides the executions of these
methods, the overall state exploration includes state comparison, backtracking,
and other JPF operations. Mixed execution only reduces the method execution
time, while the cost of the rest of state exploration remains the same.

3 Background

We briefly review the parts of JPF relevant for mixed execution. More details
on JPF can be found elsewhere [19,33]. We first describe how JPF represents
state. More specifically, we focus on how JPF represents the heap. While JPF
also represents stack, thread information, class information, and all other parts
of a JVM state, mixed execution directly manipulates only the heap. We then
describe the Model Java Interface (MJI), an existing mechanism in JPF for ac-
cessing the JPF state from the host JVM. Mixed execution uses MJI to translate
the heap between the JPF and JVM representations.
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Fig. 2. An example TreeMap as an object graph and in the JPF heap representation.

3.1 Heap Representation

Each Java heap consists of a set of objects and some values for the fields of these
objects. Each object has an identity, and each field has a type that can be either
primitive (int, boolean, float, etc.) or a pointer to another object (which can
hold the special value null).

Recall that JPF is implemented in Java. JPF uses Java integers to represent
object identifiers. JPF also uses Java integers to encode all field values, be they
primitive or pointers. (JPF determines the meaning of various integers based on
the field types kept in the class information.) Conceptually, JPF represents each
object as an integer array, and the entire heap is an array of integer arrays. Fig-
ure 2 shows an example red-black tree represented in JVM (as an object graph)
and in JPF (as an array of integer arrays); this example TreeMap object can result
from the sequence TreeMap t = new TreeMap(); t.put(new Integer(2), null);
t.put(new Integer (1), null); t.put(new Integer(3), null). Figure 2 shows for
each object its type, integer identifier, and the values of primitive fields (with the
full and empty circles representing the color of the Entry objects). The pointer
fields not shown in the graph have the value null, represented as -1 in JPF.

3.2 Model Java Interface

Model Java Interface (MJI) is a JPF mechanism that allows parts of JPF ex-
ecution to be delegated from the JPF into the host JVM. MJI is analogous to
the Java Native Interface (JNI) [2] that allows parts of JVM execution to be
delegated from the JVM into the native code, written in say the C language.
MJI, like JNI, splits executions at the method granularity; namely, each method
can be marked to be executed either in JPF or in the host JVM. (JPF uses
special name mangling to mark methods for the host JVM execution.) MJI also
provides API that allows the host JVM execution to manipulate the JPF state
representation, for example to read or write field values or to create new objects.

The libraries distributed with JPF use MJI to implement several parts of
the standard Java library. MJI, like JNI, is used to implement functionality that
either requires higher performance or is not available at the target level (e.g.,



reflection [11] in Java). Specifically, JPF uses MJI to implement several classes
and methods from the java.io and java.lang packages. These existing methods
do not modify the heap; they either only affect the IO or only return primitive
values or new objects. In contrast, our mixed execution leverages MJI to execute
code that can and does modify the heap. Also, mixed execution does not operate
on the JPF representation of state; instead, mixed execution translates the state
between the JPF representation and the host JVM representation.

4 Technique

We next present mixed execution in more detail. Like MJI and JNI (Section 3),
mixed execution operates at the method granularity: the user can mark each
method to be executed either in JPF or in the host JVM. We first present how
mixed execution invokes the methods to be executed on the host JVM. We then
present the basic version of mixed execution that eagerly translates the state
between JPF and JVM at the boundaries of a method call. We finally present
lazy translation, an optimization that translates only the parts that the execution
actually needs.

4.1 Overview

Figure 3 shows how mixed execution invokes methods for host execution. When-
ever the program is about to execute a method, mixed execution checks whether
the method is marked to be executed in the host JVM. If so, mixed execution
translates the state from JPF to JVM, executes the method, and then translates
the state back from JVM to JPF. Note that mixed execution handles both cases
when the method returns normally and when the method throws an exception;
mixed execution catches the (JVM) exceptions and translates them accordingly
(into the JPF exceptions), together with the rest of the post-state.

Mixed execution assumes that the methods marked for execution in the host
JVM are deterministic, i.e., are not affected by any interleaving of threads and
have no nondeterministic choices. (This is always the case when JPF is used to
explore method sequences as shown in Section 5.1; the code is single-threaded
and there are no Verify.random calls in the methods.) Each method takes several
arguments (one of which is the implicit this argument for instance methods).
Some of the arguments may be pointers to objects, and a method execution
can access or modify a field of any object reachable from these pointers. The
arguments thus represent the roots for the part of the heap that the method
can manipulate. The heap may be much larger than the part reachable from the
roots, but the method cannot manipulate the part that is not reachable from
the roots. (In general, the roots should also include all static fields.)

4.2 Eager Translation

Figure 4 shows the pseudo-code of the method that translates the state from JPF
to JVM. The inputs to the method are an MJIEnv object, which encodes the entire



void jpfInvoke(Method m, int[] args) {
if (m.shouldBeExecutedOnJVM()) {

// get the JPF execution environment

MJIEnv env = JPF.getMJIEnv();

// translate arguments from JPF to JVM

Object[] inputs = translateJPF2JVM(env, args);

try {
// use reflection to invoke the method on JVM,
// giving it the translated values as the arguments
Object result = m.invoke(inputs);
// translate the heap reachable from the roots from JVM to JPF
translateJVM2JPF (env, inputs);
// translate the return value
int jpfResult = translateObjectJVM2JPF(env, result);
MJI.pushOnStack(jpfResult);

} catch (Throwable t) {
translateJVM2JPF (env, inputs);
// translate the exception
int jpfThrowable = translateObjectJVM2JPF(env, t);
MJI.raiseJPFException(jpfThrowable);

}

Fig. 3. Pseudo-code of the method invocation for the host JVM execution.

environment/state of the JPF execution, and an array of method arguments,
encoded in JPF as integers (Section 3). (For instance methods, the first argument
represents this.) The output of the method is an array of JVM objects that
correspond to the arguments. The method uses a depth-first traversal of the JPF
heap reachable from args to create an isomorphic JVM heap [5]. The method
creates two maps that keep the correspondence between the JPF and JVM
object identities. These maps initially start empty, but the helper method adds
for each JPF object an appropriate JVM object. The method uses the map from
JPF to JVM to handle heap aliases. (The use of the map also ensures that the
translation terminates when the heap has cycles.) The map from JVM to JPF
will be used during the translation at the end of the execution. The method and
the helper use several MJI calls (on the env objects) to get the values of fields
and to get the types of the arguments and fields.

Figure 5 shows the pseudo-code of the method that translates the state from
JVM to JPF. The inputs to the method are an MJIEnv object and an array of the
inputs, which represent the roots of the heap at the beginning of the execution.
The effect of the method is to update the JPF state. The method uses a depth-
first traversal of the JVM heap reachable from the inputs roots to appropriately
update the JPF heap to be isomorphic to the corresponding JVM heap. The
traversals keep the set of visited objects. It is important to distinguish this set
and the map from JVM to JPF objects. In the translation from JPF to JVM,
a map is used both to keep track of visited (JPF) objects and to provide the
mapping of identities. However, in the translation from JVM to JPF, a map
is only used to provide the mapping of identities, because an object should be
traversed even if it is in the map. Moreover, the translation must preserve the



Map<int, Object> mapJPF2JVM;
Map<Object, int> mapJVM2JPF;
// main method that translates all arguments in the pre-state
Object[] translateJPF2JVM(MJIEnv env, int[] args) {
mapJPF2JVM = new Map<int, Object>();
mapJVM2JPF = new Map<Object, int>();
Object[] result = new Object[args.lengthl;
for (int i = 0; i < args.length; i++) {
Type t = env.typeOf (args[il);
if (t.isPrimitive()) {
result[i] = correspondingPrimitiveObject(t, args[il);
} else {
result[i] = translateObjectJPF2JVM(env, args[il);
}
}
return result;
}
// helper method that translates all fields reachable from a reference
Object translateObjectJPF2JVM(MJIEnv env, int jpfPointer) {
if (jpfPointer == MJIEnv.NULL) return null;
if (mapJPF2JVM.contains(jpfPointer)) return mapJPF2JVM.get (jpfPointer);
// create a new object
Object o = translateOneReferenceJPF2JVM(env, jpfPointer);
// set the fields of the object recursively
foreach (field f in o.getFields()) {
int value = env.getFieldValue(jpfPointer, £);
Type t = env.typeOf (£);
if (t.isPrimitive()) {
setField(o, f, correspondingPrimitiveObject(t, value));
} else {
setField(o, f, translateObjectJPF2JVM(env, value));
}
}
// return the new object with all fields translated
return o;
}
// helper method that translates only one reference
Object translateOneReferenceJPF2JVM(MJIEnv env, int jpfPointer) {
if (jpfPointer == MJIEnv.NULL) return null;
if (mapJPF2JVM.contains(jpfPointer)) return mapJPF2JVM.get (jpfPointer);
// get the type of JPF object "jpfPointer"
Class ¢ = env.getClass(jpfPointer);
// create a new object of class "c" using reflection
Object o = c.newInstance();
// update the mappings between JPF and JVM objects
mapJPF2JVM. put (jpfPointer, o);
mapJVM2JPF.put (o, jpfPointer);
return o;

Fig. 4. Pseudo-code of the algorithm that translates the state from JPF to JVM.

original JPF identity of nodes. The translation method and its helper use several
MJI calls (on the env objects) to create new objects and set the values of fields.

4.3 Lazy Translation

Lazy translation is an optimization that translates between JPF and JVM only
the parts of the heap that a method execution actually needs. While eager trans-
lation translates the entire heap at the beginning of the execution, lazy transla-
tion translates only the arguments and not all fields reachable from them. During



Set<Object> visited;
// main method that translates the post-state
void translateJVM2JPF(MJIEnv env, Object[] inputs) {
visited = new Set<Object>();
for (int i = 0; i < inputs.length; i++) {
if (!(env.typeOf (inputs[i]).isPrimitive())) {
translateObjectJVM2JPF (env, inputs[il);
}
}
}
// helper method that translates one object
int translateObjectJVM2JPF(MJIEnv env, Object o) {
if (o == null) return MJIEnv.NULL;
if (!visited.contains(o)) {
visited.add(o);
// get type of the object
Class ¢ = o.getClass();
// get (or create if necessary) the corresponding JPF object
int jpfPointer;
if ('mapJVM2JPF.contains(o)) {
// create new JPF object of the same type
jpfPointer = env.createNewObject(c);
mapJVM2JPF.add (o, jpfPointer);
} else {
jpfPointer = mapJVM2JPF.get (o) ;

// set the fields of the object recursively
foreach (field f in c.getFields()) {
// use reflection to get the field value
Object value = f.getFieldValue(o);
Type t = f.getType();
if (t.isPrimitive()) {
env.setFieldValue(jpfPointer, f, correspondingPrimitiveJPF(t, value));
} else {
env.setFieldValue(jpfPointer, f, translateObjectJVM2JPF(env, value));
}
}
}
return mapJVM2JPF (o) ;

Fig. 5. Pseudo-code of the algorithm that translates the state from JVM to JPF.

the execution, however, lazy translation performs a check for each field read and
write to determine whether the field has been translated from JPF to JVM. If
not, lazy translation translates only that one field and continues the execution.
By the end of the execution, lazy translation typically translates into JVM only
a small part of the heap reachable from the method arguments at the beginning.

Lazy translation requires some changes to the code of the methods executed
by mixed execution. Specifically, lazy translation requires the checks for each field
read and write. We achieve those checks using code instrumentation. Figure 6
shows a part of the code from the TreeMap example before and after instrumen-
tation. For each field, the instrumentation adds (i) a boolean flag that tracks
whether the field has been translated from JPF to JVM, (ii) a method for read-
ing the field value (translating it from JPF if necessary), and (iii) a method
for writing the field value. The instrumentation also replaces all field reads and
writes in the original code with the invocations of appropriate methods. Finally,



// Original code, before instrumentation.
public class TreeMap {
static class Entry {
Entry left;

}

public Object put(Object key, Object value) {
... = e.left; // field read
e.left = ...; // field write

}

// Code after instrumentation.
public class TreeMap {
static class Entry {
Entry left;
boolean _mixed_is_copied_left = false;
Entry _mixed_get_left() {
if (!_mixed_is_copied_left) {
MJIEnv env = JPF.getMJIEnv();
int jpfPointer = env.getFieldValue(mapJVM2JPF(this), "left");
left = translateOneReferenceJPF2JVM(env, jpfPointer);
_mixed_is_copied_left = true;

}
return left;
}
void _mixed_set_left(Entry e) {
left = e;
_mixed_is_copied_left = true;
}

}

public Object put(Object key, Object value) {
... = e._mixed_get_left(); // field read
e._mixed_set_left(...); // field write

Fig. 6. Example code before and after instrumentation.

the instrumentation adds a special constructor to create objects without setting
the flags. A similar instrumentation has been used previously in testing and
model checking [5,34].

At the end of a method execution on the host JVM, mixed execution with
lazy translation traverses the JVM heap similarly as mixed execution with eager
translation. In contrast to eager translation, however, only those fields whose
flags are set to true are translated from JVM to JPF and recursively followed
further. A further optimization would be to have “dirty flags” to avoid transla-
tion from JVM to JPF for the fields whose value was not changed.

5 Experiments

We next discuss the experiments used to evaluate mixed execution. We have
implemented mixed execution by modifying the JPF code [19] to include the
algorithms from figures 3, 4, and 5. We have also implemented a prototype tool
that automates instrumentation for lazy translation as shown in Figure 6.



[ subject ] methods explored
UBStack [push, pop
DisjSet |union, find
Trie add, is_word, is_proper_prefix
Vector |addElement, removeElement, elementAt
LinkedList|add, removeLast, contains
TreeMap |put, remove, get

Fig. 7. Subjects used in the experiments.

We evaluate mixed execution on six subject programs that use JPF for state
exploration in data structures. We also evaluate mixed execution on a network
protocol for which JPF finds an injected error. The blocks of code delegated
to mixed execution are deterministic: they are sequential code without non-
deterministic choices (Verify.random calls).

We conducted all the experiments on a dual-processor Intel Xeon 2.8 GHz ma-
chine running Linux version 2.6.15 with 2 GB memory. We used Sun’s 1.4.2_06-
b03 JVM, allocating 1.5 GB for the maximum heap size. We compare the time
that JPF takes for exploration with and without mixed execution. In both cases,
we set JPF to use breadth-first state exploration. We also enable all JPF opti-
mizations, including partial-order reductions [33], the use of MD5 hashing func-
tion [19], and the exact state comparison with respect to isomorphism [35, 36].

5.1 Data Structures

We evaluate mixed execution on the six data structures listed in Figure 7. We
take the subjects from previous studies on model checking and testing:

— UBStack is an implementation of a stack bounded in size, storing integer
objects without repetition [8,23,30,37].

— DisjSet is an implementation of a union-find data structure implementing
disjoint sets [37].

— Trie implements a dictionary, i.e., it stores a collection of strings sorted
lexicographically [38].

— Vector, LinkedList, and TreeMap are from the Java 1.4 Collection Framework.

Our state exploration considers the methods that add, remove, and search for
elements in each data structure, as listed in Figure 7.

Each experiment uses an execution driver similar to that in Figure 1. By
default, we use mixed execution with lazy translation. Figure 8 tabulates the
results. We set the same bounds for the method-sequence length and for the
range of values. For each subject and several bounds, we tabulate the number of
states that JPF explores (which is the same with or without mixed execution),
the total number of bytecodes that JPF executes (with mixed execution, the
host JVM executes some bytecodes), the overall time for exploration, and the
time for execution of methods marked for mixed execution. All times are in
milliseconds. The columns labeled JPF and mized represent the runs of JPF



# bytecodes total time method exec. only
subject |bound|# states JPF | mixed JPF | mixed |speedup JPF |mixed |speedup
[ms] | [ms] [ [%] [ms] [ [ms] | [%]

UBStack 5 929 181217 19677 2318 2137 7.81 490 276 43.67
UBStack 6 5776| 1561823| 132475 5605 4367| 22.09| 1836 726 60.46
UBStack 7 41094| 14940706 1038230 31602| 20889 33.90| 14301 4412 69.15
DisjSet 5 624 207261 21507 2546 2500 1.81 187 233| -24.60
DisjSet 6 4653 2067901 161408 9602 8902 7.29| 1146 789 31.15
DisjSet 7 47480( 27152409| 1874435 92054 82169 10.74| 14133 8194 42.02
Trie 5 129 120869 4839 1686 1636 2.97 262 221 15.65
Trie 6 257 293899 10855 2068 1966 4.93 419 287 31.50
Trie 7 513 690129 24359 2804 2572 8.27 752 460 38.83
Trie 8 1025 1679127 54311 4834 4149 14.17 1440 847 41.18
Trie 9 2049 4018501 120103 9329 7730 17.14| 2929 1446 50.63
Trie 10 4097 9190465 263549 18946 15599 17.67] 6547 3064 53.20
Vector 5 7057 892349 120244 4513 4074 9.73| 1001 522 47.85
Vector 6 91706] 13596654| 1605126] 38360 30534 20.40[ 11504 4462 61.21
Vector 7 1466919]247371240(26241690[1276992[1124545 11.94]206508| 74046 64.14
LinkedList] 5 5471 302914] 105134 4390 4256 3.05 914 808 11.60
LinkedList| 6 74652 4218361| 1446823 35109 33453 4.72] 10128] 9367 7.51
LinkedList| 7 1235317| 70962644(24157788| 578847| 553095 4.45(175267(151016 13.84
TreeMap 5 187 92740 7586 1841 1735 5.76 364 201 44.78
TreeMap 6 534 361600 25864 2532 2293 9.44 761 410 46.12
TreeMap 7 1480 1223256 79470 4294 3490 18.72| 1738 988 43.15
TreeMap 8 4552 4629574| 277476 10489 7556 27.96| 5718| 2805 50.94
TreeMap 9 13816 16681289 952976 32254| 20897 35.21| 20096 9424 53.11
TreeMap 10 39344| 54581750| 3008954| 98633| 62162 36.98| 66336 29887 54.95

Fig. 8. Comparison of JPF without and with mixed execution.

without and with mixed execution, respectively. The speedup columns show the
improvement that mixed execution provides.

The results show that mixed execution can reduce the overall state explo-
ration time up to 36.98%, while reducing the method execution time up to
69.15%. Note that for very short executions (such as DisjSet for bound 5),
mixed execution may actually slow down JPF as the overhead of translation
outweighs the benefit of execution on the host JVM. As a matter of fact, for
all subjects and small bounds, mixed execution slows down JPF. However, the
more important cases are when the execution is long. As the results show, the
longer the execution gets, the more benefit mixed execution provides.

All above experiments with mixed execution use lazy translation. Figure 9
shows the benefit of this optimization. For two subjects and several sizes, we tab-
ulate the overall execution time for state exploration and the time for execution
of methods marked for mixed execution. Compared to eager translation, lazy
translation reduces the overall time up to 25.02%, while reducing the method
execution time up to 63.27%. Note again that the longer the execution gets, the
more benefit lazy translation provides.

5.2 The AODV Case Study

We next present the evaluation of mixed execution on Ad-Hoc On-Demand Dis-
tance Vector (AODV) routing [26], a widely used network protocol for wireless



total time method exec. only
name |bound|# states eager| lazy |speedup eager| lazy |speedup
[ms] [ [ms] [ [%] [ [ms] [ [ms] [ [%]
Trie 5 129| 1785| 1748 2.07| 234| 202 13.68
Trie 6 257| 2118| 2052 3.12| 393| 295 24.94
Trie 7 513| 2842| 2650 6.76| 635| 465 26.77
Trie 8 1025| 4958| 4574 7.75| 1660 833 49.82
Trie 9 2049{10150| 7911 22.06| 3595 1446 59.78
Trie 10 4097(20678(15730 23.93| 8217 3018 63.27
TreeMap 5 187| 1842| 1820 1.19 305 218 28.52
TreeMap 6 534| 2685| 2651 1.27| 571 403 29.42
TreeMap| 7 1480] 3901] 3498 10.33] 1338] 962 28.10
TreeMap| 8 4552] 9089 7548 16.95] 4308] 2864 33.52
TreeMap| 9 13816(27595(21014 23.85|15235| 9425 38.14
TreeMap| 10 39344(83744(62789 25.02]49212[29600 39.85

Fig. 9. Comparison of eager and lazy translations.

multihop ad hoc networks. We consider an implementation of AODV based on
the AODV Draft (version 11) [25] and implemented in J-Sim [1,31], a component-
based network simulator written entirely in Java. AODV is a fairly complex
network protocol whose J-Sim implementation (not including the J-Sim library)
has about 1200 lines of code. This case study was used previously to evaluate a
model checker specialized for J-Sim [28,29).

We first give an overview of AODV and its loop-free safety property. We
then explain the details of the driver for AODV and an error that we injected in
the AODV code. We finally present the improvements obtained by using mixed
execution to find the error.

An ad hoc network is a wireless network that comes together when and where
needed, as a collection of wireless nodes, without relying on any assistance from
an existing network infrastructure such as base stations or routers. Due to the
lack of complete connectivity and routers, the nodes are designed to serve as
routers (i.e., relays) and assist each other in delivering data packets. Hence, the
route between two nodes may consist of multiple wireless hops through other
nodes; this is called multihop routing.

In AODV, each node n in the ad hoc network maintains a routing table. A
routing table entry (RTE) at node n to a destination node d contains, among
other fields: a next hop address nexthop,, 4 (the address of the node to which n
forwards packets destined for d), a hop count hopsy, 4 (the number of hops needed
to reach d from n), and a destination sequence number seqno, 4 (a measure of
the freshness of the route information). Each RTE is associated with a lifetime.
Periodically, a route timeout event is triggered invalidating (but not deleting)
all the RTEs that have not been used (e.g., to send or forward packets to the
destination) for a time interval that is greater than the lifetime. Invalidating a
RTE involves incrementing seqno, 4 and setting hops,_ q to oo.

Each node n also maintains two monotonically increasing counters: a node
sequence number seqno,, and a broadcast ID bid,,. When node n requires a route
to a destination d to which n does not already have a valid RTE, n creates an
invalid RTE to d with hops,, 4 set to co. Node n then broadcasts a route request



(RREQ) packet with the fields (n, seqnoy, bid,, d, seqno,, 4, hopCount,) and in-
crements bid,,. The hopCount, field is initialized to 1. The pair (n, bid,,) uniquely
identifies a RREQ packet. Each node m, receiving the RREQ packet from node
n, keeps the pair (n, bid,,) in a broadcast ID cache so that m can later check if it
has already received a RREQ with the same source address and broadcast ID. If
s0, the incoming RREQ packet is discarded. If not, m either satisfies the RREQ
by wunicasting a route reply (RREP) packet back to n if it has a fresh enough
route to d (or it is d itself) or rebroadcasts the RREQ to its own neighbors
after incrementing the hopCount,, field if it does not have a fresh enough route
to d (nor is it d). An intermediate node m determines whether it has a fresh
enough route to d by comparing the destination sequence number seqno, q in
its own RTE with the seqnoy q field in the RREQ packet. Each intermediate
node also records a reverse route to the requesting node n; this reverse route
can be used to send/forward route replies to n. The requesting node’s sequence
number seqno, is used to maintain the freshness of this reverse route. Each entry
in the broadcast ID cache has a lifetime. Periodically, a broadcast ID timeout
event is triggered causing the deletion of cache entries that have expired.

Overview of AODV. A RREP packet, which is sent by an intermediate node
m, contains the following fields (hopCounty, d, seqnom, 4, n). The hopCount,, field
is initialized to 14+hopsy, 4. If it is the destination d that sends the RREP packet,
it first increments seqnog and then sends a RREP packet containing the following
fields (1,d, seqnog,n). The unicast RREP travels back to the requesting node
n via the reverse route. Each intermediate node along the reverse route sets up
a forward pointer to the node from which the RREP came, thus establishing a
forward route to the destination d, increments the hopCount,, field and forwards
the RREP packet to the next hop towards n.

If node m offers node n a new route to d, n compares seqnon, 4 (the destina-
tion sequence number of the offered route) to seqno,, 4 (the destination sequence
number of the current route), and accepts the route with the greater sequence
number. If the sequence numbers are equal, the offered route is accepted only if it
has a smaller hop count than the hop count in the RTE; i.e., hopsy, 4 > hopsm, 4.

Safety property. An important safety property in a routing protocol such
as AODV is the loop-free property. Intuitively, a node must not exist at two
points on a routing path; therefore, at each hop along a path from a node n
to a destination d, either the destination sequence number must increase or the
hop count must decrease. Formally, consider two nodes n and m such that m
is the next hop of n to some destination d; i.e., nexthop, ¢ = m. The loop-free
property can be expressed as follows [4,22]:

$eqnon, 4 < Seqnom.q V (seqnoy, 4 = $eqnom.a A hopsn, 4 > hopsm,.q)

Test driver. We wrote a test driver for the J-Sim implementation of AODV.
The driver produces an environment that executes all sequences of protocol
events up to a configurable bound. The driver considers these events [29]:



AODV # bytecodes total time method exec. only

# nodes|path len.|# states| JPF | mixed JPF |mixed |speedup JPF |mixed|speedup
[ms] [ [ms] | [%] [[ms] ] [ms] | [%]

8 8 5806(24571290(17425293| 61347| 54384 11.35| 9107| 3457 62.04

9 9 7960(37106325(26683825| 92266 82231 10.88(13520| 4892 63.82

10 10 10585(54077303(39272619({161578({110132 31.84|19495| 6578 66.26

Fig. 10. Model checking AODV without and with mixed execution.

— Initiation of a route request to a destination d: This event is enabled if the
node does not have a valid RTE to the destination d. The event is handled
by broadcasting a RREQ.

— Restart of the AODV process at node n: This event may take place because
of a node reboot. The event is always enabled and is handled by reinitializing
the state of the AODV process at node n.

— Broadcast ID timeout at node n: This event is enabled if there is at least one
entry in the broadcast ID cache of node n. The event is handled by deleting
this entry.

— Timeout of the route to destination d at node n: This event is enabled if n
has a valid RTE to d. The event is handled by invalidating this RTE.

— Delivering an AODV packet to node n: This event is enabled if the network
contains at least one AODV packet such that 7 is the destination (or the next
hop towards the destination) of the packet and n is one of the neighbors of
the source of the packet. The event is handled by removing this packet from
the network and forwarding it to node n in order to be processed according
to the AODV implementation.

— Loss of an AODV packet destined for node n: This event is enabled if the
network contains at least one AODV packet that is destined for node n. The
event is handled by removing this packet from the network.

Since JPF could not execute the code for the entire J-Sim simulator and the
AODV protocol, we created a simplified version of the networking layer used by
AODV. This version does not have the full generality of the J-Sim simulator but
provides the functionality needed to run AODV.

Finding error. We consider an initial state of an ad hoc network consisting of
K nodes: ng, n1, ..., ng—1 (where ng_1 is the only destination node) arranged
in a chain topology where each node is a neighbor of both the node to its left
and the node to its right (if they exist). In the initial state, nodes n; for all
0 < ¢ < K — 2 have valid routing table entries to the destination nx_1. We
manually injected an error as follows: a RTE is deleted (instead of invalidated)
when a route timeout event occurs. Consider the case of K = 3. A routing loop
may occur because if nexthopp2 = 1 and a route timeout event takes place at
n1, if ny is later offered a route to no by ng, this route will be accepted because
seqnog 2 > seqnoi 2. The case of K > 3 is similar. The interested reader can find
a detailed explanation of this injected error elsewhere [28]. We instruct JPF to
stop the exploration as soon as it finds this error.



Mixed execution. To apply mixed execution on AODV, we needed to de-
termine which parts of the AODV code to execute on the host JVM. We first
marked for host execution the data structures (such as vectors) that AODV
uses to represent protocol data (including routing tables and packet queues).
We then used profiling to find that AODV spends a lot of execution time in the
methods of the J-Sim library class Port that handles sending and receiving of
packets between network nodes [31], so we also marked those methods for host
execution. Figure 10 shows the improvements obtained with mixed execution on
AODV. We tabulate, for a range of number of nodes and length of the event
path, the overall state-space exploration time and the method execution time.
Mixed execution improves the overall exploration time from 10.88% to 31.84%,
and the method execution time from 62.04% to 66.26%.

6 Related Work

Traditional model checkers such as SPIN [15], SMV [18], or Murphi [9] have been
extensively used in formal reasoning of both hardware and software systems.
These tools analyze the models written in the special modeling languages. To
analyze a system, the user thus needs either to manually write a model of the
system in a language understood by the tools [4] or to automatically translate an
implementation of the system from a programming language (e.g., Java) into the
modeling language of the tools [7,10,14,24]. Our work considers model checkers
that directly analyze the systems written in a programming language.

Verisoft [13] was the first model checker to directly analyze the implemen-
tation code, specifically code written in the C language. Several recent model
checkers such as CMC [22], BogorVM [27], or JPF [33] also focus on analyzing
the actual code written in a programming language (C or Java). For example,
CMC has been used to model check Linux implementations of networking code
(e.g., AODV and TCP) and file systems [21,22,39]. We have also developed a
model checker [29] tailored for the J-Sim network simulator [1] and used it to find
errors in the J-Sim implementation of AODV [29]. The model checker extends
J-Sim with the capability to explore the state space created by a network pro-
tocol, whose simulation code is written in Java. The model checker operates on
the concrete memory state and clones/copies large portions of the state for each
transition. Our current work targets model checkers that operate on a special
representation of state such as AsmLT, BogorVM, JPF, or SpecExplorer.

Handling state is a central issue in explicit-state model checkers [15-17,20].
Work in this area focuses on efficient implementation of state operations, in-
cluding updating, storing, restoring, and comparing states. For example, JPF
implements techniques such as efficient encoding of Java program state and
symmetry reductions to help reduce the state-space size [17]. As another exam-
ple, Musuvathi and Dill recently proposed an algorithm for incremental heap
canonicalization [20], which speeds up the hashing of states and thus state com-
parisons. While these techniques focus on speeding up the operations on state (or
the overall state-space exploration), we propose mixed execution that focuses on



speeding up the executions that operate on the state that can be translated be-
tween the special (JPF) and the host (JVM) representation. Our technique is
thus orthogonal to the techniques for state operations and can be combined with
them to achieve even higher speed ups.

Our evaluation of mixed execution uses data-structure subjects and the
AODYV case study. The data-structure subjects have been used in other projects
on testing and model checking [8, 23, 30, 37, 38|, including in the context of
JPF [34-36]. The most recent work in the context of JPF [35,36] proposes test-
input generation techniques that depend on the abstract state matching to avoid
the generation of redundant tests. Our experiments rely on that work because
our drivers match the state of the data structure (reachable from a root) and
not the entire heap. As the results show, however, mixed execution still achieves
significant improvements even when used with abstract matching. Finally, the
AODV case study presented in this paper is, to the best of our knowledge, one
of the largest case studies that have been model checked using JPF.

7 Conclusions

We have presented mixed execution, a technique that reduces the execution
time of deterministic blocks in Java PathFinder (JPF). JPF is a special JVM
that runs on top of a regular, host JVM; mixed execution translates the state
between the special JPF representation and the host JVM representation to en-
able faster execution of Java bytecodes. We have also presented lazy translation,
an optimization that speeds up mixed execution by translating only the parts of
the state that an execution dynamically depends on. Our evaluation shows that
mixed execution can significantly improve the time for execution of deterministic
blocks and thus the overall time for state-space exploration.

Mixed execution points out the importance of studying the trade-offs used in
state-space explorations for model checking and testing. We plan to further inves-
tigate these trade-offs, focusing on the differences between stateful and stateless
search (i.e., between backtracking and re-execution). We also plan to consider the
use of memoization and incremental computation in speeding up re-execution.
We believe that the straight-line execution in model checkers can be further
improved, building on the ideas of mixed execution.
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